
Transformation Independence for Multimedia Systems

Ulrich Marder
University of Kaiserslautern
Dept. of Computer Science

Database and Information Systems Group
P. O. Box 3049

D-67653 Kaiserslautern
Germany

marder@informatik.uni-kl.de

ABSTRACT

We present our efforts on realizing transformation independence in open, extensi-
ble, and highly distributed multimedia (database) systems. Transformation inde-
pendence is an abstraction concept which allows clients to request operations on
media objects without knowledge of the actual physical media representation. Sys-
tems supporting transformation independence are expected to dynamically deter-
mine an optimal realization of such a request, depending on the actually available
materialization, processing and communication resources, and other criteria
(e. g., a cost limit).

Besides a detailed discussion of general media data abstractions, we focus on the
abstract data and processing model calledVirtualMedia1, which provides a trans-
formation independence framework for multimedia processing. In particular, we
describe how transformation requests are represented and processed, exploiting
semantic equivalence relations on filter graphs and redundant materialization, fi-
nally yielding instantiable plans for materializing the requested media object(s) at
the client.

Keywords

Media data abstractions, Media processing framework, Multimedia Database Sys-
tems

1This work is supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Sonderforschungsbereich
(SFB) 501 “Development of Large Systems with Generic Methods”.

Transformation Independence for Multimedia Systems

Contents
1 Introduction...1
2 Media Data Abstractions...2

2.1 Location Transparency and Device Independence..2
2.2 Data Independence..3
2.3 Transformation Independence..5

3 The VirtualMedia Concept..8
3.1 Transformation Requests in VirtualMedia...8
3.2 The Filter Graph Media Processing Model...9
3.3 Transformation Request Resolution...11
3.4 Considerations on Graph Transformation Algorithms...15
3.5 Reusing Derived Materialization...17

4 Related Work...18
4.1 Enhanced ADTs in Predator..18
4.2 Other Media Servers...19
4.3 Optimization...20

5 Conclusions..20
6 References..21

ii

Introduction

1 Introduction
In the age of the world-wide web global media data—often called media assets—, stored in multimedia data-
base management systems (MM-DBMS), increasingly become accessible to virtually everyone. Hence, lots of
heterogeneous clients with different, not safely predictable capabilities of storing, processing, and presenting
media data are willing to access these MM-DBMSs. In general, there exist two categories of client applica-
tions. The first only want to retrieve media objects for presentation or possibly printing. The second (addition-
ally) create media objects or modify them through editing and/or composition. Assuming a sort of unbalance
between these application types sounds reasonable: Usually there will be many applications of the presentation
type and much less of the other type.

Traditional database management systems are not sufficiently prepared to support such world-wide appli-
cations. In fact, the management of media data like images or video has never been a strength of such systems.
While many of them offer a generic data type (often calledBinary Large Objector BLOB, for short) to use
for media data, media-specific operations (most preferably integrated into SQL) are generally missing. Hence,
it is the applications’ job to detect the data format of a media object stored in a BLOB and, subsequently, to
decide whether it is possible to perform any necessary operations on the object at the client or not (because,
e. g, the format is unknown).

This resembles very much the situation in which media objects are simply stored in files, as usually done in
most today’s multimedia information systems (MMIS). Generally, two different categories of media servers
are used in such MMIS. First, generic file servers (e. g., ftp or http servers) which are able to deliver virtually
any kind of media data, but without providing media-specific semantics, are a very common base for MMIS.
Second, another popular class of servers is specialized on a certain media format (e. g., MPEG). This type of
media server is somewhat more sophisticated than the first, because they usually exploit their knowledge of the
media format to provide special operations for that data type (e. g., typical VCR functions). However, being
bound to one special media format is a serious restriction with regard to application neutrality.

Until recently, application neutrality has not to been considered an important issue with MMIS. The ubiq-
uitous world-wide web, however, has initiated the development of large open distributed MMISs, thus making
application neutrality increasingly become an issue to be dealt with. This can be illustrated by looking at digi-
tal libraries or at teleteaching environments, which both characteristically have large numbers of users with
significantly different profiles. That means, all users regardless of their various roles (manager, administrator,
client, librarian, author, teacher, student, etc.) and their manifold hardware equipment (graphical workstation
with high bandwidth network, PC with modem, set-top box, etc.) have to be served equally well by the media
server(s) on which the MMIS relies. Now, the crux is that we really want equallywell service instead of
equally bad service. This means that the (ideal) media server should be capable of satisfying almost every re-
quirement—including performance—a potential multimedia client might pose. Obviously, such a goal is hard
to achieve, and surely not free of costs. However, as multimedia applications grow and diversify, there is
probably no alternative to developing more general solutions to a common problem like optimizing concurrent
access to large global multimedia databases.

Recalling the assumed dominance of presentation applications, one could be tempted to optimize the media
server(s) for presentation only. This could, however, easily result in disregarding the stronger quality and per-
formance demands of many media editing applications. Consequently, media servers being an (essential) part
of MM-DBMSs should uncompromisingly provide physical data independence. Today’s media servers—espe-
cially continuous media servers—, however, do not provide physical data independence at all. One—if not the
main—reason for this, in fact, is performance, which is due to several problems we are facing on attempting to
provide physical data independence with a media server (or MM-DBMS, respectively): Such systems tend to
require frequent format conversions inevitably resulting in bad performance. They may inadvertently lose data
due to irreversible updates. Moreover, hiding the internal data representation from the client also means that
all the strongly necessary optimization is to be accomplished by the server, which is both more difficult and
more promising than leaving optimization to the applications.

1

Introduction

Thus, since physical data independencewithout optimizationcosts a lot of performance, considering this
optimization problem (and solving it) is crucial for future MM-DBMSs. Our approach is based on transforma-
tion independence, which is a stronger abstraction than physical data independence. It roughly means separat-
ing the semantics of media data from the technical aspects like media data formats, materialization, and opti-
mization. In the following two sections, our ideas towards realizing transformation independence are
presented. Namely, section 2 recalls basic data abstractions and discusses transformation independence in de-
tail while section 3 introduces the VirtualMedia concept we are proposing as a general framework for realizing
transformation independence. Section 4 and 5 present related work and conclusions, respectively.

2 Media Data Abstractions
Basically, our approach originates from an attempt to realize so-calledMedia-specific Abstract Data Types
(MADT) [KMM94, MR97]. The goal of the MADT concept was to introduce new (DBMS-) data types for
media objects that provide the same abstractions as traditional “built-in” data types. To achieve this, it would
not suffice to merely encapsulate the data. Rather, it is necessary to superimpose the internal structure of the
data by an adequate logical structure and then define the operations of the data type on that logical structure.
The logical structure of aText data type could be, for instance, a hierarchical structure consisting of words
building lines, building blocks, etc. Considering anImagedata type one could imagine a pixel matrix as logi-
cal structure, while aVideo is usually seen as a sequence of frames which in turn are naturally modeled as
pixel matrices, thus being of type Image.

One advantage of this concept is that the semantics of the data types are explicitly and unambiguously de-
termined by their logical structure (and the operations thereon). Without that, which is the normal case today,
the structure and properties of media objects stored in a database system become somewhat non-deterministic,
because they are driven by the applications that create and modify the objects, and, hence, determine their
physical structure. Unfortunately, letting the DBMS constitute the physical data format (which, by the way,
would make finding a mapping between logical and physical structure a trivial task) is also not practical, since
the applications’ requirements regarding the data format often differ in a wide range or even may be mutually
exclusive.

Thus, the question arises whether it is generally feasible to create media-specific abstract data types with
rich semantics, while supporting yet contradictory requirements from applications. To go on to this problem,
in the following subsections, the abstractions that could be useful in finding a solution are worked out in detail.

2.1 Location Transparency and Device Independence
Location transparency and device independence could be easily achieved by storing media data in databases
that are exclusively controlled by a DBMS (e. g., storing media data in BLOBs). However, it is often prefer-
able to use storage locations external to the DBMS, thus enabling:

� Presentation support: Presenting continuous media requires the server to perform certain operations in
real-time, which cannot be accomplished by (or demanded from) universal DBMSs. Hence, aContinuous
Media Serveracting beside the DBMS must be able to locate the media data on a storage device and access
it in bypass of the DBMS.

� Device support: There are some special storage devices that are frequently used for media data (e. g.,
read-only devices like laser disks or live media sources). Such devices are not supported by most DBMSs
(and will probably never get supported).

Most commonly, to allow storing the media data externally, the storage device and location are deliberately
made visible to the client of the DBMS (see, e. g., IDS/UDO2 with its Video Foundation DataBlade [Inf97b]).
Obviously, this approach takes the burden of being really concerned with media presentation or special device

2 Informix Dynamic Server with Universal Data Option

2

Media Data Abstractions

handling off from the DBMS. On the other hand, the applications are forced or at least induced to manipulate
the media data directly and to make assumptions on the characteristics of storage devices.

Since the MADT concept only exposes a logical model of the media, it must not adopt the approach
sketched above. Consequently, the MADT concept indeed has to be concerned with any variant of accessing or
working with the media including presentations, which makes it hard to realize (but eventually the effort will
pay off). As a by-product, the MADT concept also guarantees the stableness and integrity of the media object
identifiers (though, this appears feasible, too, when adhering to the first approach [NMB96]).

Certainly, most multimedia applications will not be able to accomplish their tasks by sticking all the time to
a merely logical view on the data. Eventually, a point will be reached, when exchanging “real” data between
the database and the application is required. Considering this situation, another abstraction, known as data in-
dependence, comes into play.

2.2 Data Independence
The advantages of data independence rely on the distinction between the internal, external, and logical repre-
sentation of a data type. Only the logical representation (which is used to specify the semantics of the opera-
tions on the data type) and the external representation (which is used to exchange instances of the data type be-
tween DBMS and application in a format that is well known to the application) are visible to DBMS clients
and, therefore, should be stable and best adapted to the applications’ needs. Analogously, the internal represen-
tation may be optimally designed for storing the data and performing operations within the DBMS. Hence, the
internal representation of a data type can be changed or improved, respectively, without any negative effect
(regarding performance and quality of service) on existing applications.

Since we have already stated that the MADT concept requires a logical model of the media, it should be
clear now that it also demands carefully distinguishing between internal and external data formats. While this
would probably be enough to say when talking about simple data types like, e. g., numbers, regarding media
data types this matter is somewhat more complicated.

One cause for trouble and sometimes misunderstandings is that media data types usually carry “raw” data
and metadata (i. e., data describing the raw data) together. The relation between these two is kind of unbal-
anced, since the metadata is always needed to interpret the raw data, whereas the metadata alone by all means
may be reasonably interpreted. For instance, the metadata might absolutely allow answering many queries con-
cerning the content of a media object without (the DBMS) ever examining the raw data. Such reasoning about
media data requireslogical data independence. For instance, talking about a specific scene in a video assumes
a method for addressing that scene which is independent from the video’s data format. Logical data independ-
ence, however, does not shield the raw data’s internal format, e. g., when an application wants to access the
above mentioned scene for presentation. Hence, applications may still have to deal with a raw data format
which they do not prefer or—much worse—which they do not even know.

Consequently, full data independence has to consider the raw media data as well. This aspect of data inde-
pendence is usually calledphysical data independenceor format independence. From the beginning, provid-
ing format independence has been a major concern of the MADT concept. Therefore, it should be stated
clearly, what format independence means and how it can be realized (cf. Fig. 1).

Obviously, the key to format independence is reconciling the conflictive requirements regarding the internal
and external raw data format. Since the internal format only depends on the DBMS, its properties should be
optimal for storing and processing the data. This internal format, however, must also guarantee application
neutrality, which means: It must not loose any bit of information provided by the creator of a media object.
Such information loss could occur, e. g., by using a DCT-based compression scheme3 with the internal format.
Moreover, information loss occurs as a side effect of many operations on the media data, e. g., clipping, down-
3DCT (discrete cosine transformation) is a very common technique in image and video compression, because it allows
to remove information being scarcely noticed by the human eye.

3

Media Data Abstractions

scaling, and filtering, because there is no inverse operation. Hence, the internal format must be prepared for
neutralizing the effects of otherwise irreversible operations.

The external format, on the other hand, ideally depends only on the application. Hence, there might be as
many different external formats as there are different applications (though, this will rarely happen). Generally,
specifying the external format of a media object not only means determining an encoding scheme (e. g., JPEG
for an image object), but also determining a set of quality parameters (e. g., the image size). Thereby, the
DBMS is enabled to reduce the data being sent to the application to the minimum required to satisfy the actual
quality demands. By the way, this also saves the applications from having to perform trivial operations like
downscaling.

To give a small example, consider an application presenting a set of images from which the user may select
some for printing. Thus, for the preview on screen this application might choose to retrieve all the images with
relatively low quality in GIF format, while in the case of being requested to print out a certain image on a laser
printer, it would be retrieved again, but this time as high-resolution, grayscale, PostScript-encoded image.

Concluding these considerations on format independence, it should be mentioned that it undoubtedly de-
mands strong “under-cover” format conversion capabilities and large storage capacities as well. While this ap-
pears to form an obstacle at a first glance, we would like to subtend that today knowledge on various data for-
mats is replicated in countless applications—just to make them cope with as many formats as possible,
however, without adding any substantial semantics.

Having an MM-DBMS providing physical data independence as illustrated above would be a first improve-
ment. However, it would probably not perform very well, because using a hidden internal format effectively
prevents any client-side application-specific optimization. First, as Fig. 1 indicates, in the case of the retrieve-
operation the server quite frequently performs format conversions whereby an MO is converted back to its
original external format. Obviously, this should never happen4, but there is nothing the application (program-
mer) could do to inhibit such behavior. To illustrate the second problem recall the example above, in which

4 Not only for performance reasons: Such “back and forth” conversion might also adulterate the MO or reduce its
quality due to computational inaccuracy.

4

FIGURE 1: Problems Caused by Format Independence During an MO’s Life-cycle

M O

C Q F

M O

C Q F

M O

C Q F

M O

C Q F

M O

C Q F

C lient S ide

Server Side

create(M O)

retr ieve(M O) retr ieve_m odified(M O)

m odify(M O)

M O : M edia O bject
C : C onten t
Q : Q uality
F: Form at

Problems

create: m ust gen e-
rate in ternal F.

retr ieve: m ust
restore origin al F,
Q m ay decrease.

retrieve_modified:
m ust operate on
in ternal F.

m odify : m ay loose
in form ation .

Media Data Abstractions

creating the external image format involves scaling and color transformations. Semantically, the sequence in
which these operations are applied to the MO does not matter at all. Depending on the actual internal data for-
mat, however, both performance and MO quality may vary substantially if different operation sequences are
chosen. Again, the application has no chance figuring out the optimum, because the internal format is out of
reach.

Thus, if we still insist on realizing an MM-DBMS (or media server) providing physical data independence,
the following consequences must be drawn from the previous considerations:

� First, applications are (of course) allowed to modify MOs. Since (normally) the MO is a shared object, the
media server then must guarantee that other applications are not automatically affected by any modifica-
tion. Therefore, some kind of version control is required. In contrast to more traditional versioning models,
however, the access path to the older (original) version is always to be prioritized. This assures that an ap-
plication maintaining an external reference to an MO can safely ignore any MO-modifications made by
other applications.

� Considering optimization, the most common case should be optimized in the first place. That obviously
means that the most popular external formats also have to be used as internal formats in order to prevent
“back and forth” format conversions whenever possible. Whatis popular, however, may vary during the
life-cycle of an MO. This variation is also likely to introduce redundancy - that is materialization in differ-
ent formats at the same time.

� Last but not least, optimizing media modificationsat and by the serveris required. As a precondition, all
operations must be expressible without any reference to or even assumptions on the internal format. This
would make dynamic optimization based on the actual internal format(s) possible. Presumably, the map-
ping of such abstract operations to really executable operations is subject to semantic fuzziness. Hence, a
formally defined semantic model should be introduced to limit fuzziness.

Putting it all together yields a new abstraction, which we calltransformation independence.This abstraction
embraces physical data independence while clearly indicating a shift towards a single solution to both the opti-
mization problem and the format independence problem.

2.3 Transformation Independence
Transformation independence can be shortly characterized as a way of generally specifying the semantics of
(arbitrarily complex) media transformations while abstracting from places of execution, execution sequences
(of atomic operations), and persistence considerations (i. e., how, when, where, and how long to store media
data in the database which can be generated by applying operations to other media data). Some more explana-
tory statements on these ideas are given below.

Media Transformations Part of the MADTs is a (not necessarily fixed) set of operations which modify me-
dia objects either-way. All these operations are considered showing the same general behavior, namely, taking
one or more input streams, processing them, and generating again one or more output streams. Thus, MADT
operations may be equally well characterized as a kind of generalizedfilters. These filters are combinable in
many ways, though, not all of the combinations would be valid (e. g., it would make no sense applying an
audio filter to an image data stream). Hence, there exists a real subset of valid filter combinations which are
calledmedia transformations. A media transformation may or may not produce a target media type different
from the originating media object’s type. For instance, it may apply some fancy effects to an image object,
thus producing again an image object (called amedia manipulation), while another transformation might cre-
ate a textual transcript from a speech recording, thus changing the media type from audio to text (called ame-
dia translation). One can also imagine transformations taking several input objects amalgamating them into
only one output object (called amedia composition), or vice versa (called amedia decomposition).

5

Media Data Abstractions

If a media server had to support such media transformations, two features should be guaranteed: First, ap-
plications must be strictly isolated from each other. That means, a transformation initiated by one application
must never inadvertently affect another application. This would eliminate the irreversibility problem mentioned
earlier. Second, optimization of transformations must (almost) completely be handled by the server. While, at
first glance, this appears being merely an option, it is, in fact, a must, because the application programmer
would (and should) not be able to figure out the necessary filters for transforming the internal data format into
the external data format (and back again).

Transformation Requests Restating the latter from a different point of view, demanding format independ-
ence implies that a client’s transformation specification can not be complete in principle, since it would not
contain any instructions related to format conversion issues. Therefore, such an “incomplete” transformation
specification henceforth is called atransformation request. Clearly, a transformation request must be semanti-
cally unambiguous to be complete from the client’s point of view. But even this constraint leaves to the server
some degrees of freedom beyond simply adding the required format conversion filters to the transformation re-
quest. Consider, e. g., a transformation request for an image object asking the image being both rotated and
sharpened. Obviously, you would not really want to bother about the actual sequence of these two operations,
since you are probably expecting that it makes no perceivable difference. However, you might truthfully sus-
pect that there actuallyis a certain sequence to prefer due to conditions which only the server is able to detect.
Consequently, stating a transformation request should not require specifying semantically irrelevant operation
sequences. In principle, the server would then be able to choose any sequence, because each one is considered
equally valid, but, naturally, the intention is to let the server determine the optimal sequence (in terms of both
cost and quality). Thus, on receiving a transformation request the media server must autonomously compute a
so-calledtransformation prescriptspecifying all the necessary filters and how to connect them.

Filter Instantiation A transformation request only cares about semantics, thus ignoring, where (i. e., on
which machine) the filters eventually selected in the transformation script should be instantiated. Hence, hav-
ing computed the transformation prescript the server is now left to, again autonomously, decide where to in-
stantiate the filters, finally obtaining atransformation schedule. To give an idea how optimization could work
during this process, consider the following basic rules, which may be used to decide the instantiation problem
for each filter independently:

� Input-driven instantiation:The filter is instantiated where its input is generated, which is often optimal if
the filter produces substantially less data than it consumes. However, this rule might be ambiguous if there
is more than one input stream.

� Output-driven instantiation:The filter is instantiated where its output should go to, which is often optimal
if the filter produces substantially more data than it consumes. Again, this rule might be ambiguous if there
is more than one output stream.

� Operation-driven instantiation:The filter is instantiated where it may optimally perform its operation, e. g.
on a machine with special hardware equipment supporting this kind of operation. This is generally optimal
if the filter’s computational complexity or its resource demands are very high. If we consider such a filter
being implemented as a web service, we could even imagine a mechanism similar to UDDI5 to discover and
apply the filter at runtime.

Note that these rules naturally include choosing the client machine as filter instantiation target, which then, of
course, is required to provide some media server features.

Materialization Transformation independence keeps the semantic difference between a media transformation
and a media object explicitly stored in the database. This is due to the fact, that a transformation request is
usually private to the application issuing it while media objects are usually not. Hence, if an application wishes
a transformation’s outcome being accessible by other applications, it must explicitly instruct the server to cre-
ate a new object from the transformation.

5Universal Description, Discovery, and Integration, see http://www.uddi.org for more information.

6

Media Data Abstractions

This distinction, however, must not affect materialization, which means, the existence of a unique identifier
for a media object does not imply that this object is physically stored anywhere. The identifier might as well
(transparently) point to a transformation prescript telling the media server how to create this object physically
on the request of a client. Thus, providing media transformations and the opportunity of creating objects from
such transformations completely disburdens the clients from even noticing the storage needs for media objects.
(Note that the source object(s) of a media transformation can very well be located outside the database as long
as the media server is able to access it.)

The additional degrees of freedom gained at the server side can be exploited for various optimizations.
Again, only some basic ideas are pointed out, since the actual realization is not essential for understanding the
transformation independence concept.

� Materializing transformations:The server may decide to materialize any outcome of a media transforma-
tion—based on whatever optimization algorithm and without informing any client, including the one that
originally invoked that transformation. Hence, the server may also retract this decision eventually, even if it
is about to destroy the materialization of a media object.

� Materializing intermediate objects:Intermediate media objects come into (usually short) existence during
the execution of a transformation schedule, however, they are never visible to the applications. The server
might decide to materialize such an object if it detects that it is frequently created by transformations not
resulting in the same final outcome.

� Including the client:Another optimization strategy is materializing media objects on the client machines.
This resembles traditional caching strategies. However, this would be no cache in its true sense, because it
does not simply contain copies of media objects stored in the database—rather, most of the objects would
be very individual items. Furthermore, the client may allow using these local materializations in fulfilling
other clients’ requests, thus realizing true peer-to-peer computing.

Transformation Independence and the MADT Concept Notwithstanding the fact that the MADT concept
has initiated the development of transformation independence it proves not being an adequate data model for
realizing transformation independence. This is true for two reasons:

1. Since the MADT concept introduces traditional abstract data types for media objects, it does not provide
means for modeling the process of dynamic refinement (at runtime) of media transformations.

2. The traditional method of specifying operations as functions or procedures makes it hard to specify filter
operations taking several input streams and producing several output streams that can be combined to-
gether.

To prove the first statement, recall that the (M)ADT concept generally assumes the internal data format being
rather deterministic. This is, however, not true with transformation independence, because it is not known at
design time which physical media objects will be materialized by the DBMS. Hence, the media objects visible
to client applications are reallyvirtual media objects. Operations on such virtual media objects (VMO) have to
be mapped to (semantically equivalent) operations on the internally materialized objects. That means, the op-
erations on VMOs are virtual, too.

Therefore, the MADT concept needs to be enhanced to provide the means for describing how virtual opera-
tions are to be applied to virtual media objects (transformation request) and how this can be mapped to real
operations on real media objects (transformation prescript). This new concept has been namedVirtualMedia
concept.

7

The VirtualMedia Concept

3 The VirtualMedia Concept
The VirtualMedia concept is particularly targeted at realizing transformation independence in a distributed,
heterogeneous (e. g., Web-based) MMIS. Generally, VirtualMedia addresses API, data model(s), architecture,
DBMS-integration, optimization, protocol, visualization, and interoperability issues. However, using a small
example, the following introduction mainly focuses on API, data model, and optimization concepts.

3.1 Transformation Requests in VirtualMedia
To illustrate the major aspects of the VirtualMedia concept a running example is being used. As mentioned be-
fore, accessing a virtual media object requires creating an appropriate transformation request and sending it to
a VirtualMedia-enabled server. Only semantics, logical structure and general media type information on
VMOs may be exposed to the clients. Hence, VirtualMedia uses a kind of media description language suited
for specifying media transformations at this abstraction level.

Fig. 2 shows the VirtualMedia transformation request for our example, thus illustrating some of the major
features of theVirtualMedia Markup Language(VMML). In VMML a transformation request is called aVir-
tualMedia Descriptor(VMD). Starting with the semantics of this sample request, assume a video object is
stored in the database and shows a talk given by a famous scientist. A client of the database wants to hear this

8

<?xml version="1.0" encoding="UTF-8"?>
<?DOCTYPE VMD SYSTEM "vmd.dtd"?>
<VMDESC>

<SOURCE>
<MOID ALIAS="BC_Video" EXT_REF="CNN_DB/Videos/4711"/>

</SOURCE>

<VIRTUAL NAME="TranscriptedSpeech">
<SIGNATURE>

<PROPERTY NAME="MAINTYPE" CLASS="typespec">TEXT</PROPERTY>
<PROPERTY NAME="SUBTYPE" CLASS="typespec">PLAIN</PROPERTY>
<PROPERTY NAME="ENCODING" CLASS="typespec">UTF-8</PROPERTY>

</SIGNATURE>
 <TRANSFORMATION NAME="Transcription">

<OPERATION SEMANTICS="Transcript">
<INPUT ALIAS="i1" REF="BC_Video"/>
<PARAM NAME="Language" VALUE="EN"/>

</OPERATION>
</TRANSFORMATION>

</VIRTUAL>

<VIRTUAL NAME="Speech">
<SIGNATURE>

<PROPERTY NAME="MAINTYPE" CLASS="typespec">AUDIO</PROPERTY>
<PROPERTY NAME="SUBTYPE" CLASS="typespec">WAVEFORM</PROPERTY>
<PROPERTY NAME="ENCODING" CLASS="typespec">WAV</PROPERTY>
<PROPERTY NAME="SAMPLING_FREQUENCY" CLASS="quality">44100</PROPERTY>
<PROPERTY NAME="SAMPLE_DEPTH" CLASS="quality">16</PROPERTY>

</SIGNATURE>
<TRANSFORMATION>

<OPERATION SEMANTICS="nop">
<INPUT ALIAS="i2" REF="BC_Video"/>

</OPERATION>
</TRANSFORMATION>

</VIRTUAL>

</VMDESC>

FIGURE 2: A Sample Transformation Request (VirtualMedia Descriptor)

The VirtualMedia Concept

talk, but for whatever reason she only wants to hear the voice without watching the video and, additionally, she
would like to have a textual transcript of the talk displayed on her screen.

To accomplish this task, the request first references the video object as a source MO. Since this MO is well
known to the server, specifying any type information is optional and, thus, omitted. Next, the request specifies
the two target objects as VMOs. Since these both must be materialized at the client, exact type information
(signature) is required for the external format. Optionally, a signature may include quality properties as dem-
onstrated with the second VMO and content properties (not included in the example).

The transformation section is mandatory for each VMO, because even if there is no “real” transformation
operation to specify (as with the second VMO), it must be present defining at least one source object from
which the VMO is to be materialized. Note that one could also think of replacing the “NOP” operation by
some other operation that separates the audio part from the video part of the source MO. Thus, by omitting
this operation we rely on the server knowing an appropriate default operation for extracting the audio. This is
a reasonable assumption if the video has only one audio track. Otherwise (if, e. g., multiple languages are pro-
vided), it would indeed be necessary to refine the second transformation section.

Any VMO and any intermediate object (named transformation or named operation output) may be chosen
as input to operations. The only restriction is of course, that no media object may be input to itself, neither di-
rectly nor indirectly. To build such source-target relationships, multiple transformation sections (within one
VMO) and multiple operation sections (within one transformation section) are allowed. With respect to the in-
troductory character of this article the example does not further demonstrate these advanced features.

Effectively, a (successfully verified) VMD describes a directed acyclic graph (DAG). Source objects be-
come start nodes, operations become intermediate nodes, and only VMOs become end nodes of this graph. The
edges are derived from the source-target relationships. Thus, this graph structure is a suitable internal model
for describing any media transformations requested through VMDs6.

3.2 The Filter Graph Media Processing Model
Modeling and realizing the processing (i. e., transformation) of media objects through filter graphs is a proba-
bly well-known principle (see, e. g., [CSV96] and [Din95]). However, to our knowledge it has never been ap-
plied to model abstract media data types.

3.2.1 Filter Graphs
A filter graph also is a DAG (Fig. 3). The start
nodes of the graph are media producerspi (media
objects stored in the database or anywhere else,
maybe even live media sources) and the end nodes
are media consumersci (most often client applica-
tions or the database). The intermediate nodes are
media filtersfi, the basic operations forming a me-
dia transformation, while the edges of the graph
represent media streams flowing from one filter
(or media producer) to another filter (or media
consumer).

It is easy to define an isomorphism between the graph representation of VMDs and filter graphs. This,
however, would not correctly reflect the corresponding semantic relationship. A filter graph specifies anin-
stantiablemedia transformation whereas a VMD describes avirtual media transformation (thus, we could call
the corresponding graph avirtual filter graph). “Instantiable” means that each media producer is a unique ma-

6The graph model also appears being attractive for visualization ofVMDs at the client.

9

FIGURE 3: A Sample Filter Graph

P
C

F

p
1 f

1

c
1

p
2 f

2 f
3

e
1

e
2

e
3 e

4

e
6

e
7

f
4e

5

The VirtualMedia Concept

terialization, each filter has an implementation, and all input data formats meet the respective requirements.
Hence, if we assume that for each source object in a VMD exists at least one materialization and for each op-
eration exists at least one implementation, then the conclusion is that for this VMD existn∈[0..∞] semanti-
cally equivalent filter graphs. Consequently, VirtualMedia’s main optimization problem is finding the cost-op-
timal filter graph for a given VMD (if one exists).

3.2.2 Data Model for Media Objects and Filters
To support the transformation of request graphs into instantiable filter graphs a data model for virtual filter
graphs is introduced. Such a VirtualMedia filter graph may contain both virtual elements and real (or instanti-
able) elements.

We define an object-oriented data model describing media object types and media filter types. The MO part
of the model does not define a (traditional) media type hierarchy. Instead, all attributes of an MO like main
type, subtype, encoding, and further optional characteristics are modeled as properties which may be dynami-
cally assigned to MOs as a signature (generally denoted withσ). The assignment of contradictory properties
may be prevented by defining appropriate constraints. We believe that this approach is more flexible and ex-
tensible than a type hierarchy built on inheritance and, thus, better supports the framework character of Virtu-
alMedia.

The filter part of the data model describes both virtual filters and instantiable (implemented) filters. A filter
is characterized by its functional and non-functional properties. The functional properties are defined as a set
of input and output signatures. These signatures are interpreted differently depending on the filter being virtual
or instantiable. If a virtual filter specifies input or output signatures, these are considered as part of itsseman-
tics. If an instantiable filter specifies input or output signatures it specifiesrequirementson actual input-MOs
andassertionson actual output-MOs. That means, a filter implementing a virtual filter is not required to spec-
ify “compatible” signatures. To give an example: Let the virtual filterF say its input should be audio, then we
could imagine an implementation ofF accepting video as input (but, of course, affecting only the audio part).

By non-functional filter properties we mean features like resource consumption, computational complexity,
or quality degradation coefficients. Considering such properties during transformation request resolution
sounds quite reasonable. How this should be realized, however, has not yet been examined in detail. Whether
there exist meaningful non-functional properties of virtual filters that are to be modeled and considered by
graph transformation rules, is also still an open ques-
tion.

Resuming the running example, the VMD (Fig. 2)
may now be translated into a VirtualMedia filter graph
according to the data model introduced above. The re-
sulting graph is shown in Fig. 4. The start nodep1 of
this graph is the video object which is the source object
of the transformation request. The two virtual objects
of the transformation request become end nodesc1 and
c2 of the graph. The end nodes are attributed with the
requested MO signatures. The transcript operation
specified in the request is turned into an accordingvir-
tual media filter f1, which is placed within the data
flow from the source object to the text objectc2. At this
time, f1 can only be virtual because its input is virtual.

10

FIGURE 4: A Sample VirtualMedia Transforma-
tion Request Graph

σ
c1

: σ
c2

:
[Typespec] [Typespec]
Maintype=Audio Maintype=Text
Subtype=Waveform Subtype=Plain
Encoding=WAV Encoding=UTF-8
[Quality]
Sampling_Frequency=44100
Sample_Depth=16

f1: Transcript

p1: CNN_Vi-
deos/4711

c
2
: Transcr-

iptedSpeech
σ

c2

c
1
: Speechσ

c1

The VirtualMedia Concept

3.3 Transformation Request Resolution
In what follows, we will describe some characteristic steps performed during request resolution. The overall
goal of this process is to find a semantically equivalent graph containing instantiable filters instead of virtual
filters and materializations instead of VMOs. Thus, we have to consider how materializations should be repre-
sented in the VirtualMedia model and how to get rid of the “virtual nodes” in request graphs.

3.3.1 Materialization Graphs
For representing the materialization of VMOs we use the same data model as introduced above. That means, a
so-called materialization
graph of a VMO describes
how certain physical data
objects form the materializa-
tion of this VMO. Fig. 5
shows a possible materiali-
zation graph for the VMO
“CNN_Videos/4711” of our
example.

We distinguish three
types of materializations:
primary, secondary, and de-
rived materializations. The
first two types occur in
Fig. 5: p2, p3, andp4 are pri-
mary materializations andp5

is a secondary materializa-
tion. Derived materializa-
tions will be considered
later. Primary materializa-
tions are supplied at the cre-
ate-time of the VMO and are
assumed to provide the
maximum available quality of the VMO. Consequently, these materializations may not be altered or destroyed
unless the VMO is destroyed itself. On the other hand, secondary materializations are created by the server
purely for optimization purposes and usually without informing the applications. Hence, the server may create
or destroy secondary materializations whenever this seems likely to improve the system’s performance. As
shown in the example, materialization graphs can also contain media filters. In contrast to the transformation
request graph, however, these media filters may already be instantiable likef4. This is possible because the in-
put data formats of materializations are always known.

3.3.2 Graph Transformation
Generally, there are two kinds of graph transformations called (1) replacement (of one node by another one or
by a subgraph) and (2) adjustment (adding or removing a node). The replacement steps are the driving parts of
the transformation because the “virtual nodes” are replaced by (more) real ones. Any replacement may induce
a number of adjustment steps necessary to make the signatures compatible.

Thus, in the case of the example, the following two tasks are to be accomplished:

1. Finding an appropriate materialization of the object “CNN_Videos/4711”, and

11

FIGURE 5: A Sample VirtualMedia Materialization Graph

p2: 4711/sound

p3: 4711/clip1

p4: 4711/clip2

p5: 4711/scnd1

σp2

σp3

σp4

σp5

f3: Composeσf31

f4: Assembleσf41 σf42

σf32

σf33

c3: CNN_Vi-
deos/4711

σc31

σc32

σp2: σp3, σp4, σf41, σf42: σp5, σc32: σf32:
[Typespec] [Typespec] [Typespec] [Typespec]
Maintype=Audio Maintype=Videot Maintype=Video Maintype=Video
Subtype=Waveform Subtype=SingleStream Subtype=MultipleStream Subtype=SingleStream
Encoding=WAV Encoding=MJPEG Encoding=AVI

[Quality] σ
f33

, σ
c31

:

Channels=Stereo σf31: [Typespec]

Sampling_Frequency=44100 [Typespec] Maintype=Video
Sample_Depth=16 Maintype=Audio Subtype=MultipleStream

The VirtualMedia Concept

2. Replacing the virtual filter “Transcript” with its optimal (if several are found), semantically correct imple-
mentation.

Having a transformation request graph and a matching materialization graph we can merge them by unifying
the corresponding VMO-nodesp1 of the request graph (Fig. 4) andc3 of the materialization graph (Fig. 5).
(This is not fully shown in the following figures due to space limitations.) The resulting graph now offers dif-
ferent materializations to be alternatively utilized in fulfilling the request. The final choice depends on the sub-
sequent process of finding implementations for virtual filters and adapting media stream types and formats.

Semantic Equivalence Relations
The graph transformation is driven by rules which are derived from a number of equivalence relations con-
cerning (sets of) filters and MO-signatures. These equivalence relations are considered as being part of the
VirtualMedia data model.

Notice that how ever we constitute our data model and equivalence relations they will probably not con-
form to any application’s semantics. This is because such an abstract model can not consider all the media
properties an application might depend on. Hence, an application programmer should be aware of this model
and the equivalences it defines in order to avoid erroneous transformation requests. Since application neutrality
is a major objective of VirtualMedia, only equivalences are defined on which the majority of applications
could agree.

There are three basic semantic equivalence relations:

Semantic Neutrality:Classifying a filter as being semantically neutral means it may (in principle) be inserted
anywhere in a VirtualMedia graph (or removed) without changing the semantics of the graph. Obviously,
putting all the format conversion filters in this equivalence class is crucial for automatic format adaptations
to work. Actually, the formal VirtualMedia model defines several different context-sensitive (with respect
to media signatures) varieties of semantic neutrality.

Semantic Reversibility:Some filter operations are reversible by corresponding inverse filters. This means,
connecting a reversible filter with its inverse filter yields a semantically neutral filter pair. Hence, if such a
pair occurs in a VirtualMedia graph it may be removed safely. At first glance, inserting such a pair does
not appear to make much sense. An important exception, however, is the composition and decomposition of
multiple-stream MOs, which is discussed below.

Semantic Permutability:If the sequence in which two filters are applied to an MO does not matter, they are
permutable without changing the graph semantics. Besides being stated a priori, permutability may also be
stated ad hoc in a transformation request: A single transformation can contain several operations on the
same source. If there are no specified input/output dependencies between these operations, they are consid-
ered permutable. Instead of permuting such permutable filters it is also possible to merge them in a multi-
ple-filter node (super-filter), thus deferring the decision on the actual sequence to a secondary optimization
step.

All these basic relations only lead to adjustment rules. To continue our example, however, we need a replace-
ment rule for exchanging the virtual transcript-filter. This rule is based on a relation calledsemantic assimila-
tion.

Semantic Assimilation
The semantic equivalence between a virtual filter and a possible implementation of this filter is called semantic
assimilation (cf. Fig. 6). The implementation of a virtual filterfv consists of an instantiable filterfi implement-
ing the semantics offv and an arbitrary number of additional filters. The additional filters may be located be-
fore and afterfi. They must either be semantically neutral or otherwise a filterf before fi must be followed by
its inversef –1 after fi where (f, f –1) conform to the generalized reversibility semantics (explained in the follow-

12

The VirtualMedia Concept

ing section on (de-)composi-
tion). An implementation is
calledcompleteif (1) all fil-
ters are instantiable, and (2)
the signature distance7 be-
tween start and end point of
all edges is zero.

The primary rule de-
rived from the semantic as-
similation relation is that a
virtual filter may be re-
placed by another filter with
the same semantics but
more specific signatures.
Afterwards, some adjust-
ment rules may be applied
to “complete the implemen-
tation”.

Fig. 7 shows (a part of)
the example graph after replacing the virtual transcript-filter with a suitable non-virtual version. Note that the
signatureσp1 of the VMO has been gained from merging the request graph with the materialization graph.

The non-virtual transcript-filter provides a signatureσf11 for the input MO and a signatureσf12 for the out-
put MO. While the output signature matches the client’s request, i. e.,∆(σf12, σc2) = 0, the input signature does
not match the signature of the source MO, i. e.,∆(σp1, σf11) > 0, because the Maintype-properties are different.

Any reasonable implementation of the transcript-operation will most probably operate on audio data.
Hence, it is quite unlikely that a transcript-filter exists with∆(σp1, σf11) = 0. Therefore, an adjustment step is
required to complete the implementation of the virtual transcript-filter. Since the transformation request does
not specify how the video object is to be converted into an audio object, the resolution algorithm is free to find

a suitable converter. In our case, the source MO is a
composition of several sub-MOs which is indicated by
the property “Subtype=MultipleStream”. Such MOs
can be decomposed to restore the single sub-MOs. In
order to see how this fact can be exploited for adjust-
ment, the specific semantics of composition and de-
composition have to be considered.

(De-)Composition Semantics
Filters that compose or decompose multiple-stream
MOs work without information loss (by definition).
That means, e. g., that a decompose-filter must not
only provide all the single streams but also the syn-
chronization information. Thus, compose- and decom-
pose-filters are reversible. Since no information gets
lost they are also kind of semantically neutral. Any-
how, only two of four possibilities to insert/remove a

7The signature distance is a discrete distance function∆ defined on media signatures based on a classification of the
parts (properties) of a signature.

13

FIGURE 7: Semantic Assimilation of the Tran-
script-Filter

σ
p1

: σ
f11

: σ
f12

, σ
c2

:
[Typespec] [Typespec] [Typespec]
Maintype=Video Maintype=Audio Maintype=Text
Subtype=MultipleStream Subtype=Waveform Subtype=Plain

Encoding=WAV Encoding=UTF-8
[Quality]
Channels=Mono

f
1
: Transcript

p
1
: CNN_Vi-

deos/4711

c
2
: Transcr-

iptedSpeech
σ

c2

σ
p1

σ
f12

σ
f11

FIGURE 6: The Equivalence of Virtual Filters and (possible) Implemen-
tations defined as Semantic Assimilation

σ
a

σ
v1

fv: op σ
v2

σ
b

σa σi1
fi: op σi2 σb

Assim
ilation

Additional filters
must be semant. neutral.

Conditions:
σv1 must be equally or more

specific thanσ
i1

and

σ
v2

must be equally or more

specific thanσi2

(in at least one case "more").

The VirtualMedia Concept

(de)compose-filter are reasonable
(cf. Fig. 8), which is the reason
why the graph transformation ar-
rows are pointing only to the right.

The semantic reversibility of
(de)compose-filters may be ex-
ploited for applying filters to sin-
gle sub-MOs of a composed MO.
In case 1 (cf. Fig. 9) a filterf gets
embraced by a decompose/com-
pose pair (f may as well represent
a whole subgraph). Thus, the defi-
nition of reversibility is general-
ized in a sense that all other filters
(i. e., not only neutral filters) are
allowed in-between a
decompose/compose pair which is
newly inserted into a VirtualMedia graph. In case 2 the embracing of a multiple-filter node is shown. The fil-
ters in a multiple-filter node may apply to different sub-MOs of a composed MO (depending on their signa-

ture). Since the filters are classified as per-
mutable there are by definition no
semantic dependencies between them.
Hence, it is possible to split the multiple-
filter node when it gets embraced by a de-
compose/compose pair.

We may now continue our example by ap-
plying the rule of Fig. 8, case 2, as the
first adjustment step. This results in a
graph with a newly added decompose-fil-
ter, which is (partly) depicted in Fig. 10.

The next adjustment step exploits the re-
versibility relation between compose- and
decompose-filters in order to simplify the
current graph (adjustment by reduction).
Fig. 11 motivates this by showing another
excerpt of the graph in Fig. 10 shifting the
focus to the compose-filterf3 (originating
from the merged materialization graph)
and the newly inserted decompose-filterf2.
Since the VMO-nodep1/c3 between these
two filters is functionally neutral, they are
actually direct neighbors neutralizing each
other semantically. Thus, we can eliminate
both the compose-filter and the decom-
pose-filter (and, of course, also the VMO-
node).

14

FIGURE 9: Exploiting Semantic Reversibility of (De)com-
pose-Filters

σ
a

σ
fg1

σ
fg2

σ
a

σ
d1

f
d
: Decompose

σ
d3

σ
d2

σ
c1

f
c
: Compose

σ
c2

σ
f1 f σ

f2

Case 1: Addfd andfc, if ∆(σa, σd1) = 0

and∆(σ
a
, σ

f1
) > ∆(σ

d3
, σ

f1
).

g

f

σ
a

σ
f1 f σ

f2

σ
a

σ
d1

f
d
: Decomp.

σ
d3

σ
d2

σ
c1

f
c
: Comp.

σ
c2

σ
f1 f σ

f2

σ
g1 g σ

g2

σ
d4

σ
c3

Case 2 (multiple-filter node): Addf
d

andf
c
, if ∆(σ

a
, σ

d1
) = 0

and∆(σ
a
, σ

f1
) > ∆(σ

d3
, σ

f1
)

and∆(σ
a
, σ

g1
) > ∆(σ

d2
, σ

g1
).

FIGURE 8: Exploiting Semantic Neutrality of (De)compose-Filters

f: Composeσ
f1

σ
f2

σ
a

σ
b

σ
c

σ
a

σ
c

Case 1: Removef, if ∆(σ
a
, σ

c
) < ∆(σ

f2
, σ

c
).

This includes removing thesubgraph represented byσ
b
.

Case 2: Addf, if ∆(σ
a
, σ

f1
) = 0 and∆(σ

f2
, σ

b
) < ∆(σ

a
, σ

b
),

whereσ
f2

is the best matching output signature off.

σ
a

σ
b

σ
a f: Decomposeσ

f1
σ

f2
σ

b

The VirtualMedia Concept

Concluding the Example
There is now only little work left to complete the opti-
mal8 transformation prescript graph of our example.
After removing the compose/decompose pair the (pri-
mary) materializationp2 of the soundtrack of the video
becomes directly connected to both the transcript-filter
f1 and the end nodec1 “Speech”. Thus, we find that
∆(σp2, σc1) = 0, but∆(σp2, σf11) > 0. However, the non-
zero result in the latter evaluation only comes from a
different value of the quality-property “Channels” (ste-
reo vs. mono). Hence, assuming a suitable9 converter-
filter is available, we perform a final adjustment step
by adding this filter betweenp2 and f1 (adjustment by
addition). Fig. 12 shows the resulting final transforma-
tion prescript graph realizing the sample transforma-
tion request (cf. Fig. 2 on page 8).

In this section we demonstrated (by example) how
the transformation request resolution process isex-
pectedto work. The basic rules driving this process
have been introduced and their application has been
shown in the example: An implementation of the vir-
tual transcript-filter is found by semantic assimilation.
The optimal source object is found by exploiting both
semantic neutrality (insertion of the decompose-filter)
and semantic reversibility of (de-)compose-filters
(elimination of the compose-decompose pair). Finally,
a format adaptation is realized by inserting a semanti-
cally neutral (more precisely: content-neutral) con-
verter. The next section discusses the algorithm we
propose for request resolution.

3.4 Considerations on Graph
Transformation Algorithms

All graph transformation rules (except graph composi-
tion) can be derived from the equivalence relations de-
fined in the previous section. Obviously, these rules are
applicable to drive the transformation of a VirtualMe-
dia graph in very different directions, some of which will probably not lead to an acceptable result. What con-
stitutes an acceptable result, however, may be defined in various ways, e. g.:

1. A complete implementation of the client’s transformation request.

2. A complete implementation, optimized according to one of the following criteria: resource consumption
(min.), delivery latency (min.), perceivable quality (max.). (This list may still be extended.)

3. A complete implementation with multidimensional optimization (two or more of the criteria listed above).

8Assuming the (simple) criterion “Use the minimal number of filters to resolve the given request”.
9This filter (in this example called “Audio2mono”) should match the given signaturesσp2 andσf11 and must be
classified as “content-neutral”.

15

FIGURE 11: The Compose-filter f3 Neutralized
by a Decompose-filterf2 (p1/c3 is a Neutral VMO-
Node)

σ
p1

, σ
f21

, σ
f33

, σ
c31

: σ
p2

: σ
f31

, σ
f22

:
[Typespec] [Typespec] [Typespec]
Maintype=Video Maintype=Audio Maintype=Audio
Subtype=MultipleStream Subtype=Waveform

Encoding=WAV
[Quality]
Channels=Stereo
...

p
2
: 4711/sound

p
1
/c

3
: CNN_

Videos/4711

f
3
: Composeσ

f31

σ
p1

σ
p2

σ
c31

f
2
: Decomposeσ

f21

σ
f22

σ
f33

FIGURE 10: Adding a Semantically Neutral
Decompose-Filter

σ
p1

, σ
f21

: σ
f11

: σ
f12

, σ
c2

:
[Typespec] [Typespec] [Typespec]
Maintype=Video Maintype=Audio Maintype=Text
Subtype=MultipleStream Subtype=Waveform Subtype=Plain

Encoding=WAV Encoding=UTF-8

σ
f22

: [Quality]

[Typespec] Channels=Mono
Maintype=Audio

f1: Transcript

p
1
: CNN_Vi-

deos/4711

c
2
: Transcr-

iptedSpeech
σ

c2

σ
p1

σ
f12

σ
f11

f2: Decomposeσ
f21

σ
f22

The VirtualMedia Concept

Note that goals (2) and (3) may imply the consid-
eration of non-functional properties as part of sig-
natures. This is still an open problem needing fur-
ther investigation.

Generally, the number of transformation rules
applicable to any given graph lies between 0 andn.
Hence, we may start by selecting rules according to
a breadth-first or depth-first search algorithm, re-
sulting in a search graph with VirtualMedia graphs
as nodes and rule application as edges. Breadth-
first search will find a solution to (1), if one exists.
Since the search graph can contain cycles, a cycle
detection must be added to the algorithm, if
breadth-first search should find all solutions, which
would be necessary to solve (2) or (3).

The size of the search graph does not only de-
pend on the size of the transformation request
graph, but also on the size of the affected materiali-
zation graphs and the size of the filter base which
are both unbound. Hence, if our aim is finding an
optimal solution, we should avoid computing all
possible solutions, because in a real multimedia
system the response time must be short. Thus, a
heuristic search algorithm is required.

There exist many such algorithms [MF00] and
it is not obvious which one to choose. However,
since the selection of an algorithm is considered being part of the implementation of the VirtualMedia model
(but not part of the model itself), we give some hints on which approach appears to be useful and which one
does not.

The simplest applicable approach is the greedy algorithm. This algorithm, however, is likely to get stuck in
a local optimum, thus missing the global optimum we are looking for. There are several traditional algorithms
which avoid this pitfall, e. g., branch-and-bound or the A* algorithm. For these algorithms to work, the cost
function evaluating the benefits of applying a certain rule must meet certain conditions. For A*, e. g., it must
always behave monotonic on the path from the request graph to the (optimal) solution graph. This is impossi-
ble if the cost function is only based on the signature distance, because replacement rules usually increase the
distance while adjustment rules generally decrease the distance. Hence, another function would be needed to
measure the distance between a virtual filter and a non- (or less) virtual filter, which would compensate the in-
crease of signature distance. Another interesting yet less traditional approach are evolutionary algorithms.
Such an algorithm may also miss the global optimum but usually finds a better solution than the simple greedy
algorithm.

Finally notice, that a divide-and-conquer approach (especially dynamic programming) is not useful because
of the context-sensitivity of most of the rules. That means, combining optimal solutions of subproblems (i. e.,
subgraphs of the request graph) does not (generally) yield an optimal solution of the global problem. Thus, the
dynamic programming preconditions are not met.

16

FIGURE 12: The Final Transformation Prescript
Graph

c
2
: Transcr-

iptedSpeechσc2

c
1
: Speechσc1

p2: 4711/sound σp2

f1: Transcript σf12

σf11

f5: Audio2monoσf52

σf51

σc1: σp2: σc2, σf12:
[Typespec] [Typespec] [Typespec]
Maintype=Audio Maintype=Audio Maintype=Text
Subtype=Waveform Subtype=Waveform Subtype=Plain
Encoding=WAV Encoding=WAV Encoding=UTF-8
[Quality] [Quality]
Sampling_frequency=44100 Channels=Stereo
Sampling_depth=16 Sampling_frequency=44100

Sampling_depth=16

σf51: σf52, σf11:
[Typespec] [Typespec]
Maintype=Audio Maintype=Audio
Subtype=Waveform Subtype=Waveform
Encoding=WAV Encoding=WAV
[Quality] [Quality]
Channels=Stereo Channels=Mono

The VirtualMedia Concept

3.5 Reusing Derived Materialization
When a prescript graph is finally instantiated and executed, each MO represented by an edge in the graph has
to be materialized. Usually, this materialization is volatile, because the client is only interested in the delivery
of the MOs specified in the transformation request. The materialization, however, could also be made persis-
tent without bothering the client. This leads to the opportunity of creating a (redundant) materialization for
later reuse. The decision (to be made by the server), which MO is to be materialized permanently, could be
made depending on processing costs (make “expensive” MOs persistent), statistics (make frequently requested
MOs persistent), and the like.

A “materialized edge” can be lo-
cated (1) on the path between a
physical MO and a VMO or (2) on
the path between a VMO and a cli-
ent-requested MO. In case (1), it is
called a secondary materialization,
because it may serve as a substitute
for the corresponding primary mate-
rialization of the VMO (cf. Fig. 5,
pg. 11). In case (2), it is called ade-
rived materialization(DerMat), be-
cause it is the materialization of an
MO that has been derived from the
VMO at the beginning of the path.
An interesting question is how to de-
termine whether a DerMat could be
reused in resolving a given transfor-
mation request.

In order to be reusable, a DerMat must be represented in the corresponding materialization graph. This is
demonstrated by continuing the running example. As a motivation, assume the implementation of the transcript
filter in our example is a highly complex filter consuming a lot of processing resources (surely not an unrealis-
tic assumption). This might, e. g., cause the user’s quality of service (QoS) demands not being met (for too
much delay) and, hence, cause the server to keep the transcript internally as a DerMat, since that would in-
crease the QoS dramatically if it were ever requested again by a client.

Fig. 13 shows both possibilities how this DerMat could be reasonably represented in the materialization
graph. The first is thevirtual context, i. e., a subgraph of the original request graph containing all paths ending
in the DerMat. The second is thephysical context, i. e., a subgraph of the final prescript graph containing all
paths ending in the DerMat. The virtual context represents the application semantics of the DerMat. Hence,
given a transformation request referencing this VMO, the corresponding request graph has to be matched
against all virtual contexts of the VMO’s materialization graph.

In the case of an exact match, the corresponding subgraph of the request graph may be replaced by a node
representing the DerMat. A partial match occurs if a subgraph is detected that contains all nodes of the virtual
context, but has additional nodes in-between and/or different topology. In this case, equivalence transforma-
tions may be applied to find an exact match.

In case a DerMat can be reused, the trade-off between the costs of recomputing the materialized MO and a
possibly lower quality of the DerMat has to be considered. This is due to media filters reducing the quality of
the media (which may not always be intended). Hence, recomputation of a DerMat applying different filters
(e. g., improved implementations that have become available after the initial creation of the DerMat) may yield
a better media quality. This (possible) quality gain can be assessed by evaluating the physical context of the
DerMat.

17

FIGURE 13: Adding a Derived Materialization c2 to the
Materialization Graph (old parts of the graph not shown)

c
2
: Transcr-

iptedSpeech
σ

c2

p
2
: 4711/sound σ

p2
f'

1
: Transcript σ

f12

σ
f11

f
5
: Audio2mono σ

f52
σ

f51

f
1
: Transcript

c
3
/p

1
: CNN_

Videos/4711

Virtual Context
Physical Context

Related Work

4 Related Work
The transition from our earlier MADT approach to the VirtualMedia approach also means switching from a
local to a more global approach regarding MADT design and solving the optimization and other problems. To
the best of our knowledge, such a strategy has not yet been pushed for realizing media data types. Therefore,
we compare our approach to some others that are following a local design and/or optimization strategy, start-
ing with the most closely related one: the E-ADT approach [Ses98].

4.1 Enhanced ADTs in Predator
The probably well-known concept ofEnhanced Abstract Data Types(E-ADT) has already been realized in
the ORDBMS prototypePredator. Its superiority over traditional ADTs is primarily constituted by the
E-ADTs’ ability to optimize complex operations. Complex operations are combinations of elementary E-ADT-
operations, e. g.Clip(Sharpen(G.Photo), 0, 0, 100, 200)(example taken from [Ses98]). Thus, a complex op-
eration is similar to a transformation request or VMD.

The E-ADT interprets a complex operation as an (algebraic) description of the transformation process to
be applied to the (media) object. For optimizing the complex operation there are four classes of optimization
rules available, each of which has its counterpart in VirtualMedia:

� Algorithmic optimization:There may be different algorithms realizing the same operations. Their perform-
ance might, e. g., depend on certain input characteristics like size or format of the media object. Determin-
ing the optimal algorithm corresponds to finding the optimal instantiable filter implementing a given virtual
filter in VirtualMedia.

� Transformational optimization:This means changing the order of operations according to (semantics-pre-
serving) equivalence transformations, e. g., permuting the Clip- and the Sharpen-operation of the example
above. Obviously, this is rather similar to the “semantic permutability” equivalence relation in VirtualMe-
dia.

� Constraints:The client’s requirements regarding the quality (e. g., resolution) or other physical proper-
ties (e. g., external format) of the final outcome of the complex operation are exploited for optimization.
According to [Ses98], such constraints apparently occur as side-effects of certain operations, e. g.,
ChangeResolution(). In VirtualMedia, these constraints are generally specified explicitly as part of the sig-
nature of the client-requested MOs in a VMD.

� Pipelining: Consecutive operations may be connected by a “data-pipeline” instead of executing all opera-
tions strictly one after the other with entirely creating and storing all intermediate results. Obviously, this
principle is virtually “built-in” into VirtualMedia’s filter graph processing model.

Generally, the E-ADT approach is more generic than VirtualMedia in a sense that it is not particularly tar-
geted at stream-like (media) data. On that background, the decision to only provide for E-ADT-local optimiza-
tion becomes comprehensible, since it would be rather difficult to specify a global optimizer for ADTs with
only few common semantics that would perform better than specialized ADT-local optimizers. Media data
types, however, belong to those data types that mostly benefit from optimization (which probably is the rea-
son, why they are most often exerted as examples in texts on ADTs as in [Ses98]). Further, different media
data types not only have significant affinity regarding design and optimization principles—it is virtually im-
possible to find a set of abstract data types that properly and consistently describes the semantics of media
data without introducing a high-grade overlap of the ADTs’ implementations (algorithms, internal formats,
etc.). Consider, e. g., the logic conceptsimage, image-sequence, andvideo. With the E-ADT approach (and
also our own, now abandoned MADT approach) we would be required to think about creating an ADT for
each of these concepts, since they all have different semantics. And, hence, we would have to create three
separate optimizers not knowing from each other and, therefore, not being able to cooperate. But they all
probably have to deal with partially the same physical data types (note that, e. g., an AVI-file is a suitable

18

Related Work

physical data format for all three ADTs) and algorithms (e. g., image filtering). Moreover, cooperative optimi-
zation actually is mandatory for the close relationships between media-ADTs: A video is composed of image-
sequences (and probably also audio data) and, in turn, an image-sequence is composed of images. Thus, (logi-
cal) composition and decomposition are quite natural (and frequent) operations on these ADTs (without neces-
sarily changing the internal physical representation of the media objects). Since each (de-)composition poten-
tially puts another ADT into play, ADT-local optimization would not be able to look across a
(de-)composition-border, which is particularly awkward if different ADTs are able to share physical data for-
mats. We must, therefore, conclude that complex operations comprising (de-)composition of media objects can
not as sufficiently be optimized by E-ADTs as we can do in VirtualMedia (unless the E-ADTs are specified in
a highly redundant and/or logically inconsistent fashion, e. g., only one “omnipotent” E-ADT for all media
data).

There are some other major differences between E-ADTs and VirtualMedia. First, E-ADTs do not provide
virtual objects that are manipulable without unintentionally loosing data. Thus, E-ADTs are subject to the ir-
reversibility problem. Second, the E-ADT approach does not consider materialization (automatically con-
trolled by the server) as an optimization strategy. And, third, E-ADTs are designed to be tightly and fully inte-
grated with (more or less) traditional database systems. VirtualMedia, on the other hand, is designed with only
partial integration with extendible database systems like, e. g., ORDBMS in mind, while considerably relying
on (distributed) media servers that are not likely to share their resources with an (OR-)DBMS.

4.2 Other Media Servers
The approaches and concepts considered in the following paragraphs only have minor commonness with Virtu-
alMedia. Hence, they are examined less detailed than the E-ADT approach.

Within the AMOS project at GMD IPSI a concept calledpresentation independencehas been developed
[RKN96]. The focus here is on separating the content and logical structure of a presentation from the manage-
ment of the quality of service (QoS). That means, the content and logical structure of a presentation can be de-
fined independently from the physical representation of the media data. The actual QoS of a presentation de-
pends on the resources available at the server and the client. Because the resources are not reserved, a
mechanism calledAdaptive QoS Management[Thi98] is applied to guarantee the smoothness of the presenta-
tion (accepting QoS degradation). Multimedia presentations can be easily defined on top of VirtualMedia (us-
ing VMDs). The QoS adaptation could be realized through special (semantically neutral) adaptation filters. In
contrast to the solution presented in [Thi98], this would allow exploiting any kind and combination of scal-
ing (spatial and temporal) for smoothly adjusting the data flow. The communication overhead for feedback
chains, however, would be considerably higher. Also, the optimization algorithm proposed in [Thi98] (based
on linear programming) possibly does not scale up with the increase of parameters and, hence, would have to
be replaced by a computationally less complex heuristic-based algorithm.

The Hypermedia DBMS described in [PS96] provides format independence in a straightforward manner.
The notion “format independence”, however, is not used in [PS96]. Instead, another pair of abstractions—me-
dia independenceandstorage independence—which together have a similar meaning is introduced. At the
time a media object is inserted, the DBMS stores it using its external format, now called itsprimary format. If
a client wants to retrieve the object using an external format different from the primary format, then the
DBMS creates this format and stores it internally as asecondary formatof the object. This solution is widely
trouble-free, because operations manipulating the media objects are not considered. For the same reason, how-
ever, it is by far not as versatile and flexible as VirtualMedia or E-ADTs. The idea of introducing primary and
secondary materialization in VirtualMedia, however, originates from this work.

Commercial ORDBMSs (available, e. g., from Informix, IBM, and Oracle) are extensible by defining and
implementingUser-defined Types(UDT). This mechanism is also extensively used to enhance those systems
with media data types (for some examples see, [Inf97a]). While the vast majority of these media extensions do
not provide physical data independence, two exceptions from this rule should be pointed out: (1) In [HSH+98]

19

Related Work

a continuous media DataBlade providing device independence, location transparency, and presentation inde-
pendence is described, and (2) [WHK99] presents a DB2 Extender for images providing format independence
where materialization is controlled through cost-based optimization.

4.3 Optimization
Rule-based transformation and optimization of operator graphs have been studied for more than a decade in
the context of extendible database query optimizers [RH87, CZ96], optimizer generators [SS90, GM93], and
query optimizers for object-oriented databases [VD91]. Structurally, filter graphs are nearly identical to opera-
tor graphs and although they differ semantically there exist several analogies:

� Logic operators (e. g.,join) correspond to virtual filters, while the implementations of logic operators
(physical operators, e. g.,nested-loop-join) correspond to instantiable filters.

� There are operators having no corresponding operator in the logic algebra (calledenforcersin [GM93]).
These are used to ensure certain physical properties of the data (e. g., sorting). In VirtualMedia such opera-
tors occur, e. g., as format filters for conversion, scaling, or (de-)compression.

� Virtual methods, for which the appropriate implementation can only be determined at run time, are similar
to virtual filters having no predefined implementation for the data type they are applied to, in a sense that
the implementation must be deduced from the data type at run time (“virtuality” of our filters, however, is
not stemming from explicit type inheritance, but from a deducible media type affinity). Algebraic support
for types with virtual methods is described, e. g., in [VD91].

Consequently, the structural and (from an abstract point of view) also semantic similarity of operator and filter
graphs additionally motivates our algebraic approach for realizing filter graph transformation and optimiza-
tion, since such an approach would mostly benefit from the vast amount of knowledge and experience already
gained through the development of query optimizers (regarding, e. g., algebra, algorithms, verification meth-
ods, languages, and tools).

5 Conclusions
In this paper, abstractions and concepts for multimedia systems providing physical data independence are pre-
sented. Beside common abstractions like device and data independence we consider a newly developed abstrac-
tion called transformation independence. In principle, this abstraction requires a media server to solve the fol-
lowing problems:

� Overcome irreversibilityof most of the operations that are applicable to media objects. First of all, this
means isolating concurrent applications with respect to updates of media objects—at the fee of an increased
resource demand, e. g., storage space for different materialization of a media object.

� Optimize media transformationsglobally, i. e., (1) by considering the transformation request as a unit re-
gardless of the type and number of media objects involved, (2) by exploiting general domain knowledge on
multimedia processing (rules, cost functions), and (3) by collecting and evaluating statistical data. As a
prerequisite, this requires a transformation request interface allowing to request media transformations in a
descriptive manner. Transformation requests should (ideally) contain only statements of semantic relevance
to the application.

� Support format independenceby seamlessly integrating format-related operations into media transforma-
tions, which might either be caused by internal formats not being compatible with a requested transforma-
tion or by requested external formats not matching currently available internal formats.

As an approach to realize transformation independence the VirtualMedia concept is introduced. VirtualMedia
solves the irreversibility problem by establishing a layer of virtual media objects which applications may unre-
strictedly manipulate. We adopt the filter graph model to represent virtual media objects as transformation

20

Conclusions

graphs. Semantic equivalence relations defined for such VirtualMedia graphs allow for transforming request
graphs into (instantiable) prescript graphs while applying different optimization strategies like materialization
or cost-based evaluation of semantically equivalent graphs.

The VirtualMedia graph transformation and optimization algorithm will continue being the main objective
of our work in the near future. Besides that, ongoing research also focuses on the refinement of several other
aspects of the VirtualMedia concept and on the exploration of several open questions. To name a few, the fol-
lowing aspects are of particular interest:

� Enhancing the data model with, e. g., hierarchical structures (explicit subgraphs) or a template concept (pa-
rameterized VMOs),

� development of a reference architecture for a VirtualMedia server exploiting the potential of peer-to-peer
metacomputing environments,

� integrating adaptive QoS (feedback-controlled) and interaction (including interactive filters), and

� several API issues, e. g., improvement of the XML-based VirtualMedia language and consideration of non-
functional properties as part of signatures.

Recently, the major database system manufacturers introduced so-called universal database systems, thus
claiming the ability to manage any kind of data. None of these commercial systems, however, realizes transfor-
mation independence or at least physical data independence, which we consider crucial for MM-DBMSs.
Hence, the question what should actually be the fundamental nature of a genuineuniversalmedia server is still
to be discussed.

Acknowledgments
The author is grateful to Henrike Berthold, Theo Härder, Andreas Henrich, Silvia Hollfelder, Wolfgang Lind-
ner, Wolfgang Mahnke, Klaus Meyer-Wegener, Norbert Ritter, Günter Robbert, Hans-Peter Steiert, and
Heiko Thimm for lively discussions on the ideas presented in this paper.

6 References
[CSV96] Candan, K. S., Subrahmanian, V. S., Venkat Rangan, P.: Towards a Theory of Collaborative Mul-

timedia. In: Proc. IEEE International Conference on Multimedia Computing and Systems (Hi-
roshima, Japan, June 96), 1996.

[CZ96] Cherniack, M., Zdonik, S. B.: Rule Languages and Internal Algebras for Rule-Based Optimizers.
In: Proc. of the 1996 ACM SIGMOD Int. Conf. on Management of Data (Montreal, Canada, June
4–6), SIGMOD Record Vol. 25, Issue 2, June 1996, pp. 401–412.

[Din95] Dingeldein, D.: Multimedia interactions and how they can be realized. In: Proc. Int. Conf. on Mul-
timedia Computing and Networking, 1995.

[GM93] Graefe, G., McKenna, W. J.: The Volcano Optimizer Generator: Extensibility and Efficient
Search. In: Proc. 9th Int. Conf. on Data Engineering, 1993, pp. 209–218.

[HSH+98] Hollfelder, S., Schmidt, F., Hemmje, M., Aberer, K., Steinmetz, A.: Transparent Integration of
Continuous Media Support into a Multimedia DBMS. In: Proc. Int. Workshop on Issues and Ap-
plications of Database Technology (Berlin, Germany, July6–9), 1998.

[Inf97a] Informix Digital Media Solutions: The Emerging Industry Standard for Information Management.
Informix White Paper, Informix Software, Inc., 1997.

[Inf97b] Informix Video Foundation DataBlade Module. User’s Guide Version 1.1. Informix Press, June
1997.

21

References

[KMM94] Käckenhoff, R., Merten, D., Meyer-Wegener, K.: MOSS as Multimedia Object Server – Extended
Summary. In: Steinmetz, R., (ed.): Multimedia: Advanced Teleservices and High Speed Communi-
cation Architectures, Proc. 2nd Int. Workshop IWACA ‘94, (Heidelberg, Sept. 26–28), Lecture
Notes in Computer Science vol. 868, Berlin: Springer-Verlag, 1994, pp. 413–425.

[MR97] Marder, U., Robbert, G.: The KANGAROO Project. In: Proc. 3rd Int. Workshop on Multimedia
Information Systems (Como, Italy, Sept. 25–27), 1997, pp. 154–158.

[MF00] Michalewicz, Z., Fogel, D. B.: How to Solve It: Modern Heuristics. Berlin, Heidelberg: Springer-
Verlag, ISBN 3-540-66061-5, 2000.

[NMB96] Narang, I., Mohan, C., Brannon, K.: Coordinated Backup and Recovery between DBMS and File
Systems. IBM Research Report, IBM Almaden Research Center, Oct. 1996.

[PS96] Prückler, T., Schrefl, M.: An Architecture of a Hypermedia DBMS Supporting Physical Data In-
dependence. In: Proc. 9th ERCIM Database Research Group Workshop on Multimedia Database
Systems (Darmstadt, Germany, March 18–19), 1996.

[RH87] Rosenthal, A., Helman, P.: Understanding and Extending Transformation-Based Optimizers. In:
Data Engineering Vol. 9(4), 1987, pp. 220–227.

[RKN96] Rakow, T., Klas, W., Neuhold, E.: Abstractions for Multimedia Database Systems. In: Proc. 2nd

Int. Workshop on Multimedia Information Systems (West Point, New York, USA, Sept. 26–28),
1996.

[Ses98] Seshadri, P.: Enhanced abstract data types in object-relational databases. In: The VLDB Journal
Vol. 7 No. 3, Berlin, Heidelberg: Springer-Verlag, Aug. 1998, pp. 130–140.

[SS90] Sciore, E., Sieg, Jr, J.: A Modular Query Optimizer Generator. In: Proc. 6th Int. Conf. on Data En-
gineering, 1990, pp. 146–153.

[Thi98] Thimm, H.: Optimal Quality of Service under Dynamic Resource Constraints in Distributed Multi-
media Database Systems. GMD Research Series, No. 10, Sankt Augustin: GMD – Forschungszen-
trum Informationstechnik GmbH, 1998.

[VD91] Vandenberg, S. L., DeWitt, D. J.: Algebraic Support for Complex Objects with Arrays, Identity,
and Inheritance. In: Proc. of the 1991 ACM SIGMOD Int. Conf. on Management of Data (Denver,
Colorado, May 29–31), SIGMOD Record Vol. 20, Issue 2, June 1991, pp. 158–167.

[WHK99] Wagner, M., Holland, S., Kießling, W.: Towards Self-tuning Multimedia Delivery for Advanced
Internet Services. In: Proc. 1st Int. Workshop on Multimedia Intelligent Storage and Retrieval
Management (MISRM ‘99) in conjunction with ACM Multimedia Conference, Orlando, Florida,
Oct. 1999.

22

