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Abstract

Data sharing refers to a general distributed architecture for high
performance transaction processing. The nodes of a data sharing
system are locally coupled via a high-speed interconnect and can
directly access all disks and thus the entire database. While con-
currency and coherence control protocols for data sharing have
been discussed in previous work, the important area of recovery
has mostly been ignored. This paper discusses the new problems
for crash and media recovery that have to be addressed in data
sharing systems. Recovery is complicated by dependencies on other
functions such as buffer management and concurrency control.
Furthermore, a global log file is to be constructed where the modi-
fications of committed transactions are reflected in chronological
order. New logging and recovery protocols are proposed for loosely
coupled data sharing systems that employ the primary copy ap-
proach for concurrency/coherence control. A comparison with ex-
isting data sharing systems shows that our protocols support high
performance during normal processing as well as efficient recovery
to provide high availability.

1. Introduction

Data sharing systems have received a great deal of attention in re-
cent years [SUW82, WIH83, Se84, Ra86, Sh86, Fu86, Yu87, Bh88,
MNP90]. They offer a promising approach for building high per-
formance transaction systems which have to satisfy ever increas-
ing performance, availability and growth requirements.

Data sharing embodies a locally distributed architecture where
multiple transaction processing nodes are coupled via a high-speed
interconnect. Each node in such a complex may be a tightly coupled
multiprocessor running its own copy of the operating system and
DB/DC system. Communication between different nodes typically
takes place by means of message passing (loose coupling). Another
option not considered in this paper would be to use shared semicon-
ductor stores (close coupling) for data exchange to reduce the com-
munication overhead associated with message passing. The char-
acteristic feature of data sharing is that no partitioning of the ex-
ternal database is required (as in so-called ’'data partitioning’
systems), but that all nodes have direct physical access to the com-
mon database(s) on disk. This architecture is therefore also known
as 'shared disk’. Benefits of the data sharing approach over data
partitioning systems (e.g. increased flexibility for load balancing)
are discussed in [Sh86, Ra91].

Existing data sharing systems and prototypes include IMS Data
Sharing [SUW82, QV87], Computer Console’s Power System 5/55
[WIH83], NEC's Data Sharing Control System [Se84], IBM'’s
Amoeba prototype [ Sh85], Fujitsu’'s Shared Resource Control Fa-
cility [Fu86], and DEC's VaxClusters [KLS86]. IBM's TPF [TPF88]
also supports a 'disk sharing’ by multiple (eight) nodes but without
offering full DBMS capabilities and transaction management. TPF
supports locking and data caching within disk control units and
achieves very high transaction rates (several thousand transac-
tions per second) [Sc87].

To take advantage of the data sharing architecture, a number of
complex problems have to be addressed, notably in the areas of
concurrency and coherence control [Ra88], workload allocation
[Ra91] and recovery:

< Inloosely coupled data sharing systems, inter-node communica-
tion is required for concurrency and coherence control. Concur-
rency control is obviously needed in order to synchronize the ac-
cesses to the shared database and to enforce global serializabil-
ity. Coherence control is necessary because every node main-
tains a database buffer in main memory to cache pages from the
shared database. Thus, modification of a page in one buffer
makes all copies of that page in other buffers (and on disk) obso-
lete. Coherence control has to make sure that these buffer inval-
idations are either avoided or detected and that all transactions
get access to the current versions of database objects. The num-
ber of messages for concurrency and coherence control has to be
kept as low as possible to reduce the communication overhead
and to limit transaction deactivations due to remote requests.
[Ra88] summarizes and classifies previous research on concur-
rency and coherence control, and compares the performance of
several protocols by means of detailed, trace-driven simulations.
The best simulation results were observed for a primary copy
locking protocol that solves the buffer invalidation problem in
an integrated way to avoid additional messages for coherence
control. Specific recovery considerations in this paper will there-
fore be based on this protocol.

= Workload allocation is responsible for distributing the transac-
tion workload among the processors. This transaction routing
should not be statically determined by a fixed allocation of ter-
minals and/or programs to nodes, but should be automatic and
adaptive with respect to changing conditions in the system (e.g.
overload situations, node crashes, etc.). Effective workload allo-
cation schemes not only aim at achieving load balancing (to lim-
it resource (CPU) contention), but also at supporting an efficient
transaction processing with a minimum of inter-node communi-
cation or 1/0 delays. The latter is comparatively easy to realize
for primary copy locking by means of a so-called affinity-based
routing that attempts to assign transaction types (presumably)
accessing the same database portions to the same node (see be-
low). A general discussion of workload allocation in distributed
transaction systems and a classification of conceivable solutions
can be found in [Ra91].

= Recovery is the main subject of this paper. Despite its impor-
tance, recovery has mostly been ignored in previous publica-
tions on data sharing. Crash recovery and media recovery are
the major recovery forms that require new solutions for data
sharing. Crash recovery for a failed node has to be performed by
the surviving nodes in order to provide high availability. The re-
alization of this recovery form depends on many factors - includ-
ing the underlying protocol for concurrency and coherence con-
trol - that will be discussed in section 2 in more detail. In gener-
al, lost effects of transactions committed at the failed node have
to be redone (REDO recovery) while modifications of in-progress
(failed) transactions may have to be undone. Special recovery
actions may be necessary to properly continue concurrency and
coherence control, e.g. reconstruction of lost control information.
Media recovery may require the construction of a global log
where the modifications of all nodes are recorded in chronologi-
cal order [Sh85]. Disaster recovery can be performed according
to proposals for data partitioning systems [Ly88, KHGP90]



whnere all updates are asyncnronously applied to a copy or the

database at a remote data center.
This paper concentrates on crash and media recovery in data shar-
ing systems. The next section discusses the major problems and
design factors that appropriate solutions need to consider. Section
3 describes our logging and recovery protocols for data sharing sys-
tems that employ the primary copy approach to concurrency and
coherence control. Section 4 compares our proposal with recovery
schemes employed in existing data sharing systems.

2. New problems

To restrict the scope of our discussion, we make a number of as-
sumptions that are common in existing DBMS. We generally as-
sume an update-in-place policy (as opposed to shadow-page tech-
niques) where an updated database page is written back to the
same disk location from where it was read. Furthermore, we as-
sume that concurrency control is based on locking (locks are held
until the transaction is committed or aborted) and that physical
logging (as opposed to logical or operation logging) is employed. To
limit the number of log writes and the volume of log data, we log
only the modified portions of a page rather than the entire pages.
This entry logging also supports an effective group commit where
the log data of multiple transactions can be written in a single 1/0
[DewW84, He87]. It is further assumed that every node in the data
sharing system maintains a local log file where it records all mod-
ifications of locally executed transactions. Other nodes can access
the local log file to perform crash recovery.

Crash recovery in data sharing systems is complicated because of
close dependencies on buffer management, concurrency control
and coherence control. With respect to buffer management, we dis-
tinguish between the so-called FORCE and NOFORCE alterna-
tives as well as between STEAL and NOSTEAL policies requiring
different logging and recovery protocols. Another design factor is
the concurrency control granularity (page- vs. record-level lock-
ing). At the end of this section, we discuss the construction of a glo-
bal log file that may be needed for crash and media recovery.

FORCE vs. NOFORCE strategy for update propagation
The buffer manager is said to employ a FORCE strategy if all pag-
es modified by a transaction are forced (written) to the permanent
database on disk before commit [HR83]. Otherwise, a NOFORCE
policy is said to be in effect. FORCE simplifies crash recovery and
coherence control. During crash recovery, no REDO recovery will
be necessary for committed transactions. Coherence control is sim-
pler compared to NOFORCE since the most recent version of a
page can always be obtained from disk (at least when no concur-
rent modification of the same page at different nodes is permitted).
On the other hand, high performance requirements generally pre-
scribe a NOFORCE policy that permits a drastically reduced 1/0
overhead and avoids the increase in transaction response time and
lock hold time due to synchronous disk writes at EOT (end of trans-
action). With NOFORCE, only redo information (after-images) is
written to a log file at EOT, and multiple modifications can be ac-
cumulated per page before it is written to disk. These disk writes
can be performed asynchronously (before the corresponding page
is selected for replacement) to avoid response time delays. For NO-
FORCE, crash recovery has to redo all committed modifications
that were lost by a node failure. Coherence control has to keep
track of as to where the most recent version of modified pages can
be obtained. Modifications can either be directly transferred be-
tween nodes ('buffer-to-buffer’) or across the shared disks.

STEAL vs. NOSTEAL policy for page replacement

STEAL permits the buffer manager to replace dirty pages (contain-
ing modifications of uncommitted transactions) and to write them
to the permanent database. The use of a STEAL policy results in a
considerable complication for logging and recovery since it re-
quires before-image logging (write-ahead log (WAL) principle) and
UNDO recovery after a processor crash [HR83, Mo89]. Note that
FORCE usually implies STEAL since modified pages are still un-
committed when they are forced to the permanent database at
EOT. Consequently, before-images have to be written to the log ac-

cording to the WAL principle.

With NOSTEAL only unmodified pages or pages with committed
updates can be replaced. It avoids the need to write undo informa-
tion to the log; no UNDO recovery is necessary after a node crash.
The modifications of transactions aborted during normal process-
ing are backed out in main memory (no 1/0). If modifications are
performed on private (main memory) page copies, this can be done
by simply throwing away the copies of failed transactions. Other-
wise, undo information has to be kept in main memory buffers un-
til the transaction is committed.

Concurrency control after a node crash

Recovery has to be coordinated with the concurrency control proto-
col to permit its proper continuation after a system crash. Lock in-
formation held in main memory of the failed system is lost and
may have to be reconstructed during crash recovery. For instance,
if a central lock manager (CLM) is used for concurrency control the
failure of the central node requires a complete interruption of
transaction processing until the global lock information is recon-
structed and a new CLM is determined. A fast and simple recovery
is possible if a copy of the global lock table is held on stable storage
or in a stand-by node; this approach, however, causes a high check-
pointing overhead during normal processing since the lock infor-
mation is frequently updated. A more efficient scheme uses local
lock information in the surviving nodes to reconstruct the global
lock state.

Recovery processes update the database for redoing modifications
of committed transactions so that they may have to acquire locks
to prevent interference with transactions running on the surviving
systems. The simplest approach taken in some existing systems
(section 4) is to interrupt transaction processing during crash re-
covery, i.e. to lock the entire database exclusively. The obvious dis-
advantage is that availability is significantly impaired as it may
take several seconds or even minutes to complete recovery. Note
that no locks need to be acquired for undo recovery because the re-
spective objects are still locked on behalf of the failed transactions.
These locks must be released after recovery completion. Also, no
redo recovery is necessary for objects locked by transactions run-
ning on the surviving nodes. This is because the current version of
the respective objects are either in main memory of the surviving
systems or on disk (guaranteed by the coherence control protocol).

Dependencies on coherence control

Buffer invalidations can be controlled by extended lock informa-
tion since locking schemes require a transaction to acquire a lock
before accessing database objects [Ra88]. These integrated
schemes avoid extra messages for coherence control to a large ex-
tent thus improving performance considerably, e.g. compared to
broadcast invalidation schemes requiring extra messages to inval-
idate page copies at other nodes. On the other hand, a loss of lock
tables and coherence control information can have negative conse-
guences for recovery. If, for instance, version numbers are used to
detect invalidated page copies together with the lock request
processing (‘'on-request invalidation’), losing this information dur-
ing a crash could make it necessary to clear all database buffers to
avoid access to obsolete data. The broadcast invalidation scheme
does not share this problem since it removes invalidated pages 'im-
mediately’ from the database buffers. Furthermore, no coherence
control information has to be reconstructed during crash recovery.

Another trade-off between efficiency during normal processing and
recovery exists for the method used to exchange modifications be-
tween nodes. If modified pages are always exchanged across the
shared disks (and a page is not permitted to be concurrently mod-
ified in different nodes), crash recovery is simplified since it can be
done with the local log file of the crashed node. This is because all
modifications of other nodes are already reflected in the perma-
nent database so that at most, updates of the crashed node may
have to be redone (or undone). On the other hand, buffer-to-buffer
communication is much more efficient during normal processing.
It permits a page transfer time of about 1 ms as opposed to 50+ ms
(2 1/0s) introduced by a page exchange across shared disks (non-
volatile disk caches could permit faster transfers of about 4-8 ms).



WIth a direct exchange or moaifications, a page can be moaitriea at
multiple nodes before it is written to disk. Hence, redoing modifi-
cations of a crashed node may require the use of redo information
from remote nodes (Fig. 1). The log information for a given page is
dispersed over the local log files of all systems where the page has
been modified. To apply the redo information in correct order, the
local log information may have to be merged in a global log. This
difficulty is avoided by employing either page logging (and page
locking), or FORCE or by exchanging modified pages across the
shared disks. These alternatives simplify recovery at the expense
of a reduced performance during normal processing.

The analogous problem exists for UNDO recovery in the case of
STEAL. During crash recovery, undo log records from remote
nodes may have to be applied [Ra89].
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Page B has been successfully modified at S1, S2 and S3 without up-
dating the permanent database. During crash recovery for S3 all
three modifications have to be redone.

Figure 1: Redo problem with direct exchange of modified pages

(NOFORCE, entry logging)

Page vs. record locking

With page locking, a database page can only be modified by one
transaction at a time or it can be concurrently read by multiple
transactions. While this level of concurrency is generally appropri-
ate for most database objects, frequently accessed pages may re-
quire record-level locking to keep lock contention sufficiently low.
Since record-level locking results in a higher number of lock re-
guests, communication delays and overhead are likely to increase
for data sharing. What is more, record locking considerably com-
plicates coherence control for data sharing since different nodes
can then modify different records of the same page in parallel. This
has the effect that page copies in the database buffers may only
partially be up-to-date so that no node holds a completely valid
page version. Since writing partially up-to-date pages to the per-
manent database could lead to lost updates, a merging of modifica-
tions would be necessary before a modified page could be replaced
from the database buffer. Coordinating disk writes and merging
modifications, however, introduces additional communication re-
guirements. Furthermore, merging modifications of different page
portions may be impossible for insert or delete operations that
change the page structure.

To avoid these problems, existing data sharing systems only sup-
port page locking or a restricted form of record locking. A good com-
promise may be a hierarchical scheme with page locking for resolv-
ing lock conflicts between nodes and for coherence control, and
record locking within individual nodes to permit concurrent write
accesses to different records of a page. In [Ra89], we discuss fur-
ther forms of record locking for data sharing that permit a higher
concurrency.

Construction of a global log

A global log can be thought of as a combination of all local log files
with the log records ordered chronologically. A global log can be
used for crash recovery and media recovery.

In existing data sharing systems, the global log is mostly con-
structed by an off-line utility that merges the local log files. This
approach is not acceptable if high availability is crucial since re-
covery has to be delayed until the global log is completed by this
utility. A simple approach to construct the global log on-line is to
write the global log data during commit at the current end of the
global log file. By holding the write locks until the global log write
is completed it is guaranteed that the log records are in correct or-
der. The problem with this approach is that it increases response
times and thus lock hold times. Furthermore, the global log must
be kept in multiple partitions in order to avoid a single hot spot

that limits throughput. A shared, non-volatile semiconauctor store
could largely eliminate the performance problems of this scheme
[Ra90].

The alternative is to merge the local log files on-the-fly, e.g. by ded-
icated log processors that scan the local log files or receive the log
information directly from the nodes (extra messages). To sort the
log information, log records must be tagged with global times-
tamps. Page timestamps (version numbers) permit us to order the
log records on a per-page-basis. With page locking for update ac-
cesses, these timestamps can be maintained with no extra commu-
nication (every modification increments the version number). Al-
ternatively, transaction commit timestamps allow a total ordering
of all log records. A global counter can be used to assign monoton-
ically increasing commit timestamps. If one node maintains this
counter, extra communication is needed to get the timestamp; stor-
ing the counter in a common disk/storage location requires the syn-
chronization of the increment operation. The current clock value
can also be used as a commit timestamp provided the local clocks
are tightly synchronized or a common hardware clock is available.

The discussion shows that there are several trade-offs involved in
the design of recovery protocols for data sharing. Since efficiency
during normal processing should be more important than simple
and fast recovery protocols, we consider NOFORCE as mandatory
for high performance data sharing. Integrated concurrency/coher-
ence protocols and direct exchange of modifications also improve
performance during normal processing (compared to broadcast in-
validation and an exchange of modified pages via disk) at the ex-
pense of more complex recovery protocols. Record-level locking and
STEAL do not necessarily improve performance compared to page
locking and NOSTEAL, but they complicate coherence control and
recovery considerably. However, at least a restricted form of
record-level locking seems indispensable to prevent that lock con-
tention becomes the performance bottleneck.

The next section presents recovery protocols for data sharing sys-
tems with primary copy locking. Our schemes will support a NO-
FORCE environment, entry logging and an integrated concurren-
cy/coherence control with a direct exchange of modifications be-
tween nodes. In this paper, the protocols will be described for page-
level concurrency control. The extensions needed for record-level
locking cannot be presented here due to space limitations, but are
described in an extended version of this report [Ra89]. For simplic-
ity we assume a NOSTEAL environment, although our protocols
can be extended to STEAL (see section 5). Ever increasing main
memory sizes make NOSTEAL a reasonable choice since there
should generally be enough 'non-dirty’ pages that can be selected
for replacement.

3. Recovery protocols for primary copy locking

Before we can discuss logging and recovery protocols, it is neces-
sary to introduce the methods used for concurrency and coherence
control with primary copy locking (PCL). Therefore, sections 3.1
and 3.2 provide a brief summary of these methods to make the pa-
per self-contained (For a more detailed description of PCL, the
reader is referred to [Ra86]. The original primary copy scheme was
proposed for replicated databases [St79]). In 3.3, we describe the
logging activities during normal processing, particularly during
commit processing. Crash recovery and media recovery are dis-
cussed in 3.4 and 3.5, respectively.

3.1 Concurrency control
PCL is a distributed scheme where the database is divided into log-

ical partitions and each node is assigned the synchronization re-
sponsibility (or primary copy authority, PCA) for one partition.
Lock requests against the local partition can be handled without
communication overhead and delay, while other requests have to
be directed to the authorized processor holding the PCA for the re-
spective partition.

To minimize the number of remote lock requests, workload alloca-
tion and PCA allocation should be coordinated such that transac-
tions are assigned to the node where most of their database refer-
ences can be locally synchronized. (This allocation goal is subject
to load balancing constraints to avoid overload situations, if possi-



ple.) T'nis approach Is made possible by the prevalence or pre-
planned transaction types (e.g. debit-credit transactions in bank-
ing applications) for which the reference distribution is known or
can be obtained by DBMS-internal monitors. When transactions
can be routed to the node where most database accesses are locally
synchronized, we yield a high degree of node-specific locality of ref-
erence where each node’s partition is mainly referenced by local
transactions. Thus, affinity-based routing (transactions with affin-
ity to the same database portions should be assigned to the same
node) can be relatively easily supported with PCL. As trace-driven
simulations [Ra88] have confirmed, this helps not only to reduce
the number of remote lock requests, but also the frequency of 1/0s
(better hit ratios), buffer invalidations and lock conflicts with re-
mote transactions. This resulted in substantially better perform-
ance (transaction rates, response times) than with a random dis-
tribution of the workload, uncoordinated with the PCA distribu-
tion (e.g. PCA allocation determined by a hash function). An
optional improvement of PCL is the use of a so-called read optimi-
zation which permits a local synchronization of read accesses for
which another node holds the PCA [Ra86, Ra88].

In contrast to the static data allocation in data partitioning sys-
tems, the PCA distribution can be adapted dynamically since the
database itself is not partitioned. This would typically be done af-
ter a node has failed or been added, or together with an adaptation
of the routing strategy, e.g. to deal with overload situations or
when the load profile changes significantly. Methods to determine
workload and PCA allocations are discussed in [Ra91].

3.2 Coherence control

For coherence control, various techniques can be chosen in combi-
nation with PCL [Ra86]. We focus here on one on-request invalida-
tion (check-on-access) scheme that works for NOFORCE, a direct
exchange of modifications between nodes and page-level concur-
rency control. On-request invalidation schemes use extended infor-
mation in the (global) lock table to decide upon the validity of a
cached page together with the lock request processing. Thus, buff-
er invalidations are detected without any additional communica-
tion, a main advantage compared to broadcast invalidation
schemes. For the purpose of this discussion, we assume a simple
approach using version or sequence numbers in the page header
that are incremented by every update operation. For modified pag-
es, the PCA lock manager maintains the version number of the
current page copy in its lock table; this information can be updated
when the write lock required for the modification is released (no
extra message). Before a cached page is accessed, a lock generally
has to be requested at the responsible PCA lock manager. The ver-
sion number of the cached page copy is sent together with the lock
request so that the PCA lock manager can check whether or not the
copy is obsolete.

If a cached page copy is invalidated or the page is not cached at all,
a transaction must be provided with the most recent version of the
page. With FORCE, the transaction could simply read the page
from disk. With NOFORCE, however, the page version on disk is
obsolete if the page has been successfully modified at one (or more)
node(s) and not been written back. One approach to deal with this
difficulty is to record in the PCA node’s lock table at which node a
page has been modified most recently and to request the page from
this processor after a lock has been granted.

Though these page requests can usually be satisfied faster than a
disk 1/0, they introduce extra messages and communication delays
in addition to remote lock requests. This disadvantage can be
avoided by an approach where the transmissions of modified pages
are also combined with regular concurrency control messages.
First, modified pages belonging to the partition of another node are
transmitted to the responsible PCA processor together with the
message required for releasing the write lock (at EOT). This has
the effect that the PCA node always gets the most recent page ver-
sions for its partition. Thus, buffer invalidations are now limited to
pages belonging to another node’s partition. Moreover, when a lock
is granted to a remote transaction, the PCA node can send the most
recent page version directly to the requesting transaction, together
with the lock response message. (If the PCA node does not hold a
copy of the page in its buffer, it indicates in the lock response mes-
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Figure 2:

Example for PCL with on-request invalidation and direct ex-
change of modifications

sage that the page can be read from disk.) In this way, the respec-
tive transaction does not need to be deactivated again for request-
ing the page from another node or reading it from disk. Therefore,
our coherence control scheme does not require extra messages for
detecting buffer invalidations or for exchanging modified pages be-
tween different sites. The example in Fig. 2 illustrates this proto-
col.

Modified pages are only written out by the PCA node. This avoids
an explicit coordination of disk writes which may be necessary in
other schemes for NOFORCE and direct exchange of modifications
to make sure that no invalidated page copy is written out.

3.3 Logging

Our logging and recovery protocols are based on physical entry log-
ging and NOSTEAL and support the above coherence control with
NOFORCE and a direct exchange of modifications. A central idea
is to utilize the fact that the PCA node receives all modifications of
its partition and to log these changes in the PCA node’s local log
file, even when the modifications have been performed on a remote
processor. This approach avoids the explicit construction of a glo-
bal log file since the local log files already represent a distributed
form of a global log where each PCA node’s log file holds the log in-
formation for the respective database partition in chronological or-
der. This implicit global log is constructed with little extra over-
head for communication and 1/0 and will facilitate crash recovery
as well as media recovery.

Log record types

For our discussion, four log record types are relevant:

1. Redo log records contain the after-image for modified page por-
tions or records. They contain the corresponding transaction
and page identifier as well as the page’s version number associ-
ated with the modification. The transaction identifier is as-
sumed to consist of a node number and a local transaction
number to separate redo log records of local from those of remote
transactions. Redo log records of remote transactions are guar-
anteed to belong to committed transactions (see below), while lo-
cal redo records may have been written by uncommitted trans-
actions. The version number is stored to determine whether or
not a redo log record has to be applied to a database page.

Redo log records are first written into a main memory buffer



that Is written to the log Tile when It Is Tull or at specitic points
in time (e.g. transaction commit or abort). Such a buffering per-
mits us to write multiple log records with one 1/0 and to imple-
ment group commit. When a log buffer is written, all log records
are appended to the current end of the local log in the order of
their insertion into the log buffer.

2. Commit log records indicate the successful completion of an up-
date transaction. They are only written to the local log file of the
node where the transaction has been executed (with data shar-
ing, there is no need for a distributed execution of transactions,
e.g. with remote subtransactions).

3. Abort log records indicate the rollback of an update transaction
and are only written at the transaction’s execution node. All
redo log records of aborted transactions will be skipped during
REDO recovery. UNDO recovery will not be necessary due to the
NOSTEAL assumption.

4. Checkpoints are taken to limit the redo work after a node crash.
In our scheme, every node can take checkpoints independent of
other nodes, i.e. there is no need to synchronize checkpoint ac-
tivities. Checkpoints can basically be taken as in centralized da-
tabase systems. Since direct checkpoints that write modified
pages from the database buffer to the permanent database
would lead to intolerable write delays (thousands of pages may
have to be written), we use so-called fuzzy checkpoints [HR83].
They are periodically taken and record only status information
in the log file such as the names of currently active transactions
at the respective node and the identifier of modified pages of the
local database partition. For every modified page, it is assumed
that the buffer manager records the log file address (LSN or log
sequence number) of the first redo log record. This START _LSN
for modified pages is also written to the log during a checkpoint
and marks the point on the log where redo processing has to be-
gin. To limit the redo work, the buffer manager writes out fre-
guently modified pages on a continuous basis (as in [M089]) so
that their START_LSN can be reset. To take a checkpoint, a
BEGIN_CHKPT record is first written to the log, followed by the
status information and a END_CHKPT log record.

Commit processing

The steps during the commit of an update transaction are summa-
rized in Fig. 3. The first commit phase is basically the same as in
centralized database systems with NOFORCE. The log buffer with
the commit record of the update transaction is written to the local
log file (possibly delayed because of group commit). When the com-
mit record has reached the local log file, the transaction is already
guaranteed to be committed and its results can be shown to the ter-
minal user. All redo log records of the transaction have been writ-
ten to the log prior to the commit record (in previously written log
buffers or in the log buffer containing the commit record).

In the second commit phase, first locks for locally controlled pages
are released. If no remotely controlled data has been accessed,
commit processing and transaction execution is completed at this
point. Otherwise, lock release messages are sent to the responsible
PCA nodes together with the modified pages and information de-
scribing which page portions have been modified. (An alternative
is to transmit only the modified records/page portions. In this case,
the PCA node has to copy these modifications into the page which
may first require to read in the unmodified page.) To cope with
transmission failures, the modified pages and log information re-
main buffered in the transaction’s node until the PCA node has ac-
knowledged their receipt. A buffering of the log records is also nec-
essary to deal with situations where the PCA node crashes before
the log records of remote modifications reach its log (see below).
At the PCA node, the modified pages are copied into the database
buffer thereby possibly overwriting older versions of the respective
pages. Furthermore, the remote redo log records are appended to
the log buffer. Since every record in the log buffer will be written
to a known address at the local log file, the LSN for a remote redo
log record can be determined now, and START_LSN is set to this
value if the respective page has not been modified before. After
this, coherence control information (version numbers) is updated
and the locks are released. Remote redo log records are written

at transaction’s execution node:
force log buffer with commit record to local log; {tx is now committed}
release locally controlled locks;
for remotely controlled objects do;

keep redo log records in separate log buffer;

send unlock message with modified pages/redo log records to

PCA node;
wait for ACK by PCA node;
clear log buffer
end;

at PCA node:

bring modified pages into database buffer;
append remote redo log records to log buffer;
increase version numbers in lock table;
release locks;

ACK message is returned after log buffer with remote redo log
records has been written out {e.g. due to commit of a local transaction};

Figure 3:  Commit Processing

asynchronously (bundled) after the write locks have been released
to avoid an increase in lock contention. Similarly, ACK messages
which confirm that the remote log records have been written are
piggy-backed to other messages to avoid extra communication
overhead. On the PCA node’s log file, all redo log records for its
partition are chronologically ordered since redo information for re-
mote modifications are inserted into the log buffer before the write
locks are released.

Bundling remote log operations and ACK messages permit a con-
struction of the distributed version of the global log with almost no
extra 1/0O or communication overhead during normal processing. In
addition, remote logging does not increase response times (as per-
ceived by the terminal user) since the transaction is already com-
mitted after a successful local logging in commit phase 1. Only re-
mote modifications are logged to two log files while an explicit con-
struction of the global log introduces a double logging for all
modifications. In general, coordinating workload and PCA alloca-
tion should permit that most modifications are performed at the
PCA node avoiding a remote logging as well as a transfer of modi-
fications at EOT.

We note in passing that in data partitioning systems both commit
phases are distributed, in general. A distributed first commit
phase increases transaction response times and lock holding
times.

3.4 Crash recovery

When a node fails, its lock table and buffer contents are lost. As a
consequence, all further database processing with respect to the
partition of the failed node must be stopped until crash recovery is
completed. Blocking further accesses to the failed node’s partition
also avoids interferences of recovery processes with transactions
running on the surviving nodes. Transaction processing on the re-
maining partitions can continue in parallel to the crash recovery
for P. Transaction types (or terminals) assigned to P before the
crash must be reassigned among the surviving nodes by the work-
load allocation strategy.

For the following we assume that P denotes the crashed processor
and D its database partition. One of the surviving nodes, say Q, is
in charge of coordinating the recovery actions; another node R is
responsible for REDO recovery with P’s log file (Q=R is possible).
After the detection of P’s crash, Q sends a broadcast message to
block all further accesses to D. This message is also used to indi-
cate that lock information and buffered redo log records for parti-
tion D that are needed for REDO recovery (see below) are to be sent
to R. Apart from REDO recovery for P, crash recovery includes a
reallocation of the PCAs and adaptation of the workload allocation
strategy, and a reconstruction of lost lock information for partition
D. The loss of coherence control information (version numbers) re-
quires that pages of partition D cached in the surviving nodes be
considered obsolete and removed, unless their validity is ensured
by a granted lock. Our recovery scheme permits transactions to
keep locks for D to avoid that granted locks have to be reacquired
and the respective transactions aborted.



REDO recovery
The REDO recovery is performed by one of the surviving nodes, say
R, with the local log file of P. Since the coherence control informa-
tion for D has been lost by P’s crash, it is necessary to bring all pag-
es of D in the permanent database up to the most recent state that
reflects all successful modifications at any node. This can be done
almost exclusively by processing P’s local log due to the logging of
remote modifications at the PCA node. In addition, the taking of
checkpoints should generally restrict the redo work to a small por-
tion of D that has been modified shortly before the crash.
In the following we describe how the redo recovery for D is per-
formed before we discuss redo recovery for P’'s modifications of re-
mote partitions.
For redoing lost modifications of partition D, R processes P’s log
file in two passes, an analysis pass and a redo pass. The analysis
pass starts at the last complete checkpoint taken by P and reads
the log file until its end. This pass determines a list of loser trans-
actions, i.e. transactions for which an abort log record has been
found in the log, or which have been active at checkpoint time or
for which redo log records have been found but no commit log
record. The analysis pass also determines the pages of partition D
for which redo recovery is to be performed in the second pass.
These are the pages that have been recorded in the checkpoint as
well as the pages of D for which redo log records have been found
after the checkpoint. The checkpoint information also indicates the
start point on the log for the redo pass (the minimum of all
START_LSN values).
While P’s log file contains all redo log records of locally committed
transactions, some remotely committed modifications of D may be
missing due to transmission delays and buffered log writes in P.
These modifications are still in the log buffers of the surviving
nodes since P has not acknowledged that they have been written to
its log file. The buffered redo log records for partition D are sent to
R which appends them to P’s log file and adds the page identifiers
to its list of pages to be redone.
All pages of D for which according to the analysis pass a redo re-
covery may be necessary, are read from the permanent database
by R. (These disk reads can be heavily optimized by ordering them
so as to minimize disk seek times and by reading, if possible, from
different disks in parallel). The redo pass starts at the log address
determined in the analysis pass and processes all redo log records
until the end of the log file. A redo log record is applied if the fol-
lowing conditions hold:
= the corresponding page belongs to partition D and has been read
in by R after the analysis pass
= the modifying transaction is not a loser transaction
= the version number of the log record is higher than the version
number stored in the page header.
At the end of the redo pass, all updated pages of partition D are
written back to the permanent database. At this point, R writes a
checkpoint to P’s log stating that all modifications of partition D
are reflected in the permanent database.
The redo processing from the log can be avoided for pages of parti-
tion D that are cached in their current version at the surviving
nodes (e.g. because of a granted lock). Instead of reconstructing
these pages from the page copy on disk and the redo log informa-
tion, they can be directly written to the permanent database by one
of the nodes with a current copy ('dirty’ page copies must not be
written out due to NOSTEAL).
Committed transactions at P may have modified not only pages of
partition D but also pages of remote partitions. These modifica-
tions, however, do not have to be redone, in general, since they are
transmitted to the PCA node at EOT. Therefore, P’'s committed
modifications of remote partitions are already available at the sur-
viving nodes, except for a few modifications which may have been
logged at P shortly before the crash and whose transmission to the
PCA node could not be completed because of P’s crash. To deter-
mine the respective pages, each surviving node informs R about
which transactions from P still hold write locks on pages of their
partition (only for these transactions may redo log information be
outstanding). If for one of these transactions a commit record is
found on P’s log, its redo log records for remotely controlled pages
are read from P’s log and sent to the responsible node where the

moairications are loggea again ana applied to the respective data-
base pages and the locks are released. The locks of loser transac-
tions are also released at the surviving nodes to avoid unnecessary
lock conflicts on their database partitions.

PCA reallocation and reconstruction of lock information
If it is to be expected that node P remains unavailable for more
than a few seconds, a reallocation of the PCAs is necessary to con-
tinue processing on partition D. To limit the relocation overhead,
only the fragments of partition D are newly assigned among the
surviving nodes while the assignments for the other partitions re-
main unchanged (Fragments constitute the units of PCA alloca-
tion. Since we have a logical partitioning, they can be chosen al-
most arbitrarily small (e.g. page ranges)). In the simplest case, the
entire partition D is assigned to one node, e.g. to processor R that
performed the REDO recovery and already holds many pages of D
modified before the crash in its database buffer. Overload situa-
tions at R after the recovery are not necessarily introduced since
only lock processing is associated with the PCA owners while the
largest part of a transaction can be executed at any node (contrast
this with data partitioning, where the database operations are
processed where the data resides). On the other hand, assigning
P’s partition to one node and its transaction types to multiple proc-
essors could lead to an increased number of remote lock requests.
If this appears to be a problem for the workload to be processed,
partition D can be split among multiple nodes. It is assumed that
the recovery coordinator Q determines the new PCA (and work-
load) allocation and broadcasts it to all nodes. All nodes that have
received the PCA ownership for some fragments record this in
their log file; in P’s log file the new owners for the fragments of D
are also recorded.

With the crash of P, the global lock table for partition D has been
lost. A simple approach to continue concurrency control on D after
the completion of recovery would be to abort all transactions that
have requested or obtained locks on D before the crash. After the
completion of crash recovery, these transaction would be reexecut-
ed and all locks on D would have to be reacquired at the new PCA
node(s). The rollback and reexecution of these transactions can be
avoided, however, since every node keeps track (e.g. in a local lock
table) of requested/granted locks of local transactions for remote
partitions. For partition D, this lock information can therefore be
sent to the new PCA node(s) to reconstruct the global lock table by
merging this information. The global lock information (lock own-
ers, waiting lock requests) can be completely reconstructed except
for transactions from the failed node P. Their lock requests, how-
ever, are irrelevant since these transactions are failed and have to
be restarted anyway. The merged lock information from the sur-
viving nodes indicates situations where lock requests are waiting
because of locks held by P’s transactions before the crash. These
locks are implicitly released now and the waiting lock requests can
be granted after the recovery.

Coherence control information for on-request invalidation cannot
be reconstructed from information of surviving nodes. Therefore,
the version numbers for pages from D are set to O in the global lock
table indicating that the current page copy can be read from the
permanent database (insured by the REDO recovery). As men-
tioned above, pages of D already cached can be used after recovery
when their validity is guaranteed by a granted lock.

Resuming processing on partition D

When REDO recovery is completed and the new PCA allocation is
established, the recovery coordinator Q can broadcast the end of
P’s crash recovery and release the blocking of partition D. Trans-
actions failed at P because of the crash can be distributed among
the surviving nodes (according to the new workload allocation
strategy) for reexecution. By using logged input messages of these
transactions, the rollback and reexecution can generally be kept
transparent to the terminal user.

When the crashed node is to be reintegrated again, the old PCA
and workload allocation may be re-established. During the transi-
tion, partition D must be blocked and the global lock information
is transferred from the current PCA owners to P. Modified pages of
D in the buffers of the current PCA nodes are either written to the
permanent database or also sent to P. REDO recovery and adapta-



tion or a new PCA allocation can be done In parallel to limit the du-
ration of crash recovery and blocking time for partition D. In our
scheme, REDO recovery is very simple because of the logging of re-
mote modifications by the PCA nodes. Its duration is mainly deter-
mined by the checkpoint frequency and the buffer manager that
has to asynchronously write modified pages with low START_LSN
values. The reconstruction of global lock information requires al-
most no extra overhead during normal processing in contrast to
checkpointing schemes that maintain copies of lock tables in sepa-
rate nodes or non-volatile storage.

Multiple node crashes

So far, we have only discussed crash recovery for the case of a sin-
gle node crash. Our scheme is optimized for this case which is far
more likely than multiple node crashes where other nodes may fail
during the crash recovery of one node. Since crash recovery for a
single node can largely be performed with the local log file of the
failed processor, recovery from multiple crashes is similar to the
recovery of multiple independent node crashes. (Crash recovery for
already failed nodes may have to be started again when interrupt-
ed by a second node crash). One optimization that cannot fully be
utilized any more is the main memory buffering of remote redo log
records being used for redo recovery of a failed node’s partition.
This is because the crash of a second processor leads to the loss of
its main memory log buffer that may have contained redo log
records needed for the reconstruction of the first node’s partition.
However, since all redo log records of committed transactions are
guaranteed to be in the local log file on disk, a correct redo recovery
is still possible, although it takes longer to determine and read the
required redo log records from the log file than using the in-mem-
ory copies. In the worst case, when all nodes have crashed, all local
log files must completely be scanned and analysed to determine
(using the version numbers) which redo log records are needed for
the reconstruction of the local or any remote partition.

3.5 Media recovery

Media recovery is trivial with mirrored disks. Otherwise, damaged
pages have to be recovered from an archive copy of the database by
applying all redo log records (of committed transactions) for the re-
spective pages in chronological order [HR83]. (This lengthy process
can be avoided if a page to be recovered is buffered at its PCA
node). Since the local log files typically hold only the most recent
log records needed for crash recovery, older log records have to be
kept on separate archive log files. Media recovery first applies redo
log records from the archive log to the archive copy before the most
recent modifications logged on the local log files are redone.
Archive copies and archive logs are typically maintained for entire
database files or segments that constitute a collection of PCA frag-
ments. Taking an archive copy can be done similarly as in central-
ized database systems, e.g. by a read-only transaction that reads
every page of the segment and copies it to the archive dump. (This
transaction acquires short read locks to make sure that no dirty
page versions are copied). At the beginning of this transaction, the
log address of the last checkpoint is recorded for every node hold-
ing the PCA for some of the fragments of the respective segment.
These checkpoint addresses mark the points from where on redo
log records have to be applied for this archive copy. As mentioned
above, these redo log records are asynchronously copied to a sepa-
rate archive log in order to limit the size of the local log files. Due
to changes in the PCA allocation, the redo records for a fragment
may have to be read from different local log files. Since we record
the new PCA owner for a fragment in the log, the processing of redo
log records can continue with the log file of this node. (When a node
receives the PCA for a new fragment it can record the current log
address in a main memory data structure. The processing of redo
log records for media recovery or taking an archive copy can then
start from this position).

4. Recovery in existing data sharing systems

As mentioned in the introduction, there is almost no discussion of
recovery problems and solutions for data sharing in the literature.
Although information on recovery facilities of existing data shar-
ing systems is also very limited, we try to summarize their main

Teatures as descriped In the avallable documents.

TPF [Sc87, TPF88] is no full data sharing system since it provides
only limited support for transaction management and recovery.
TPF provides message logging and supports duplicating files for
media recovery. Recovery procedures are to be provided primarily
by the application system, e.g. the take-over by a stand-by system.
High availability is only achievable with 'responsible applications’
and trained system personnel. For the sake of fast restart times,
the updates of some committed transactions may be lost after a
node crash [Sc87].

A common feature of all 'real’ data sharing systems appears to be
the choice of a FORCE strategy in order to avoid the complexity of
a REDO recovery after a node crash. IMS Data Sharing [QV87]
employs the FORCE strategy in combination with a broadcast in-
validation scheme for coherence control. It is restricted to two
nodes and uses a distributed concurrency control scheme ('pass the
buck’) based on a logical token ring topology. Accesses can general-
ly be synchronized at the record level, except for update accesses
between nodes that are synchronized at the page level. Media re-
covery is based on archive copies and a global log file; a utility is
offered to merge the local log files. A general observation from
[QV8T7] is that recovery procedures for IMS Data Sharing rely
heavily on operator interactions thus complicating system admin-
istration and making the recovery process susceptible to human
errors and delays.

AIM/SRCF [Fu86] employs a majority consensus protocol for con-
currency control where a lock request has to be granted by a ma-
jority of the nodes. Every node writes before-images (FORCE) and
after-images into separate local log files. Utilities are provided for
sorting and merging after-images from the local log files. Sorting
is based on sequence numbers associated with database pages that
are incremented for every page modification. Coherence control is-
sues are not discussed in [Fu86].

A central lock manager for concurrency control is used in the data
sharing systems of Computer Console [WIH83], NEC [Se84] and in
the Amoeba prototype [Sh85]. These systems rely on FORCE and
(presumably) a broadcast invalidation scheme for coherence con-
trol (coherence control is not discussed in [WIH83, Se84]). In Com-
puter Console’s system, the failure of the central lock manager re-
sults in a total 'freeze’ of lock processing until a backup process has
rebuilt the global lock table. In NEC's system, central lock services
are provided by a special 'lock engine’ that internally consists of up
to eight processors. Global lock information is kept in two copies in
independent main memory partitions so that after a failure a con-
sistent copy of the global lock table is always available. In the
Amoeba prototype [Sh85], it is assumed that a stand-by process
can take over global concurrency control after a failure of the pri-
mary coordinator. For the creation of a global log, a special journal
process runs on every node that forwards local log records to a
merge processor running on a disk server. A stand-by merge proc-
ess is assumed to take over if the primary merge fails.

DEC's DBMS for VaxClusters employ a distributed locking
scheme for concurrency control and an on-request invalidation
scheme, based on page sequence numbers, for coherence control
[KLS86, ST87]. During crash recovery, all database processing is
stopped (‘database freeze’) and failed transactions are undone
(FORCE) [RSW89]. Furthermore, all locks of surviving nodes have
to be reacquired after crash recovery to redistribute lock owner-
ships [ST87]. For media recovery, a global log file is constructed on
a single disk [RSW89]. While they employ group commit to (syn-
chronously) write the after-images to the global log file, the global
log remains a potential bottleneck for transaction rates of more
than 100 transactions per second.

Our protocols compare very favourably with the strategies of exist-
ing data sharing systems. Our approach primarily aims at high
performance during normal processing while preserving reasona-
ble complexity and efficiency for recovery. In contrast to current
data sharing implementations, we support NOFORCE as well as a
direct exchange of modifications between nodes. The broadcast in-
validation scheme used for coherence control in most data sharing
systems causes extra messages and response times delays for up-
date transactions. Our on-request invalidation scheme described



IN 5.2, does not require extra messages Tor the adetection or burrer
invalidations or for the exchange of modifications (the DEC
scheme is based on FORCE, i.e. an exchange of modified pages
across disks). In simulation studies, the primary copy approach
has shown to provide efficient concurrency and coherence control
with less messages than (optimized) central locking strategies
used in several data sharing systems [Ra88]. This resulted from
the use of a read optimization, the efficient coherence control
scheme, and the coordination of workload and PCA allocation (af-
finity-based transaction routing). Remote logging for modifications
of the partition of another node permits an efficient REDO recov-
ery and avoids the explicit construction of a global log by merging
local log files. During crash recovery, only the database partition
of the crashed node has to be blocked, while processing on other
partitions can continue (no total database freeze). In general, re-
mote logging is only needed for a small fraction of updates and does
not introduce extra messages or disk writes during normal
processing. As described in [Ra89], it is possible to extend our
scheme to full record-level locking where the same page can be con-
currently modified in different nodes. This level of concurrency is
not supported by existing data sharing systems.

5. Conclusions

Logging and recovery algorithms for data sharing have to support
high performance during normal processing as well as fast recov-
ery from failures in order to provide high availability. Since these
two subgoals often conflict with each other, it is generally neces-
sary to find compromises. The discussion in section 2 revealed the
major design issues and implementation alternatives to be consid-
ered and showed that the design of appropriate techniques is com-
plicated by the close dependencies of logging and recovery on con-
currency control, coherence control and buffer management. The
new logging and recovery protocols presented in this paper are
based on the primary copy approach to concurrency and coherence
control. The primary focus was high performance during normal
processing since node crashes, media failures or disasters should
be comparatively rare events. Still, our logging technique permits
a comparatively simple and fast crash recovery.

For performance reasons, we support a NOFORCE strategy for up-
date propagation to disk, entry logging, and an on-request invali-
dation scheme for coherence control with a direct exchange of mod-
ifications between nodes. The recovery schemes are based on a
‘"double logging’ of modifications of remote partitions. As in central-
ized DBMS, a transaction is committed as soon as its modifications
and commit record are logged to the local log file. In the second
commit phase, modifications of remote partitions are transferred
to the PCA node where the changes are buffered, the locks are re-
leased and the modifications are logged again. By combining the
transfer of modifications (and acknowledgement messages) with
other messages and bundling log information, extra communica-
tion and log 1/O is generally avoided by this double logging. In ad-
dition, it does not increase response times or lock holding times.
The great advantage of this technique is that the log file of the PCA
node holds all redo log records for its partition in chronological or-
der (some modifications may still be buffered at remote nodes).
This implicitly constructed, distributed version of a global log file
permits a simple and fast redo recovery after a node crash with the
local log file of the crashed node. For media recovery, an additional
sorting of redo log records is also avoided.

Our approach for crash recovery exhibits several additional bene-
fits, e.g. when compared with recovery strategies in existing data
sharing systems (section 4) that are generally limited to FORCE.
First of all, there is no need for a total database freeze, but only the
partition of the crashed node has to be blocked during crash recov-
ery. To speed up the recovery process, redo recovery can be per-
formed in parallel to PCA relocation and reconstruction of lost lock
information. Redo recovery can be avoided for cached pages whose
validity is ensured by a transaction lock or read authorization.
Locks and cached pages of the partition to be recovered can be re-
tained by transactions on the surviving nodes so that their reacqui-
sition after recovery completion is avoided. In addition, the recov-
ery scheme can be extended to support full record locking [Ra89].

Furtner extensions or our scheme are necessary It a Sl EAL envi-
ronment is to be supported, i.e. the replacement of pages with
'dirty’ modifications. If restricted to pages of the local partition,
this can easily be incorporated analogous to schemes for central-
ized DBMS; otherwise, undo log records also have to be transferred
to and logged by the PCA node. An additional UNDO pass is then
required during crash recovery to bring the partition of the failed
node to the most recent transaction-consistent state.
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