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Abstract

This paper presents a new set of cache management algorithms for shared data

that are accessed sequentially. I/O delays on sequentially accessed data is a do

performance factor in many application domains, in particular for batch processing

algorithms fall into three classes: replacement, prefetching and scheduling strat

Our replacement algorithms empirically estimate the rate at which the jobs are pro

ing through the data. These velocity estimates are used to project the next refe

times for cached data objects and our algorithms replace data with the longest ti

re-use. The second type of algorithm performs asynchronous prefetching. This

rithm uses the velocity estimations to predict future cache misses and attempts t

load data to avoid these misses. Finally, we present a simple job scheduling strateg

increases locality of reference between jobs. Our new algorithms are evaluated th

a detailed simulation study. Our experiments show that the algorithms substantiall

prove performance compared to traditional algorithms for cache management. Th

of our algorithms has been implemented in the new Hiperbatch (High Perform

Batch) product of IBM which is being used at more than 300 commercial data ce

worldwide.
0



essed

cess is

h90,

ntial

ons in

cuss

the

d data

yroll

lly exe-

d se-

ever,

night

dow"

hould

Opti-

ssing

omi-

ce re-

this

priori

renced

al ac-

tudies.

por-

82].
1 Introduction

This study presents and evaluates new caching algorithms for sequentially acc

data that is being concurrently used by several processes or jobs. This type of ac

common in many data processing environments. In this paper, we focus onbatch pro-

cessing, which is often dominated by concurrent sequential access to data [T

ER91]. Several of our algorithms are applicable to other domains in which seque

scanning of data is common such as query processing or long running transacti

database systems. In this section, we provide a motivation for our algorithms, dis

related work, highlight the new concepts incorporated in our algorithms and outline

organization of the paper.

Motivation

Batch processing constitutes a major part of most large computer complexes an

centers. Typical batch jobs include daily and monthly report generation, pa

processing and performing bulk updates against databases. These jobs are usua

cuted at night since they have high resource requirements (CPU, I/O) which woul

riously reduce performance for interactive applications. Batch processing, how

faces the problem that more and more computations have to be performed every

since applications and databases grow permanently. Furthermore, the "batch win

(i.e. the time period in which resources are mainly reserved for batch processing) s

be as small as possible to allow for increased periods of interactive processing.

mizing batch performance means minimizing theelapsed timerequired to process a

fixed set of jobs.

In order to reduce elapsed time, it is essential to minimize I/O delays. Batch proce

offers two characteristics which can be exploited for decreasing I/O delays: 1) d

nance of sequential access patterns, and 2) a priori knowledge of the jobs’ resour

quirements. These characteristics are only partially utilized in current systems. In

paper, we propose new algorithms which exploit sequentiality of accesses and a

knowledge about which datasets (files, relations, databases) are going to be refe

by each job to decrease the elapsed processing time of batch workloads.

Related work

Prefetching (prepaging) as a means to utilize spatial locality of reference (sequenti

cess) in order to reduce the number of I/Os has been analyzed in many previous s

Studies for virtual memory systems often concentrated on preloading of program

tions for which sequentiality is anticipated [Jo70, BS76, Sm78b, La82, Ma
1
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Prefetching means that in the event of a page fault multiple physically adjacent p

are fetched together in addition to the page for which the fault occurred. Critical co

parameters are the number of pages to be read together, as well as the page size.

prefetching schemes for programs have generally been found to be ineffective [

BS76, Sm78b] since pages are often unnecessarily prefetched. More sophisticate

egies which use a priori knowledge obtained by analyzing program traces [La82

cept user advice or dynamically analyze the program reference behavior can signif

ly improve performance [Sm78b].

Stronger sequentiality and thus more effective prefetching has been observed for

base accesses [Ro76, Sm78a]. Sequentiality of access is often a predictable

quence of database organization (clustering of record types) and operations (e.g.

scan). In [WZ86], a static preanalysis of canned transactions is proposed to dete

which pages should be prefetched when the transaction is started. Prefetching c

prove performance in two ways. Firstly, the I/O delay and thus response time of a q

(transaction) can be reduced by caching data prior to the actual access. Second

I/O overhead for fetching n physically clustered pages at once is usually much sm

than n times the cost of bringing in one page.

General caching strategies for main memory buffers have been studied primarily fo

tabase systems [FLW78, EH84, CD85, SS86, HCB88]. These schemes genera

tempt to reduce the number of I/Os by exploiting temporal locality of reference wi

a transaction and between different transactions. The replacement algorithm used

tually all existing database systems is the well-known LRU scheme (least rec

used). LRU is not expected to be effective for sequential access patterns (spatial

ity) because a transaction reads a particular page only once. TheMost Recently Used

(discard after use) policy performs well for sequential access when there is no co

rent data sharing among the jobs. However, this scheme cannot utilize locality bet

sequential jobs (inter-job locality) and is therefore not appropriate for our applica

domain. We are not aware of previous caching studies that consider inter-job loc

for sequential data access.

New concepts

In this paper we will describe and evaluate three new cache replacement strateg

sequential data access and compare their performance with LRU and configura

with no data caching. The schemes adopt the following new concepts:

- For every job and every dataset, the cache manager periodically determines thevelocity
with which the job proceeded through the dataset during the previous observation pe
2
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- The replacement schemes use the velocities to predict if and when cached data will b
erenced in the future. This analysis determines the replacement order. Thus our sc
use predictive information of references in the future for replacement decisions, w
conventional algorithms like LRU solely rely on reference information of the past.

- One of our schemes also utilizes a priori knowledge for replacement decisions. For
dataset, it requires information about how many jobs are going to process it sequen
During execution of the jobs, the scheme tries to steal pages from datasets with the
number of outstanding (unstarted) jobs.

Apart from the new replacement schemes, two further methods are applied to imp

performance:

- Prefetchingis employed in two ways. The standard form of prefetching which reads m
tiple blocks (pages) per I/O is always applied for sequentially accessed datasets. A
ditional, asynchronousform of prefetching is implemented by dedicated prefetch pro
esses which read in non-cached pages expected to be referenced soon. The veloc
mates are used to prefetch pages in the order they are likely to be needed.

- We also evaluate how performance is affected by improving locality of reference thro
a simplejob schedulingstrategy. For this purpose, we employ a method calledLoad Par-
titioning which uses a priori knowledge to schedule jobs accessing the same dataset
currently.

Organization

The remainder of this paper is organized as follows. In the next section, we intro

the system model assumed for all caching strategies. The three new replac

schemes as well as the methods used for velocity determination and prefetching a

scribed in section 3. Section 4 presents the simulation model which has been im

mented to evaluate the new algorithms. Simulation results which compare our sch

with LRU and configurations without caching are analyzed in section 5. We also

cuss simulation experiments which study the performance impact of prefetching

load partitioning. Section 6 summarizes the main conclusions from this investiga
3
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2 Problem Statement and Model

There are M datasets (files) in the system, which are denoted D1, D2, ..., DM . The

system processes a set of batch jobs denoted J1, J2, ..., JN . All of the jobs are ready to

execute when the batch window begins and we assume that they can be processed

order1. A job Ji reads M(i) datasets D1, D2, ... DM(i) . Job Ji reads every record in a

dataset in order from the first to the last. The job may read all M(i) datasets in par

one dataset at a time or any other interleaving. Our algorithms dynamically adapt t

job’s usage pattern.

Since all jobs that access Dj are reading sequentially, performance can be improved

readingblocksof physically adjacent records as opposed to reading one record at a

We assume that the records are stored in their logical ordering and that there is

trinsicgranule sizewhich defines the maximum number of adjacent records that ca

read by a single I/O. An obvious example could be all of the records in a single cylin

A granuleis the unit of transfer between the disks and the main memory of the comp

system.

Given this model, the problem is to minimize the time between starting the batch

and the completion of the last job. One way of decreasing the elapsed time is to c

granules from the datasets in main memory. There is acache managerthat controls a

main memory dataset cache. All granule requests are processed through the cach

ager. There are three possible outcomes from a request. The first is ahit and the job im-

mediately begins processing the individual records/pages in the granule. The gran

"fixed" (not replaceable) until the job begins processing the next granule. The se

outcome is amiss, and the job is suspended until the granule is read into the cach

the cache manager.

The final outcome is called anin-transit, which means an I/O is already in progress

a result of some other job’s request. The second job is also suspended until the I/O

pletes. In-transit I/Os delay jobs (like misses) but decrease disk contention (like

One physical I/O satisfies multiple job I/O requests. This reduces disk contention

decreases the time required to service cache misses. Our experiments in section

onstrate the importance of decreased device utilization achieved by the in-transit

Previous caching studies have ignored the significance of the in-transit I/O state

1. In practice, there may beprecedence constraintsamong the jobs. Optimal scheduling of prece-
dence constrained jobs has been extensively studied [Co76]. We assume no precedence
straints to isolate the performance of our cache management algorithms from other extrane
effects on performance.
4
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have simply assumed cache hits when in-transits occur. This assumption greatly a

previous results for sequential access patterns.

To complete the system model, it is necessary to specify two algorithms. The first i

cache replacement algorithmthat determines which cached granule is replaced whe

new granule is read into the cache and the cache is full. The second algorithm

mines which granules are prefetched by asynchronousprefetch jobs. Due to the sequen-

tial nature of the jobs’ access patterns, it is possible to predict which granule a job n

next. This granule can be read into the cache before the job submits the read re

Several algorithms for cache replacement and prefetching are described in the ne

tion and their performance is studied in section 5.

This model only deals with the datasets that are sequentially read by the batch

Batch jobs also perform random reads and writes to datasets, and sequentially writ

datasets. In this paper, we are examining situations in which the sequential read pr

ing delays due to I/Os and queuing delays on shared disks is a dominant factor

elapsed time performance. Analysis of several batch workloads has shown this

common for batch processing, and it may be common in other domains.
5
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3  Cache Management Algorithms

This section presents our new cache replacement and prefetching algorithms. The

new cache replacement algorithms are theBinary Use Count, Weighted Binary Us

CountandUse Timealgorithms. In this section, we also present theDeadline Prefetch-

ing algorithm. TheLoad Partitioning strategy for scheduling is described in section

All of the cache replacement algorithms and the prefetch algorithm anticipate the s

granules that jobs will read in the near future. This set can be determined using th

rent positions of the active jobs in the datasets (i.e. - granule ID being read), the fac

jobs read granules sequentially, and estimates of thevelocitiesat which jobs are pro-

ceeding through the datasets. Our algorithm for estimating job velocities is presen

the first subsection.

3.1 Velocity Estimation Algorithm

Thevelocityof job Ji is defined to be the number of granule read requests that job Ji sub-

mits per unit time. Clearly, the number of cache hits, misses and in-transits experie

affect the rate at which Ji submits requests. The velocity estimation algorithm isola

job Ji from the results of read requests and computes Ji’s attainablevelocity. The attain-

able velocity is the rate at which Ji would read granules if no cache misses or in-trans

occur. This definition is similar in philosophy to the definition of working set in virtu

memory systems [De80], which isolates the reference behavior of a program from

page faults it incurs.

A job’s attainable velocity is determined by many factors, such as CPU time per g

ule, CPU queueing delay, random I/Os, etc. These factors may not be constan

time. So, the estimates of the jobs’ velocities are periodically recomputed. The vel

estimation algorithm is invoked every∆ seconds. Assume the algorithm is invoked

time t0 and that Ji is reading Dj . The algorithm records the job’s current position (gra

ule) in the dataset, denoted pi, and also sets a variable bi to 0. The variable bi records

the amount of time Ji is blocked by cache misses or in-transits during the interval0,

t0+∆). The cache manager can update this variable by recording the time it bloci

when a miss or in-transit occurs and the time it restarts Ji after the I/O completes.

The next invocation of the velocity estimation algorithm occurs at time t0 + ∆ . Let ci

be job Ji’s new position in Dj . The velocity of Ji is defined as

Vi = ( ci - pi ) /  (∆ - bi ).

The algorithm then sets pi to ci and resets bi to 0.
6
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Fig. 1 depicts an example of the velocity estimation algorithm. Let∆ = 0.5 seconds. At

time t0, job Ji is at granule 10 (pi=10) and at time t0+∆ at granule 15 (ci=15). Assume

that Ji encountered a miss when accessing granule 12 and an in-transit at granule 1

blocked times of 70 ms and 30 ms, respectively. The velocity is simply

Vi = ( 15 - 10 ) / (0.5 − 0.1) = 12.5 granules/second.

It is possible that a job starts reading a new dataset at some time t1 in the interval (t0,

t0+∆). The velocity estimation algorithm handles this case by setting pi to -n where n

is the number of granules of the old dataset referenced by the job during the interv0,

t1).

3.2 Cache Replacement Algorithms

The three cache replacement algorithms (Binary Use Count, Weighted Binary

Count and Use Time) have two components. The first component is an anin-line algo-

rithm that is called to determine which stealable cached granule should be rep

when a new granule is to be added to a full cache. The second component isasynchro-

nouswith respect to job execution and granule replacement, and is triggered afte

velocity estimation algorithm updates the jobs’ velocities. This component is para

terized by alook ahead timeL and determines which cached granules will be referenc

in the next L seconds. Before presenting the repacement schemes, we first discus

the look ahead is determined. At the end of this subsection, we estimate the ove

introduced by our algorithms.

Assume that job Ji is reading dataset Dj, its attainable velocity is Vi and its current po-

sition in Dj is p. In the next L seconds, Ji will at most read L • Vi granules. These gran

ules are p+1, p+2, ..., p+Ki with Ki = Floor (L • Vi ). These Ki granules are said to be

Figure 1: Velocity Estimation.
The horizontal line represents a dataset. A circle indicates that the granule is ca-
ched when the job references it.

10 11 12 13 14 15

t0 t0 + ∆

= cached granule

miss in-transit
(70 ms) (30 ms)

V = 5 / (∆ - 100 ms)
7
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in the look ahead of Ji . The look ahead is computed for all datasets that Ji is currently

reading.

It is possible that not all Ki granules are cached. In this case, some of the granules in

look ahead of Ji must be read from disk. Each read could be initiated by Ji, another job

Jk or a prefetch job for dataset Dj . Let T be the average time required to read a gran

from disk and insert it into the cache. The maximum number of granule transfers

dataset in the next L seconds is m = L / T . The look ahead of Ji is pruned and does no

include a granule k for which there are at least m non-cached granules in the set {

p+2, ..., p+(k-1)}. This pruning limits overhead by not examining granules that Ji can-

not reach in the next L seconds.

Fig. 2 presents an example illustrating the pruning of look aheads. There are two

ahead vectors associated with each job. The solid vector represents the look ahead

on the attainable velocity Vi containing Ki granules. The dashed vector represents

pruned look ahead when T = L/ 2 . Job J1 is at granule 3 and has K1 = 4. Granule 7

would be reachable except for the fact that granules 4 and 6 are not cached and

Fig. 2 will also be used to describe the cache replacement algorithms.

Binary Use Count (BUC)

The BUC algorithm (as well as WBUC) associates ause bitwith each granule in the

cache. This bit is set to 0 each time the asynchrous component of the algorithm

voked. For each job Ji, the algorithm computes the pruned look ahead in each dat

and examine granules p+1, p+2, ..., p+k . Each cached granule in the look ahead

use bitset to 1, the use bits of other granules are set to 0. The use bits indicate w

granules will be referenced during the next L seconds and the in-line algorithm doe

Figure 2: Look ahead of three concurrent jobs
The horizontal line represents the dataset and circles represent cached granules.

1 11 12 13 14 15

J1

2 3 4 5 6 7 8 9 10

J2

J3

pruned look ahead
look ahead

= cached granule
8
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replace any granules with a use bit of 1. In the example of Fig. 2, the set of granules

use bits set to 1 is {5, 9, 10, 11, 13}.

The BUC in-line component is very simple. It randomly chooses a granule from th

of granules from all datasets that have use bits set to 0. The intuition behind this

rithm is that granules that are not in the look aheads will not be referenced for a

time, and are essentially indistinguishable.

Weighted Binary Use Count (WBUC)

As for the BUC algorithm, the asynchrous component of WBUC sets the use bi

granules in the jobs’ look ahead. The in-line component of WBUC is more sophist

ed than for BUC. WBUC uses information obtained from a static analysis of the w

load topreselectthe dataset from which the granule is to be stolen. The following val

are used to select the dataset:

- Ej : This is the total number of jobs that will read dataset Dj.

- Rj : This is the total number of jobs that have already read or are currently readingj .

- Cj : This is the number of granules from Dj currently in the cache.

The weightof dataset Dj is defined as the total number of outstanding jobs times

dataset size (denoted Sj) and is

WBUC dynamically partitions the cache into sub-caches dedicated to each datase

a cache of size SC the size of Dj’s allocation is proportional to its weight and is define

by

The WBUC algorithm steals the next granule from the dataset k that most excee

allocation (i.e., maximizes Ck - Ak). A dataset is allowed to exceed its allocation if som

other dataset has not yet had enough requests to fill its allocation, e.g., no job has s

reading it.

The idea behind the preselection is twofold. First, granules from datasets that

many expected future jobs should be replaced after granules from datasets with fe

pected jobs. This is a greedy heuristic for decreasing the number of cache misses

ondly, a certain percentage of granules from all datasets should be kept in the c

even those with few expected jobs. If this were not done, datasets with few exp

Wj Ej( Rj ) Sj×–=

Aj SC Wj Wk
k 1=

M

∑
 
 
 

⁄〈 〉×=
9
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jobs would not have any cached granules and the jobs reading them would proc

disk I/O rates.

After preselecting a dataset Dj, WBUC selects the granule within the dataset to repla

Two heuristics are used. First, the granule with highest ID behind the last job is cho

Second, if there are no granules behind the last job, the granule with highest ID

use bit of 0 is chosen. If the WBUC algorithm selects the dataset in the example o

2,  the order in which granules will be replaced is: { 2, 1, 15, 7 }.

Use Time algorithm

The asynchronous component of the Use Time algorithm explicitly estimates the

reference time (use time) for each cached granule. Assuming that Ji’s velocity is con-

stant during the next L seconds and all granules in the look ahead are cached, Ji will read

granule p+j in j / Vi seconds. If, however, there are q non-cached granules in th

{p+1,  p+2,  ...,  p+j-1}, the estimated reference time for granule p+j is

j / Vi + q • T.

A cached granule may be in the look ahead of several jobs. In this case, the gra

use time is defined as the smallest reference time over all jobs.

There may be cached granules that are not in the pruned look ahead of any job.

granules fall into two classes. The first class are those granules that are behind th

active job in their dataset. In the example of Fig. 2, granules 1, 2, and 3 fall into

class. The second class contains granules that are not behind the last job in the d

In the example, granules 7 and 15 are in this class.

The asynchronous component of the Use Time algorithm builds three sorted lis

cached granules from all datasets, which are the following:

- Thebehind_last_job_listcontaining granules behind the last job in their datasets. This
is sorted from largest to smallest granule ID. In the example, this list is { 2, 1 } .

- Thenot_seen_listcontaining granules not in the look ahead of any job and not behind
last job in their dataset. This list is also sorted from largest to smallest granule ID, a
{ 15, 7 } in the example.

- Theuse_time_listcontaining granules in job look aheads. This list is sorted from larg
to smallest use time. In the example, this list is { 13, 5, 9, 11, 10 } .

The in-line component of the Use Time algorithm steals the granule with the larges

time. This algorithm makes similar assumptions as WBUC and first replaces all g

ules in the behind_last_job_list followed by granules in the not_seen_list and fin
10
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granules in the use_time_list . The Use Time algorithm also dynamically update

behind_last_job_list as the last job in a dataset advances.

There are two main differences between WBUC and Use Time. The first is that

Time does not preselect a dataset and its lists contain granules from all dataset

second difference is that Use Time algorithm differentiates between granules in

look aheads. This is especially important when the size of the cache is small relat

the total size of the datasets, when the jobs have high velocities or when there are

active jobs. In these situations it is likely that all cached granules are in the look a

of a job and have non-zero use bits. BUC and WBUC cannot make an intelligen

placement decision in this situation. For this reason, a longer look ahead time L c

used with the Use Time algorithm.

Overhead considerations

The overhead of the in-line algorithms is comparable to the overhead of LRU. The

Time algorithm simply replaces the granule at the head of one of its three lists. Th

done in timeO(1) as for LRU. BUC randomly chooses a granule that has a 0 use

This may be implemented by maintaining a list of stealable granules from which

head is chosen for replacement by the in-line algorithm. While this policy is not t

random, it is sufficient since granules with 0 use bit are considered equally stea

The complexity of BUC’s in-line component is thus reduced toO(1). WBUC selects the

replacement victim from a dataset-specific list which can be done in timeO(1). Addi-

tional overhead is introduced to implement the dataset selection policy. Maintainin

variables Cj and Rj as well as adapting the weights Wj and allocations Aj incurs little

overhead. The worst-case complexity of WBUC’s in-line component isO(A), where A

is the number of concurrently active jobs.

The overhead of the asynchronous components of the BUC and WBUC algorith

linear in the number of active jobs A and the cache size SC. The complexity of exam-

ining the look aheads and setting use bits isO(A • SC). The Use Time algorithm incurs

a similar overhead for determining the use times in the look ahead of active jobs. H

ever, it also incurs the complexity of building the three sorted lists which isO(SC • log

SC).

The overhead of the asynchronous components can be controlled by setting the p

eters∆ and L. The parameter∆ determines how often the asynchronous componen

invoked and L controls the complexity of processing the look aheads. Furthermore

asynchronous components do not directly delay the processing of granule reques
11
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jobs submit. They can be run as a background job so that their overhead only indi

affects the performance of the batch jobs through CPU contention. If CPU utilizatio

high,∆ can be increased and L decreased to lower overhead. In times of high CPU

lization, optimal cache management is less imperative. For most cache sizes, the s

is I/O bound and there is ample spare CPU capacity for the asynchronous compo

3.3 Deadline Prefetch Algorithm

The BUC, WBUC and Use Time algorithms use job look aheads to determine w

cached granules will be referenced in the next L seconds. The examination of the

aheads also reveals whichnon-cachedgranules are expected to be referenced. For

ample, in Fig. 2, job J1 is expected to read non-cached granule 4. Granules that are

cached and are in the look ahead of a job are calledprefetch candidates. The determi-

nation of the prefetch candidates and the prefetch order is part of the algorithms’

chronous component.

A control block is created for each prefetch candidate and this control block con

the estimated use time of the granule. The use time is defined exactly as for cached

ules and represents the deadline by which this granule must be cached to avoid a

Computing the deadlines of prefetch candidates is done for all cache replacemen

rithms (including LRU), if prefetching is active.

After all look aheads have been processed, a prefetch list is built for each datase

list for Dj contains all prefetch candidates from this dataset and is sorted from sm

to largest deadline. In the example of Fig. 2, the prefetch list for the dataset is: 8, 4

6, 14 .

A prefetch job for dataset Dj simply loops through the following steps:

- Remove granule p from the head of the prefetch list for Dj . The list will not contain
prefetch candidates read into the cache by other jobs.

- Read granule p into the cache. The prefetch job is blocked until the granule is cach

- Go to 1.
12
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4 Simulation Model

We implemented a detailed simulation system for evaluating the performance o

newly developed caching strategies. The overall structure of the simulation syst

shown in Fig. 3. The main parameters of our simulation system are summarized i

ble 1 together with their settings used in the experiments. The four major compon

of the simulation system are CPU management, I/O management, job manageme

cache management/ prefetching, and will now separately be discussed. The para

in Table 1 are also grouped according to this distinction.

CPU Management

We assume that the workload is executed on a tightly coupled multiprocessor wit

number of CPUs provided as a simulation parameter. Each active batch job is exe

by a job process. The execution cost of a job is modelled by requesting CPU servic

every granule access. CPU service is also requested for every disk I/O to account

I/O overhead. The number of instructions per CPU request is exponentially distrib

over a mean specified as a parameter.

Figure 3: Structure of the simulation model

• • •

cache
manager

• • •

• • •

• • •
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I/O Management

It is assumed that every dataset resides on a separate disk. Each disk is model

single server queue in order to capture I/O queuing delays. The disk I/O time per gr

is the sum of disk latency and transfer time. With no queuing delays, the paramete

tings from Table 1 result in an average I/O time of 45 msec per granule.

Job Management

In every simulation run, we simulate the processing of a fixed number of batch jobs

assume that all batch jobs are ready to execute at the beginning of a run, and wa

job queue until they are scheduled for execution. Like in real systems, we allow o

fixed number of batch jobs to be processed concurrently; this number is referred

themultiprogramming level (MPL). When an active job completes, another job is s

lected from the job queue. The MPL is a configuration-dependent parameter and s

Parameter Parameter settings

 #CPUs 6

MIPS per CPU 20

instructions per granule access 50,000

#instructions per I/O 5,000

#datasets 40

dataset size (#granules) 1000

granule size (#blocks) 25

block size 4 KB

average I/O latency 20 msec

I/O transfer rate 4 MBytes/sec

#jobs to be executed 1000

READMAX  (see text) 3

multiprogramming level 60

#partitions 1 - 10

caching yes / no

cache size 100 MB - 2 GB

replacement algorithm LRU, BUC, WBUC, Use time

prefetching yes / no

buffer threshold 5 % of cache size

wake-up interval∆ 2 sec

look-ahead window  L 20 sec

Table 1: Simulation parameters
14
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be chosen such that resources like main memory and CPUs can be well utilized w

causing severe overload situations.

The concentration on batch jobs and sequential access allowed us to use a fairly s

synthetic workload model. Every job reads a certain number of datasets sequen

This number is a uniformly distributed random variable per job in the range 1 to

ADMAX. The datasets read by a job are also randomly selected with uniform prob

ity thus representing a worst case scenario for caching (small locality of referenc

tween different jobs). Update accesses are currently not supported by the simu

system, although the replacement schemes can deal with read as well as write acc2.

With the parameter settings from Table 1, a job reads 2 datasets on average (2000

ule accesses) resulting in an average of 100 million instructions per job (withou

overhead).

Locality of reference between jobs can be improved by ajob schedulingstrategy which

tries to concurrently activate jobs accessing the same datasets. Such a strategy i

ble since the datasets a batch job needs to access are generally known in advance

simulation model, we implemented a simple (static) scheduling strategy calledLoad

Partitioning that rearranges the order of jobs in the job queue before batch proce

starts. This policy is controlled by the parameter "#partitions" which must be sm

than the number of datasets. We use this parameter to group the datasets into th

ified number of partitions such that every partition is referenced by about the same

ber of jobs. After this we use the dataset partitions to build load partitions where a

is assigned to load partition x when most of its granule accesses fall into dataset

tion x. The scheduling order is then determined by these partitions, i.e., we first sta

jobs belonging to load partition 1, followed by jobs of partition 2 and so on. Withi

load partition, the scheduling order of the jobs is random. Note that there is gene

more than one dataset partition in use since a job may reference more than one pa

and because jobs of multiple load partitions may be active at the same time (e.g., in

sition phases between load partitions or if the MPL is higher than the number of

per partition).

Cache Management and Prefetching

We have implemented a global LRU steal policy as well as the three new replace

algorithms described in section 3 (BUC, WBUC and the Use Time algorithms). C

2. The replacement of a modified granule in the cache has to be delayed until the modification
written back to disk. Response time deterioration due to such write delays can largely be avoid
however, by asynchronously writing out modified granules.
15
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ing can also be switched off; in this case every granule access causes a disk I/

pointed out in section 3, some control functions are asynchronously executed b

cache manager. The execution of these functions is triggered either by a timer (w

up interval∆) or when the number of replaceable cache frames falls below a spec

threshold (parameter "buffer threshold"). If prefetching is chosen (paramete

prefetch queue is used to specify the granules to be read by the prefetch proces

our model, there is one prefetch job per dataset (disk) to avoid disk contention am

prefetch jobs. Hence, disk contention is only possible between regular disk I/Os

prefetch I/Os.
16



d ex-

per-

e our

he

ence

on-

e four

ad

own

4 GB

n with

U for

par-

lative

ache
5 Simulation Results

In this section, we present the results of simulation experiments that measure an

plain the performance of our new cache management algorithms. All simulation ex

iments were conducted with the parameter settings given in Table 1. We compar

algorithms to the traditional LRU algorithm and configurations with no caching. T

impact of different cache sizes, the effect of prefetching (section 5.2) and the influ

of job scheduling strategies that try to improve inter-job locality (section 5.3) are c

sidered.

5.1 Cache Replacement Algorithms

Fig. 4 shows the elapsed time to process the batch jobs versus cache size for th

replacement algorithms (LRU, BUC, WBUC, Use Time), without prefetching or lo

partitioning (#partitions=1). The elapsed time obtained without caching is also sh

for comparison purposes. The X-axis in this figure represents therelativecache size, as

a percentage of the total dataset size. In our experiments, the total dataset size is

and we vary cache size from 100 MB (2.5%) to 2 GB (50%).

The graph shows that all replacement schemes result in shorter elapsed time tha

no caching, even for small cache sizes. Our replacement schemes outperform LR

all cache sizes. The Use Time algorithm is clearly superior to the other schemes in

ticular for smaller cache sizes thus supporting high cost-effectiveness. For a re

cache size of 2.5% it cuts elapsed time already by 25% and almost by 30% for a c

Figure 4: Elapsed time
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size of 5% (compared to a maximal improvement of 10% for the other schemes). W

the BUC scheme is only slightly better than LRU, the WBUC scheme gains most f

increasing cache sizes and approaches the Use Time algorithm for very large cac

GB). LRU could not utilize the 2 GB cache; the elapsed time for this case is almos

same as for a 1.2 GB cache (30%) and substantially worse than with the other sch

The elapsed time results are mainly determined by the algorithms’ I/O behavior. W

out caching the average I/O delay per granule was about 62 msec including 17

queuing delays due to disk contention. Caching reduced the I/O delay and ther

elapsed time in several ways.Cache hitsreduce the total number of I/Os and thus th

I/O delay. Fewer I/Os also mean reduced disk contention and thus shorter disk a

times when misses occur. In addition, CPU overhead for disk I/O is reduced and

CPU queuing delays are decreased.In-transit granulesalso contribute to an improved

I/O performance. In this case, another job has already initiated the disk read fo

granule and the requesting job is only delayed until the I/O completes. Although in-

sit granules cause an I/O delay, this delay is on average shorter than a full disk a

In addition, the I/O overhead associated with a disk access is saved and disk cont

is decreased thereby reducing the I/O delay for cache misses.

The effectiveness of these factors varies substantially for our replacement scheme

giving rise to the differences in elapsed time. This is clarified by Fig. 5 showing the

ratios for the four replacement schemes. We observe that the Use Time scheme c

tently shows the best hit ratios. However, hit ratios are comparatively low even for

scheme when compared to the relative cache size (e.g. 56% hit ratio for a relative

size of 50%). This is because accesses are uniformly distributed over all datasets

Figure 5: Hit ratios
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ing in a comparatively low locality of reference between jobs if no load partitioning

applied. LRU achieved very low hit ratios of less than 10% for all cache sizes, altho

a high number of in-transit I/Os (see below) helped to improve performance comp

to the case with no caching. BUC and WBUC have almost identical hit ratios which

crease linearly with the cache size. WBUC outperforms BUC because it required f

I/Os, i.e. it had in-transit I/Os in many cases where BUC experienced a buffer mi

With LRU the system remained I/O bound even for very large caches indicating tha

creased CPU power could not be used to reduce elapsed time. In contrast, our sc

could significantly reduce I/O delays with increasing cache size and were CPU b

for large cache sizes. Thus an additional advantage of our new algorithms compa

LRU is that they support vertical growth, i.e. elapsed time can be reduced by prov

faster CPUs and larger caches.

The relationship between hits, misses and in-transit I/Os becomes clearer with F

which shows their frequency for LRU and the Use Time algorithm. The number of

misses and in-transit I/Os add up to the total number of granule accesses by a

(2,000,000 = 100%). Fig. 6 shows that a substantial amount of granule accesses a

layed because of in-transit I/Os (up to 40% for LRU) illustrating the importance of c

sidering this case. If we had assumed a hit for every in-transit granule, as previous

ies have usually done, results would be totally different and even LRU would have

formed much better.

In-transit I/Os show that there is locality of reference between different jobs since m

than one job wants to access the same granule concurrently. For the Use Time

rithm, the number of in-transit I/Os is proportional to the number of misses and dec

es with larger caches. This scheme can use locality of reference to substantially inc

the hit ratios for growing cache sizes. With LRU, on the other hand, hit ratios rem

very low even for large cache sizes although the miss ratio can be reduced signific

Larger caches improve performance for LRU mainly because more and more b

misses are replaced by in-transit I/Os. This trend, however, flattens out for a rel

cache size of more than 30% accounting for the fact that the elapsed time for 50%

ative cache size is almost the same than with 30%.

In contrast to WBUC and the Use Time algorithm which try to steal directly behind

last job in a dataset, LRU steals the least recently referenced granule. Thus LRU

quently steals from the beginning of a dataset. As a consequence, in most cases

arriving jobs cannot make use of already cached portions of the dataset, but have t

the entire dataset again thus explaining the very low hit ratios for LRU. Due to the s
19
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ing from the beginning of a dataset, this effect can only be avoided when (almos

entire dataset can be kept in the cache. However, when the first portion of a data

still cached when a new job wants to access the dataset, this job can quickly cat

with the job further ahead in the dataset that has read in the granules still residing

cache. From then on, the two (or more) jobs proceed together and very slowly thr

the dataset (one job does the I/O while the jobs clustered together with it find in-tr

I/Os with delays close to the total access time). The new replacement strategies

ahead in the dataset to prevent the replacement of cached granules that will be

enced in the near future. This gives rise to much better hit ratios, which increase g

with the cache size, and to a higher variance in job velocities so that they procee

clustered than with LRU.

A limitation of the BUC scheme is that it randomly selects replacement victims fr

cached granules which are not in the look ahead of currently active jobs. The W

allows for a performance improvement by using several heuristics for finding a rep

ment candidate. In particular, WBUC uses additional information to steal from data

with the least number of outstanding jobs, and it tries to steal behind the last job in

dataset. The simulation results show that this approach brings a significant adva

mainly for large cache sizes when datasets with many outstanding jobs can comp

be kept in the buffer, or when large percentages of the beginning of datasets can b

in the cache to improve processing times of jobs when they start reading a datas

Figure 6: Number of hits, misses and in-transits
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The improvement of the Use Time algorithm over WBUC comes from several fac

which turn out to be more effective than using information about the number of

standing jobs. One factor is that the Use Time scheme does not apply a preselec

a dataset from which to steal, but considers granules from all datasets for replace

In this way, it can steal behind the last job as long as this is possible for any da

WBUC, in contrast, may preselect a dataset where it cannot steal behind the la

anymore, though this would be possible for another dataset. Another advantage

Use Time scheme is that it uses the information on next time to reference for ste

granules in the current look ahead of jobs. The use of this information makes it sup

to WBUC particularly for small caches (or large total dataset size) or high MPL, wh

it is usually the case that there are no granules behind the last job in a dataset a

granules have their use bit set. WBUC cannot perform much better than rando

placement in this scenario since all cached granules appear identical.

We conducted a series of experiments to find out the influence of different look ahe

It turns out that the BUC scheme depends mostly on a large look ahead since othe

only few of the cached granules are considered useful. This, however, increase

probability of selecting unfavorable replacement victims, since BUC picks them

domly from the granules not considered useful. We observed performance degrad

of up to 10% for a look ahead of 2 sec compared to the results with 20 sec. The W

and the Use Time algorithms are very insensitive to different look aheads as long a

are at least as large than the wake-up interval∆.

5.2 Influence of Prefetching

In this section we study the effects of asynchronous prefetching performed by dedi

prefetch processes. As outlined in the previous sections, we have one prefetch p

per disk that uses deadline information based on velocity estimates to determin

prefetch order of granules. Fig. 7 shows the elapsed times obtained with such a pre

ing (and with no load partitioning). We observe very similar performance trends to

no prefetching experiments (Fig. 4), and the Use Time algorithm remains the bes

LRU the worst replacement scheme. A notable change is that the BUC algorithm

efits the most from prefetching and becomes substantially better than LRU. The

scheme has the fewest in-transit I/Os without prefetching. Prefetching causes the

est increase of in-transit I/Os for this scheme leading to substantial performanc

provements. For the other schemes, prefetching resulted in comparatively sma

provements in elapsed time (less than 10%) for all cache sizes.
21
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To explain the performance impact of prefetching, we analyze the frequencies of b

hits, misses, in-transit and prefetch I/Os for the LRU and Use Time schemes (Fi

As in Fig. 6 for no prefetching, the number of hits, misses and in-transit I/Os add u

the total number of granule accesses by all jobs (2,000,000). In addition, we have s

the number of prefetch I/Os on top of the buffer misses in Fig. 8. Prefetch I/Os and m

es combined represent the total number of I/Os.

We observe that for LRU the hit ratios as well as the total number of I/Os are virtu

the same with prefetching as without prefetching. The hit ratio for the Use Time a

rithm is somewhat higher with prefetching, especially for large caches. For both a

rithms, what changes significantly is the number of buffer misses and the number

transit I/Os. Basically, the number of misses is reduced by the number of prefetch

and the number of in-transit I/Os is increased by the number of prefetch I/Os. W

prefetching, "I/O in transit" is the dominant case for granule accesses in all scheme

LRU up to 90% of all granule accesses!).

Though prefetching does not improve the hit ratios or number of I/Os, it saves the

time and overhead for initiating the I/O. Furthermore, the average I/O delay for a

transit I/Os is shorter than for a buffer miss (full disk access time). However, savin

I/O delays and thus in elapsed time are comparatively small since the prefetch job

ceed slowly through a dataset (at I/O speed) so that the jobs are mostly close b

them. As a result, in-transit I/O delays were almost as high as the disk access tim

For prefetching to be more effective, the mean time between a job submitting gra

access requests would have to be very high so that more benefit can be derived

Figure 7: Elapsed times with prefetching
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overlapping I/O and other processing. In this case, however, not I/O but other reso

would be the bottleneck which seems not typical for current batch processing app

tions. Another possibility is to restructure the storage of datasets on the disks to

multiple concurrent I/Os per dataset (e.g. - store the dataset on multiple disks, disk

ing). This would allow prefetch I/Os and normal data access I/Os to overlap and

increase the benefits of prefetching.

5.3 Influence of Load Partitioning

Load Partitioning is a job scheduling strategy that uses information about the job r

ence behavior to concurrently schedule jobs accessing the same datasets. As out

section 4, we use the parameter ’#partitions’ to control this kind of scheduling. The

mary goal of load partitioning is to improve locality of reference between jobs and

the hit ratios and elapsed time. A possible problem is increased disk contention

more jobs are now concurrently accessing the same datasets (disks) than withou

partitioning.

Fig. 9 shows the elapsed time results obtained for a load partitioning with 4 partit

and prefetching. Four partitions means that usually only one fourth of the data

(disks) is accessed by active jobs. We observe that load partitioning leads to dra

changes in elapsed time for the different cache sizes. With small cache sizes, all ca

Figure 8: Number of hits, misses, in-transits, and prefetch I/Os
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schemes but the Use Time algorithm have higher elapsed time than without cac

(We did not apply load partitioning without caching because it would obviously b

bad idea.) The Use Time algorithm’s performance is slightly better with load partit

ing for small cache sizes than without load partitioning. Increasing the cache size

to steep performance improvements until all schemes converge to an elapsed time

to the best possible. For a relative cache size of more than 25% all schemes ac

about the same elapsed time since almost all concurrently accessed datasets can

pletely kept in main memory in this range.

For small cache sizes, however, the "working set" (granules with small use times) o

tive jobs is too large to be kept in the cache and only a few hits can be achieved.

the high number of I/Os is directed only to a subset of the disk devices, disk conte

increases drastically compared to the case without load partitioning. This increase

I/O delay for the jobs which in turn increases elapsed time. Increasing the cache

quickly reduces the number of I/Os because the higher locality of reference due to

partitioning improved hit ratios and/or the amount of in-transit I/O and therefore d

contention. As a result, the I/O delay per granule access and elapsed time improve

ly.

The Use Time algorithm shows a much stabler behavior than the other algorithm

particular its effectiveness for small cache sizes is extremely valuable with load p

tioning and prevents the thrashing effects observed for the other replacement sch

Therefore, even with very small caches (2.5%) significantly better elapsed times

Figure 9: Elapsed time for load partitioning (4 partitions, prefetching)
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without caching and dramatically better results than with the other caching scheme

achieved.

LRU exhibits an especially unstable performance. This is also illustrated by Fig. 10

picting the frequency of hits, misses, in-transit and prefetch I/Os for LRU. Fig. 10

well as Fig. 9 show that LRU experiences three phases with different performance

acteristics. The first phase is associated with small cache sizes (<= 12.5 %) and is

acterized by a high number of I/Os (mostly regular I/Os) and high disk contention

ratios are very low in this phase. The third phase is when almost all active datase

be kept in the cache (relative cache size >= 25%). In this situation even LRU exper

es very high hit ratios and few I/Os; elapsed times are therefore as good as with a

the other schemes. The second (perhaps most interesting) phase is observed for

cache sizes between 12.5% and 25%. In this phase the cache size is high enoug

duce the number of buffer misses to a large extent, however without significantly

proving the hit ratios. In the corresponding cache size range, elapsed time rema

most the same even when increasing the cache size. This corresponds to the obse

made without load partitioning (section 5.1), where LRU could not further improve p

formance after a relative cache size of 30%, and hit ratios were very low even for

tive cache size of 50%. The underlying reason is that after a certain cache size,

cannot utilize larger caches until the cache is large enough to hold almost all da

(with load partitioning all currently active datasets).

Fig. 11 compares elapsed time results for LRU and the Use Time scheme varyin

number of partitions from 1 (no load partitioning) to 10. The cache size for these ex

Figure 10: Number of hits, in-transits, misses and prefetch I/Os for LRU (4 partitions)

5 10 20 30 50
relative cache size (%)0

500

1000

1500

2000

2500

x 
10

00

 hits
 in-transits
 misses
 prefetch I/Os
25



e see

s. In

se

U,

ition-

ore

re-

d any

mes

use

d in

ugh
iments has been 500 MB (12.5% of the total dataset size). For this cache size, w

comparatively small changes in elapsed time for the different number of partition

all configurations, LRU is clearly outperformed by the Use Time algorithm. (The U

Time scheme achieved hit ratios of up to 66% compared to 6% for LRU). With LR

elapsed time deteriorates for two partitions compared to the case without load part

ing due to increased disk contention, but improves significantly with 4 partitions. M

than 4 partitions do not result in significant performance improvements for both

placement strategies. This was because locality could not significantly be increase

more since with a larger number of partitions the population per load partition beco

smaller, making it more likely that more than one load partition is concurrently in

(fixed multiprogramming level). A dynamic load scheduling scheme, not employe

the simulation, could have been more successful in improving locality further, altho

at the expense of increased complexity.

Figure 11: Elapsed time vs. #partitions (cache size 500 MB)
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6 Summary

In this paper, we have presented a set of new cache management algorithms for

sequentially accessed data. Sequential access is common in many important pr

domains. We have focused on overnight batch processing as an example of such

vironment. Most of our algorithms apply to other problem domains in which seque

data access is performed.

Our cache replacement algorithms have an asynchronous component that is perio

executed. It estimates the velocities with which jobs proceed through datasets to

mine which data objects will be referenced in the future. This information is used by

replacement schemes to avoid replacement of data that will be re-referenced soo

velocity estimates are also used by our Deadline Prefetch algorithm to perform an

chronus prefetching. Finally, we have presented a new job scheduling strategy c

Load Partitioning to improve inter-job locality.

We outlined the results of simulation experiments to measure the performance o

new algorithms. Our experiments show that the Use Time and WBUC algorithms

nificantly outperform traditional cache replacement algorithms. For small caches

5% of total database size), the Use Time algorithm is by far the best replacement

rithm studied and decreases elapsed processing time by 30% compared to all ot

gorithms. The Deadline Prefetch algorithm achieved approximately a 10% decrea

elapsed time for most cache replacement algorithms (including LRU) in our exp

ments. Load partitioning was shown to be very effective for a small number of load

titions. However, for small cache sizes it can increase disk contention thus lowering

formance. Only the Use Time algorithm was able to avoid such an unstable beh

and take advantage of load partitioning for all cache sizes.

The Use Time algorithm has been implemented in the new version of the MVS/

Hiperbatch (High Performance Batch) product of IBM which is successfully being u

at more than 300 commercial data centers worldwide [Th90, ER91]. Hiperbatch al

caching to take place in Expanded Storage (page-addressable extended memory

than in main memory. This difference has little impact on the replacement algorith

but permits a more cost-effective caching since the storage cost of extended mem

lower than for main memory [Ra92].

There are several possible areas for further work on the problems studied in this p

These include enhancing the algorithms to deal with update and non-sequential I/

tivity. Integrating precedence based scheduling algorithms with our load partitionin

gorithm is another possible avenue for further work.
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