
-

-

t

ol-

lled

uctor

read

em-

are

ted

tware

uctor

To appear in: Proc. 4th Int. Workshop on High Performance Transaction Systems, Asilomar, CA,
Sep. 1991, Lecture Notes in Computer Science, Springer-Verlag.
Use of Global Extended Memory
for Distributed Transaction Processing

Erhard Rahm

University of Kaiserslautern, Dept. of Computer Science

6750 Kaiserslautern, Germany

E-Mail: rahm@informatik.uni-kl.de

Abstract

In current mainframe architectures, extended memory is used as a page

addressable main memory extension to improve I/O performance. If made

non-volatile, extended memory can significantly increase transaction pro-

cessing performance. In this paper, we study how locally distributed trans-

action systems may use shared extended memory to support high transac

tion rates and short response times. We outline how a specific store called

GEM (Global Extended Memory) can be utilized to improve I/O perfor-

mance and inter-system communication and cooperation. It turns out that

distributed transaction systems of the “shared disk” type (data sharing sys-

tems) can benefit most from such a shared store. We describe simple ye

efficient schemes using GEM for global concurrency control and con-

structing a global log file for such systems.

1 Introduction

Extended memoryhas first been used in IBM 3090 mainframe computers as a v

atile main memory extension [CKB89]. In contrast to main memory, this so-ca

expanded storage (ES) is page-addressable similar to disks or other semicond

memories like disk caches and solid-state disks. This means that in order to

data from extended memory, the corresponding page must be read into main m

ory. Similarly, data cannot directly be modified in extended memory but pages

altered in main memory and written back at a later point in time. This page-orien

access interface enhances failure isolation against processor failures and sof

errors. I/O performance can greatly benefit from page-addressable semicond

sub-

port

cess-

trans-

cess

d to

ically

ut is

ase

een

tudes

ding

this

e

sub-

isk.

since

ate ES

g de-

an-

. the

and

d, the

stem

ex-

The

r 50

ely

un-

h in-

dif-

rays

o-

e, the

nt

i-
memories like extended memory, disk caches and solid-state disks that permit

stantially better access times and I/O rates than disks.

Disk caches [Sm85, Gro85, Gro89] and solid-state disks (SSD) [Ku87] sup

the channel-oriented interface of disks so that their use is transparent to the ac

ing systems. The access time to such stores is largely determined by the page

fer time (channel speed) and delay at the device controller. Typically, page ac

times of 1 to 2 ms can be achieved resulting in a 10-fold improvement compare

disks. The I/O overhead, however, is the same than for disk accesses and typ

accounts for thousands of instructions per I/O (process switch, etc.).

On the other hand, extended memory has no channel-oriented interface b

largely managed by software in the operating system (e.g. MVS and VM in the c

of IBM’s ES). Special machine instructions are provided to move pages betw

main memory and ES. Currently, access times are two to three orders of magni

faster than for SSDs and disk caches (about 75 microsec per 4 KB page inclu

OS overhead [CKB89]). Since a process switch would be more expensive than

delay, accesses to ES aresynchronous, i.e. the CPU is not released during the pag

transfer. While conceptually the ES sits between main memory and the disk

system in the storage hierarchy, pages cannot directly migrate from ES to d

Rather all data transfers between ES and disk must go through main memory

page transfers are controlled by the accessing system rather than by a separ

controller. Originally, the ES has only been used as a fast paging and swappin

vice controlled by the operating system (LRU replacement of pages in ES). Me

while more flexible OS services have been provided to permit programs (e.g

DBMS) to maintain data in ES [Ru89].

The discussion shows that extended memory offers reduced I/O overhead

significantly shorter access times than disk caches or SSDs. On the other han

use of extended memory is no longer transparent but must be supported by sy

software. While the cost per megabyte is about half the cost of main memory,

tended memory is about twice as expensive than SSD or disk caches [Ku87].

cost per megabyte of SSD and disk caches, in turn, is approximately by a facto

- 100 higher than for disks [Ra91b]. The relative cost of extended memory is lik

to increase if this store is made non-volatile, e.g. by using a battery backup or

interruptable power supply. Of course, the mentioned cost ratios are only roug

dicators and only partially be determined by technical characteristics, but may

fer from manufacturer to manufacturer. At any rate, we expect disks (or disk ar

[KGP89]) to remain significantly cheaper than non-volatile semiconductor mem

ries for the foreseeable future (at least for large systems). As a consequenc

majority of data will still be stored on disks and only the use of a limited amou

of non-volatile semiconductor memory is likely to prove cost-effective. (For sim

oo ex-

ess-

s on

vola-

n is

ome

rder

ch is

shes

89],

en-

with

lure.

da-

that a

m-

strate

ares

pro-

were
lar reasons, keeping entire databases resident in main memory is considered t

pensive for very large databases of hundreds of gigabytes).

So far, the use of non-volatile semiconductor memories for transaction proc

ing has received little attention in the database research community. Studie

main memory databases frequently assume that the log buffer resides in non-

tile main memory to eliminate a synchronous disk I/O for logging (a transactio

committed as soon as its commit record has been written to the log buffer). S

proposals (e.g. [LR88]) assume that the entire main memory is non-volatile in o

to avoid keeping a log file and an archive copy of the database. This approa

not only very costly, but also has the problem that software errors and CPU cra

may compromise the consistency of the memory-resident database. In [CKKS

the use of a so-called “safe RAM” is proposed to improve I/O performance in c

tralized database systems. Safe RAM is supposed to be a DRAM memory

enough backup power to copy the memory contents to a disk after a power fai

All write I/Os (database and log writes) should be directed to this store so that

tabase reads remain the only I/O delays for transactions. The authors argue

comparatively small store is sufficient to significantly improve performance co

pared to a disk-based architecture. They also provide cost estimates to demon

the cost-effectiveness of such an approach.

In [Ra91b], we present a comprehensive performance evaluation that comp

the use of non-volatile extended memory, SSD and disk caches for transaction

cessing. Three usage forms of these storage types to improve I/O performance

considered:

1. Keeping entire files (database partitions, log file) resident in non-volatile semiconductor
memory
This usage form is applicable for non-volatile extended memory and SSD. It permits
the best I/O performance since all disk reads and writes are avoided for the respective
files. The resulting transaction performance was found to be comparable to main mem-
ory databases but could be achieved at a lower storage cost.

2. Use of a write buffer in non-volatile semiconductor memory
(extended memory or disk cache)
This usage form achieved the second-best performance since (almost) all synchronous
disk writes could be eliminated and were transferred into asynchronous ones (deferred
propagation of modified pages to disk). This usage form has the advantage that a small
buffer was sufficient to greatly improve performance for log and database writes.

3. Caching of database pages in a second-level page cache
This usage form is applicable for volatile and non-volatile extended memory or disk
caches and aims at reducing the number of disk reads by caching database pages at
an additional level of the storage hierarchy. The second-level cache was found to
achieve similar I/O savings than an increased main memory buffer, but at a lower cost.
The use of disk caches, however, in addition to main memory caching was little effec-
tive since current disk caches are designed for one-level caching (the same pages
were frequently cached in main memory and in the disk cache) and only modified pages
migrated from the main memory buffer to the disk cache. More effective is the use of
an extended database buffer in extended memory directly managed by the DBMS.

rfor-

D can

. SSD

ory

cal-

ity,

om-

sage

cre-

ems,

lo-

oten-

icted

ore),

ther

stores

con-

ory.

trade-

mple

f the

stem

has

mes.

ilize

comes

and

-load

lting

hich

but

tion

der in

can

ting

mes-

ystem

pro-
Non-volatile extended memory supports all three usage forms at the best pe

mance, but at the highest storage cost. The lower cost of disk caches and SS

make the combined use of two or even three of the storage types desirable (e.g

for usage form 1, non-volatile disk caches for usage form 2, and extended mem

for usage form 3).

In this paper, we study the use of shared, non-volatile extended memory in lo

ly distributed transaction systems (all computing systems reside in close proxim

e.g. in the same machine room). The major goal is to improve performance c

pared to loosely-coupled systems that solely communicate by means of mes

passing over a network (communication lines). Since this communication form

ates a high CPU overhead in typical mainframe architectures / operating syst

there is a large potential for improvement. A secondary objective is to simplify g

bal coordination tasks by using shared data structures in the global memory. P

tial disadvantages / problems include the high cost of such a special store, restr

extensibility (limited number of systems that may be connected to the shared st

and reduced failure isolation compared to loosely coupled systems. On the o

hand, message passing over an interconnection network and the use of shared

are not mutually exclusive, since every node in a loosely coupled system could

sist of multiple autonomous processors connected to a shared extended mem

The design and use of such shared stores poses a variety of challenges and

offs. One critical aspect, for instance, is the design of the access interface. A si

page-oriented interface limits the applicability of the store to the usage forms o

central case aiming at an improved I/O behavior. (Such a store called SSU (Sy

Storage Unit) is already offered by Fujitsu since 1990. The SSU is non-volatile,

a capacity of up to 2 gigabytes and can be connected to four Fujitsu mainfra

The transfer rate between main memory and SSU is 300 MB/s.) In order to ut

a shared store for inter-system cooperation, an extended access interface be

necessary that defines which functions are offered by the storage controllers

what must be done by the accessing systems. One approach would be to off

certain database functions (e.g. global locking) to the storage controllers resu

in a comparatively high and specialized access interface. The other extreme w

is more compatible with current extended memory would be to choose a simple

more general interface that leaves most of the processing (including administra

tasks) to system software of the accessing systems. The store that we consi

this paper adheres to the latter philosophy.

If a general access interface is defined, the next question is which functions

benefit in which way by a shared store and which software component (opera

system or subsystem) should implement the function. General functions, e.g.

sage passing via the shared store, should certainly be provided by operating s

(OS) components to make this services available to multiple subsystems and to

enefit

we

ged

(su-

ded

tem

ring

obal

sec-

ting

im-

ore

cou-

pled

ono-

sys-

di-

. As

disks

ove

for

ntire

e CM

GEM

tem

tion

age-

Such

ger,
vide device independence (that is, existing applications and subsystems can b

from a fast device like extended memory without program modifications). As

will see, more specialized usage forms may have to be implemented by privile

subsystems (e.g. the DBMS, TP monitors, etc.) thereby avoiding the overhead

pervisor call) for invoking operating system primitives.

In the next section, we describe the main characteristics of the Global Exten

Memory (GEM) considered in this paper. In section 3, we discuss how inter-sys

communication via GEM may be accomplished. The use of GEM in data sha

systems is outlined in section 4. In particular, we describe new schemes for gl

concurrency control and for creating a global log file. Conclusions appear in

tion 5.

2 Global Extended Memory

We consider a specific store calledGlobal Extended Memory (GEM)which is as-

sumed to be non-volatile and accessible by multiple systems or CMs (compu

modules) as indicated in Fig. 1. Such a coupling of systems is referred to as aclose

couplingwhich aims at combining the advantages of loose and tight coupling. S

ilar to tightly coupled systems, a shared memory (GEM) is used to permit a m

efficient communication and cooperation than with message passing in loosely

pled systems. On the other hand, availability must be better than for tightly cou

systems. As in loosely coupled systems, the individual CMs are therefore aut

mous, i.e. they have their own main memory and separate copies of operating

tem and DBMS to improve failure isolation. In addition, GEM contents cannot

rectly be manipulated in contrast to shared memory in tightly coupled systems

for extended memory in a single system, all data transfers between GEM and

must go through main memory of the connected CMs.

Like in the central case, GEM may be used independently by each CM to impr

I/O performance. For instance, every CM could use a dedicated GEM partition

allocating write buffers, managing an extended database cache or to store e

files. These usage forms can be controlled by system software of the respectiv

(operating system, DBMS) since only one system is accessing the respective

partition.

Apart from these usage forms, GEM should also support efficient inter-sys

cooperation to reduce the communication overhead. A simple form of coopera

is to permit shared access to GEM-resident files; this can be realized with the p

oriented access interface analogous to file sharing in “shared disk” systems.

a support for shared GEM-resident files should be provided by the OS file mana

transparent to the DBMS.

mes-

par-

data

d in

ore

uld

ther

ppli-

eded.

face

sume

ely

read

deal

ould

uld

may

ld ei-

s or to

unit

and

on is

rrent

M

out 20
For further usage forms like managing shared data structures or exchanging

sages via GEM, however, the page-oriented interface is not flexible enough. In

ticular, concurrent GEM accesses by different systems (e.g. to modify shared

structures) must efficiently be synchronized to avoid lost updates. As mentione

the introduction, one possibility to make coordinated use of the GEM is to put m

functionality into the GEM controllers. For data sharing, these controllers co

perform global buffer management, global locking and global logging. On the o

hand, such a design would be incompatible with the central case (and other a

cations than transaction processing) where these special functions are not ne

Furthermore, GEM access times are likely to be higher than with a simple inter

so that synchronous accesses may no longer be feasible. We will therefore as

a low-level interface, similar to current extended memories, resulting in a larg

passive GEM that is managed by software in the connected CMs. Apart from

and write accesses to GEM pages, we require that smaller granules (entries) can

also be read or written from/to GEM, e.g. to realize simple data structures. To

with GEM failures, duplicate data storage in independent GEM storage units sh

be supported (analogous to disk mirroring). Alternatively, a logging scheme co

be used to deal with media (GEM) failures.

Thus the GEM internally consists of multiple page areas and entry areas that

be duplicated if desired. For transaction processing, page areas are used to ho

ther database or log pages. Entry areas are used to store global data structure

exchange (short) messages. The entry size may be defined in multiples of a

size, e.g. a double word. Hence, the main instructions for GEM usage are read

write operations to pages and entries. In addition, a Compare&Swap operati

assumed to be available for the unit entry size in order to synchronize concu

GEM accesses1. This low-level interface promises a simple design of the GE

hardware and fast access times (in performance estimates, we will assume ab

. . .

GEM

M1

. . .

CM1 CM2
M2

CMN
MN

log-files common DB

Fig. 1: Architecture of a data sharing system using a Global Extended Memory

ation

st be

e in

mory

vide

sed

ents

ared

rob-

p in

bal

the

e it

ss the

dis-

ems)

t the

s do

pass-

ory

local

data

nce,

wide

GEM
microseconds per page and about 1 microsecond per unit entry). The administr

of the page and entry areas and their coordinated use by different systems mu

implemented by CM software (OS, DBMS).

In [DIRY89, DDY91], a similar store as the GEM has been considered for us

data sharing systems. They assumed a purely page-oriented intermediate me

managed by a central controller. A central controller was also assumed to pro

global concurrency control with little overhead. A performance evaluation ba

on analytical models is presented that predicts large performance improvem

by such a store. In [DDY91], however, queueing delays for accesses to the sh

buffer (controller) apparently were not considered. They could be a serious p

lem for higher transaction rates since every local buffer miss results in a look-u

the global buffer. In addition, every page modification was written to the glo

buffer at transaction commit also resulting in a very high access frequency to

shared buffer.

3 Communication via GEM

The most general application of a GEM in (locally) distributed systems is to us

for inter-processor communication such that all messages are exchanged acro

GEM. Such a fast communication is a general service that can be utilized for

tributed transaction processing (either in data partitioning or data sharing syst

as well as for other applications. Hence, the operating system should implemen

exchange of messages via GEM. Data partitioning (“shared nothing”) system

not rely on shared system components but coordinate all activities by message

ing. Therefore, in addition to using the GEM for communication extended mem

may only be used within each node as in centralized systems (e.g. for keeping

log files GEM-resident or caching pages from the local database partition). For

sharing, on the other hand, the GEM can be utilized to a larger extent. For insta

GEM entries may be used to implement global data structures, e.g. for system-

concurrency and coherency control. Furthermore, database pages stored in

1. Although we can modify individual double words with the Compare&Swap instruction, GEM
still cannot directly be modified like main memory since the modifications need to be performed
in main memory before they are written back to GEM.

by all

tion

ov-

but

nds of

lined

ulti-

is

and

sages

rge

ld be

com-

ry to

n to

)

ge is

ly,
(either in a shared cache or as part of GEM-resident files) can be accessed

systems. Finally, a global log file can also be constructed in GEM. In this sec

we will discuss how communication via GEM may be realized, while section 4 c

ers the use of GEM in data sharing systems.

In a locally coupled system, the main communication cost is not transfer time

the overhead associated with message passing often requiring tens of thousa

instructions per send or receive operation. To reduce this overhead, stream

protocols tailored to the local case should be used rather than the traditional m

layered protocols for general networks1. One possibility to reduce the overhead

the use of shared memory like GEM for communication. In this case, sending

receiving a message basically encompasses three steps (Fig. 2):

 1.) Write message to GEM

2.) Send interrupt (with GEM location of the message) to receiver CM

3.) Read message from GEM.

The GEM can be used for exchanging messages of arbitrary size. Small mes

may be mapped to GEM entries permitting very short access times, while la

messages can be written into one or more GEM pages. Although step 2 cou

considered as a message transfer by itself, this interrupt is assumed to create

paratively small overhead (e.g. it may be sent by a special instruction).

Apart from the three basic steps, additional administration tasks are necessa

implement a message transfer via GEM. First of all, before a message is writte

GEM in step 1 a message buffer(a sufficiently large number of entries or pages

that can be overwritten must be allocated in GEM. Secondly, while the messa

“in transit” it has to be ensured that it is not overwritten by another CM. Final

1. In fact, there is a controversy about whether or not optimized protocols for the local case should
be supported since hardware (CPU, network) is getting faster at a high rate. However, as long as
the ratio between communication overhead and useful work does not improve, even the fastest
CPUs cannot as effectively be utilized than with streamlined protocols (=> lower throughput).

1 3

2

GEM

Interrupt

Fig. 2: Message transfer via GEM

CM1 CM2

buffer

With

.g.

hile

rm

lobal-

ner.

em-

uni-

tion

the

EM

be

but

ad-

e.

be

er in

m-

The

ap

t in

es-

s the

ting

M en-

less

conds

only

for
after the message has been read by the destination CM in step 3, the message

is to be released.

For administration tasks like these, basically two approaches can be chosen.

a partitioned administration, the GEM space reserved for a particular task (e

buffering of messages) is partitioned so that each CM “owns” one partition. W

a CM may read any GEM partition, only the partition owner is permitted to perfo

write accesses. This has the advantage that write accesses to GEM need not g

ly be coordinated but can be performed under local control of the partition ow

Furthermore, free space information for a partition can be maintained in main m

ory data structures of the owning CM. Thus, the administration tasks for comm

cation can be locally performed except for the acknowledgment by the destina

CM that it has read the message from GEM. This notification is to be send to

partition owner (sender CM) so that it can release the message buffer in its G

partition. The acknowledgment can be sent by an additional interrupt or may

piggy-backed with other messages.

The partitioned approach permits a comparatively simple administration,

may require additional communication to coordinate the shared use of GEM. In

dition, the partitioning generally results in suboptimal utilization of GEM spac

The alternative is to usecentral data structures in GEMfor administration. In order

to allocate and block GEM space for message buffering, a simple bit list can

used that is stored in a number of GEM entries. To allocate a message buff

GEM, this bit list is read by the sender CM into main memory and a sufficient nu

ber of free GEM entries/pages is reserved by setting the corresponding bits.

modified entries of the bit list are written back to GEM with the Compare&Sw

operation. This operation is successful if no other CM has modified the bit lis

the meantime (if the operation fails, the bit list must be read again to allocate a m

sage buffer). After the receiver CM has read the message from GEM, it release

message buffer by resetting the corresponding bits in the bit list. Thus, alloca

and releasing a message buffer results in at least four extra accesses to GE

tries. Still, the fast GEM access times should permit communication delays of

than 100 microseconds even for large messages (1 page) as opposed to millise

needed with conventional protocols. Since message buffers are held in GEM

for short periods of time, comparatively little GEM space should be required

communication.

isk”)

ma-

uch

lobal

ent

oad

the

nize

d sys-

ffect

that

con-

ncy

mu-

hese

nce

y on

be

le)

node

ol in-

ntry

M.

con-

ncur-

tly

tion

er,

s is

ct is

ta-

ons,

gth.

may
4 Use of GEM in Data Sharing Systems

In this section we discuss how GEM can be used in data sharing (“shared d

systems to improve performance for transaction processing. It turns out that all

jor functions critical to performance in data sharing systems can benefit from s

a shared store. We describe simple methods for concurrency control using a g

lock table in GEM and for constructing a global log. In addition, we sketch differ

forms of GEM usage for coherency control, global buffer management and l

control. The GEM usages tailored to data sharing have to be implemented by

DBMS rather than the operating system.

4.1 Concurrency Control
Global concurrency control is obviously necessary for data sharing to synchro

accesses to the shared database and enforce serializability. In loosely couple

tems, the communication overhead for concurrency control can substantially a

overall performance so that it is of paramount importance to find algorithms

reduce the number of remote lock requests as far as possible. (In this paper, we

sider only locking schemes for concurrency control.) An overview of concurre

control protocols for data sharing can be found in [Ra88]. A storage-based com

nication with the GEM as discussed in the previous section could help solve t

problems and limit the communication overhead. This would reduce the importa

of a low number of inter-system communications and therefore the dependenc

the chosen algorithm or workload profile.

Another possibility is to store a global lock table (GLT) in the GEM that can

accessed by all CMs. Information on lock ownerships and waiting (incompatib

lock requests of the entire system has to be stored in this table to permit every

to decide upon whether or not a lock request can be granted. Changing contr

formation in the GLT requires (at least) two GEM accesses: one to read the e

into main memory and another one to write the modified value back to the GE

With GEM access times of a few microseconds, overhead and delay for global

currency control would almost be negligible compared to message-based co

rency control protocols in loosely coupled systems.

The storage of a GLT in GEM is complicated by the fact that GEM is not direc

addressable like main memory. Rather we must map the global lock informa

onto a fixed number of GEM entries of fixed length. Lock information, howev

typically is of variable size since first the number of concurrently locked object

varying, and second the number of granted and waiting lock requests per obje

not limited. Since it is not feasible to reserve a GLT control block for every da

base object, we have to use a hash table of fixed length. To deal with collisi

control blocks of the same hash class must be linked in chains of variable len

Since only one GEM entry can be read at a time, thus multiple GEM accesses

to a

rate

tions

nal

ns), a

To

M

ntrol

by

idual

on is

LT

M.

de

). The

er of

ost

r of

e

. R-

has

list

ort-

re

lock

ient

ined

ol

is

ils,
be needed in order to locate a specific control block. To add a control block

hash class (for which the first entry is already used), a new entry from a sepa

pool can be allocated and linked to the hash class. These and other list opera

are cumbersome to realize with the simple GEM interface and result in additio

GEM accesses. So only in the best case (e.g. for hash classes with no collisio

GLT control block can be read with a single GEM access.

Similar problems would be introduced by control blocks of variable length.

reduce the complexity of the GLT implementation and to limit the number of GE

accesses per lock request, we therefore demand a fixed and short size of co

blocks. This is possible by maintaining a reduced lock information in the GEM

recording lock ownerships/requests on a per-system basis rather than for indiv

transactions. This approach assumes that transaction-specific lock informati

maintained by every CM (DBMS) in a local lock table (LLT) in main memory.

If we distinguish between shared read (R) and exclusive write (X) locks, a G

control block may hold the following information:

object ID;

GRANTED-MODE: array [1.. NMAX] of [0, R, X];

#WE: 0.. 2*NMAX; { current number of wait entries }

GWL: array [1..#WE] of (CM-ID, mode); {global wait list }

NMAX refers to the maximum number of CMs that can be connected to the GE

The vector GRANTED-MODE indicates for every CM the maximum lock mo

granted to a transaction at the respective system (0 stands for no lock granted

waiting information has also been reduced to a fixed size, although the numb

waiting transactions is potentially unlimited. This was possible by storing at m

one waiting lock request per CM and lock mode, reducing the maximum numbe

wait entries to 2*NMAX for two lock modes (R and X). If only the most restrictiv

lock mode for waiting requests were stored, then concurrency could suffer (e.g

locks can now be granted to multiple CMs concurrently even if one of the CMs

requested an X-lock). The request order is also preserved in the global waiting

GWL to support a fair treatment of waiting requests.

The lock information on granted and waiting lock requests is very compact supp

ing short control blocks. For NMAX=4, we merely need 1 B for GRANTED-

MODE, 4 bits for #WE and 3 B for GWL. In addition, 6 B may be required to sto

the object identification and 2 B for the GEM address of a successor control b

of the same hash class. So a total size of 16 B per control block would be suffic

(leaving some space for additional information, e.g. for coherency control).

To process a lock request, the hash class of the respective object is determ

and the control block from that GLT position is read from GEM. If that contr

block is “empty”, the lock can be granted and the newly initialized control block

written back to the GLT with the Compare&Swap operation (if this operation fa

ave

, it

s. If

at-

ble

ns-

only

(e.g.

and

If so,

ree

ct

c-

ile

ted

re-

de.

is a

no-

try

e

ted.
the lock control block must be read and modified again since another CM may h

set an incompatible lock). If there is already a GLT control block for the object

is checked whether the lock request is compatible with already requested lock

so, the lock is granted by updating GRANTED-MODE and writing back the upd

ed control block to GEM. If there are already waiting requests or incompati

locks granted, a wait entry is appended to the global wait list provided a local tra

action has not yet a request waiting for the same lock mode. A lock release

results in a GLT access if the maximum mode of locally granted locks changes

after the last read lock is released). In this case, GRANTED-MODE is updated

it is checked whether there are waiting lock requests that can now be granted.

a message is sent to the respective CMs to activate the waiting transactions.

Fig. 3 illustrates the use of this lock information. The example refers to th

CMs (NMAX=4) and shows lock information in the GLT and the LLTs for obje

O. In the GLT, GRANTED-MODE indicates that an X-lock is granted to a transa

tion at CM3; the LLT of CM3 reveals that transaction T1 is holding this lock. Wh

there are six waiting lock requests in the LLTs, only four of them are represen

in the GLT. So only one X-request from CM1 and one R-request from CM2 is

corded in the GLT since we can have only one wait entry per CM and lock mo

When T1 releases its X-lock on O, CM3 recognizes from the GWL that there

waiting R-request from CM2 that can now be granted. After having received the

tification by CM3, CM2 grants the R-lock to T2 and T4 and updates the GLT en

(GRANTED-MODE := 0R00; #WE := 3; removal of first GWL element). When th

last R-lock is released in CM2, CM1 is informed that its X-request can be gran

O

T3/X

T5/R

T7/X

O

T2/R

T4/R

O

T1/X

T6/R
granted
locks

waiting
lock
requests

CM1 CM2
CM3

4
CM2/R
CM1/X
CM1/R
CM3/R

00X0 GRANTED-MODE
#WE

GWL

global
lock

entries

entries in
local

lock tables

Fig. 3: Lock scenario

L.

ation

t and

hash

CM

two

rite

ction

ck-

di-

PS

lock

Ms

ed ac-

cols

ions

and

t a

f

icant-

more

oke

n X-

m-

MS,

eed-

re-

tive

e.g.

ded

g is

p-

re-
At this point, the second X-request in CM1 (by T7) may be appended to the GW

This deferred propagation of waiting requests to the GLT guarantees that starv

can be avoided despite the use of reduced waiting information in GEM.

The simple lock protocol requires at least two GEM accesses per lock reques

two per lock release resulting in about four to five accesses per lock (assuming

class collisions are rare). The GLT should be duplexed to deal with GEM and

failures (a system crash may leave the GLT in an inconsistent state; keeping

copies of the GLT permits detection of corrupted control blocks). Performing w

operations twice results in two additional GEM accesses per lock. For a transa

with 10 locks, we would have 60 to 70 accesses to GEM entries resulting in a lo

ing delay in the order of merely 100 microseconds. Lock conflicts result in ad

tional overhead in order to activate waiting transactions. A throughput of 1000 T

would cause a GEM utilization of about 6% - 7%.

A further reduction of GEM access rates can be achieved by an extended

protocol where not every lock request is decided with the GLT, but where the C

are authorized to grant and release locks locally. Such a scheme can be realiz

cording to proposals for reducing the number of global lock requests in proto

for loosely coupled systems, e.g. by using so-called read or write authorizat

[Ra88]. A read authorization may be granted to multiple CMs at the same time

authorizes them to grant and releaseread locks locally (i.e. without accessing the

GLT). Similarly, a write authorization which can be assigned to only one CM a

time permits a local synchronization ofread and writelock requests. In the case o

many read accesses or strong locality of reference these extensions can signif

ly reduce the number of GEM accesses, but at the expense of a considerably

complex protocol. Furthermore, additional communication is necessary to rev

the authorizations after another CM has requested an incompatible lock (e.g. a

request requires to revoke all read authorizations).

4.2 Logging
Due to the non-volatility of the GEM and its significantly faster access time co

pared to disks, logging is a prime candidate for use of a GEM. In disk-based DB

the log file is frequently the first bottleneck when higher transaction rates are n

ed since a single disk is limited to about 60 I/Os per second. This bottleneck is

moved with GEM-resident log files supporting thousands of I/Os per second.

The local log files can be held GEM-resident under local control of the respec

CMs. However, data sharing also requires the construction of a global log file (

for disk failure recovery) where the database modifications of all CMs are recor

in chronological order [Ra91a]. In existing data sharing systems, the global lo

mostly constructed by an offline utility that merges the local log files. This a

proach results in significant availability problems since a disk failure cannot be

cal

nt

log

ter-

ach

n a

the

d to

it

tting

d end

are

T

the

this

as-

s.

itting

ies.

ed

after

rit-
covered until the global log has been completed by this utility. Merging the lo

log files on-the-fly reduces this problem but is very difficult to impleme

[MNP90]. We propose a simple method that avoids an explicit merging of local

data. Instead we create the global log directly in GEM by always writing the af

images of a transaction at the current end of the global log. While this appro

would result in a significant throughput bottleneck if the global log were kept o

single shared disk, the fast GEM access times resolve this problem.

Since the global log is constantly growing, we keep only the current tail of

global log in GEM. A dedicated process running in one of the CMs is assume

be responsible for writing the global log data from GEM to disk in order to lim

the tail size. Thus, the log tail is accessed by this writer process and by commi

update transactions. Two special GEM entries are used to mark the begin an

of the log tail:

BLT: 0..GMAX-1; {Begin of log tail}

 ELT: 0..GMAX-1; {End of log tail}

The global log tail is organized as a ring buffer of GMAX page frames that

cyclically overwritten by committing transactions. As indicated in Fig. 4, BL

points to the first log page in GEM that has not yet been written out to disk by

writer process. ELT points to the first page after the last page of the tog tail;

entry is only updated by committing transactions. The length of the log tail can e

ily be computed as shown in Fig. 4. An empty log tail is given if ELT = BLT hold

Similarly, the log tail is full if GMAX-1 pages still have to be written out from

GEM (ELT = BLT - 1).

To coordinate read accesses of the writer process with write accesses of comm

transactions, we can again use a simple bit list (GMAX bits) stored in GEM entr

Commit processing of an update transaction consists of local logging follow

by global logging and release of the locks. Since a transaction is committed

a successful local logging, only modifications of committed transactions are w

log tail

0
 BLT ELT GMAX - 1

of pages in log tail =
ELT - BLT if ELT >= BLT

GMAX + ELT - BLT otherwise{
Fig. 4: Organization of a global log tail in GEM

the

m-

eth-

lobal

een

erved

cked

is is

n to

onds

in-

onds

can
ten to the global lock. Holding the locks during global logging guarantees that

redo data in the global log is written in chronological order. Similar to group co

mit, we can write the global log data (after-images) of multiple transactions tog

er in order to reduce the number of GEM accesses. To write J log pages to the g

log tail, the following procedure is followed:

Only the update operation to the ELT entry needs to be synchronized betw

concurrent transactions. After the ELT update, the pages themselves are res

and can be asynchronously written to GEM. The reserved page frames are blo

against the writer process by setting the corresponding bits in the bit list. Th

necessary to avoid that log pages are written out to disk before they are writte

GEM. Assuming an access time of 1 microsecond per entry and 20 microsec

per page, we yield (7 + J*20) microseconds for global logging. Duplex logging

creases the overhead to (10 + J*40) microseconds, that is about 50 microsec

for one page.

To write the next N pages from the global log tail to disk, the writer process

use the following procedure:

read BLT entry from GEM;
read ELT entry from GEM;
IF (number of free pages < J)
THEN wait {should not occur if GMAX is sufficiently large}
ELSE

ELT := (ELT + J) MOD GMAX;
read bit list from GEM; {entry containing the J relevant bits}
set J bits in bit list;
Compare&Swap (bit list);
Compare&Swap (ELT);
write J log pages to GEM; {from address ELT to (ELT+J-1) MOD GMAX}
read bit list;
reset J bits;
Compare&Swap (bit list);

END IF;

read BLT entry from GEM;
read ELT entry from GEM;
LOOP

IF (log tail empty)
THEN wait
ELSE

read bit list from GEM; {test if pages can be read}
read N pages from the log tail;

 write N pages to disk; {sequential I/O}
 BLT := (BLT + N) MOD GMAX;

Compare&Swap (BLT);
END IF;
read ELT;

END LOOP;

try

log

EM

ory

ing

lock

s in

sec-

age

iting

icro-

d to a

ates.

ase

lobal

very

his

ains a

base.

ther

uffer

ss to

ca-

ent-

the

re-

re,

, irre-

lobal

ain
While the log tail is empty, the writer process periodically reads the ELT en

to check whether new log pages have been written to GEM. For a non-empty

tail, it is first checked whether the next N log pages actually reside already in G

(indicated by a 0-bit in the bit list). If so, these pages are read into main mem

and written to disk. After the disk write, the BLT entry is updated thereby releas

N page frames from the log tail. Note that the writer process does not need to b

pages by setting bits since committing transactions do not overwrite GEM page

the relevant portion of the log tail.

The read accesses by the writer process utilize the GEM by another 20 micro

onds per log page. If we collect the global log data for 5 transactions in one p

on average, 1000 TPS result in 200 pages per second of global log data. Wr

and reading these pages causes a GEM utilization of merely 1.4% (50 + 20 m

seconds per page). Sequential I/O also permits writing 200 pages per secon

single disk, although a bottleneck may here be possible for higher transaction r

This problem can be solved by keeping the global log data for different datab

partitions in separate (smaller) files. In this case, we would have a separate g

log tail in GEM, a separate writer process as well as separate backup disks for e

database partition.

4.3 Support for additional functions

Coherency Control
Coherency control has to deal with the so-called buffer invalidation problem. T

problem is to be addressed in data sharing systems since every node maint

(local) database buffer in main memory to cache pages from the shared data

Thus, modification of a page in one buffer makes all copies of that page in o

buffers (and on disk) obsolete. Coherency control has to make sure that these b

invalidations are either avoided or detected and that all transactions get acce

the current page versions.

Fortunately, it is possible to detect buffer invalidations with no extra communi

tion by using extended lock information (e.g. sequence numbers that are increm

ed for every page modification) [Ra86, Ra88]. If we use a global lock table in

GEM for concurrency control, coherency control can also be accomplished by

cording the additional information for modified pages in this table. Furthermo

modified pages can be exchanged between systems very fast across the GEM

spective of whether we employ message-based concurrency control or use a g

lock table in the GEM.

Caching of database pages in GEM
In addition to a local database buffer (LDB) in each CM, it is desirable to maint

DB,

ce I/

ess.

the

l-

entu-

for

ause

M to

truc-

ded.

but

re-

hes

ction

ain

the

ata

su-

rrent

ors

the

idates

(due

ans-

) or

ro-

etter

vol-

da-

ved by
a global database buffer (GDB) in the GEM. If a page is to be replaced from a L

it is written to the GDB for possible rereferences by any system. This can redu

O overhead and delay for disk reads since every GDB hit avoids a disk acc

Write I/Os benefit from a GDB even more since replacing a modified page from

LDB only incurs a GEM write rather than a disk write. If a page is modified in mu

tiple systems, many modifications can be accumulated per page before it is ev

ally written to disk.

Unfortunately, the administration of a GDB is much more complicated than

a file cache or extended database buffer (EDB) in the central case. This is bec

administration tasks like page replacement and update propagation from GE

disk now have to be coordinated between all systems. In addition, global data s

tures for free place administration and for locating pages in the GDB are nee

In principle, it is possible to solve these problems with data structures in GEM,

the sole use of GEM entries for this purpose results in a difficult and inflexible

alization. A global file cache for data sharing is most easily realized by disk cac

being managed by shared disk controllers.

The use of GEM-resident files, however, is easily possible as discussed in se

2. Similarly, every CM can keep a separate EDB in GEM and control it by m

memory data structures. Buffer invalidations in the EDB can be detected in

same way than obsolete pages in the LDB.

Load Control
To effectively utilize the capacity of a distributed transaction system like a d

sharing complex, it is important to employ dynamic load control policies that

pervise the state of the system and distribute the workload according to cu

state conditions (e.g. CPU utilization or lock ownerships). If multiple process

take part in such a load control, they could maintain global data structures on

system state or routing strategy in the GEM. Message queues are also cand

for storage in the GEM since an additional message logging could be avoided

to the non-volatility of the GEM) and because messages could quickly be tr

ferred between different systems.

5 Conclusions

Non-volatile semiconductor memories like disk caches, solid-state disks (SSD

extended memory can significantly improve I/O performance for transaction p

cessing. They are less expensive than main memory (per MB) and provide b

failure isolation than shared main memory in tightly coupled systems. The non-

atility permits us to eliminate synchronous disk writes by writing log data and

tabase pages to the semiconductor store. Furthermore, disk reads can be sa

r by

local-

ain

than

ple

ded

ems

isk

were

ded

cess

hich

pro-

.

age

rmits

to a

ince

tion

ini-

ms

in

asy

cy)

this

enta-

of

trib-

EM

com-

om-

case

tion

hout
keeping entire database files resident in non-volatile semiconductor memory o

employing a second-level database cache.

Our considerations concentrated on the use of shared extended memory for

ly distributed transaction systems. Extended memory is directly attached to m

memory supporting reduced I/O overhead and significantly faster access times

disks, disk caches or SSD (microseconds instead of milliseconds). While sim

machine instructions are provided for data transfer to/from main memory, exten

memory is largely controlled by software in the operating system or subsyst

like the DBMS. This software control permits a more flexible use than with d

caches and SSD, in particular for distributed systems. Specific usage forms

presented for a special type of extended memory called GEM (Global Exten

Memory). GEM is non-volatile and can be connected to multiple systems. Its ac

interface consists of read and write operations to pages and so-called entries w

may be used to implement global data structures. In addition, operations are

vided for access synchronization (Compare&Swap) and interrupt propagation

In locally distributed systems, GEM may be utilized to implement a fast mess

transfer between systems. Such a storage-based communication not only pe

short communication delays, but may also reduce communication overhead

large extent. A smaller communication overhead facilitates horizontal growth s

a reduced overhead permits a higher effective CPU utilization (higher transac

rates). Furthermore, if remote requests incur little overhead and delay, their m

mization is no longer the overriding design goal. This permits simpler algorith

for global coordination and facilitates load balancing.

Apart from inter-system communication, data sharing systems can utilize GEM

a number of more specific areas. As outlined in section 4, it is comparatively e

to use a global lock table in GEM for system-wide concurrency (and coheren

control and to construct a global log. Compared to loosely coupled systems,

cannot only reduce the number of messages to a large extent, but the implem

tion of these important functions is also simplified. We feel that the availability

shared extended memory like GEM will make the data sharing approach for dis

uted transaction processing very attractive for high-volume applications.

In [BHR90], we have presented a preliminary performance evaluation of G

usage for data sharing systems. The reduced overhead and delay for I/O and

munication was found to significantly improve throughput and response times c

pared to loosely-coupled, disk-based architectures. This was particularly the

for real-life workloads (represented by database traces) for which lock conten

and unbalanced system utilization often were a performance bottleneck wit

GEM.

c-

i-

-

e-

Da-

Pro-
References
[BHR90] Bohn, V.; Härder, T.; Rahm, E.: Extended Memory Support for High Performance Transa

tion Processing.Techn. Report 5/90, Dept. of Comp. Science, Univ. Kaiserslautern, to
appear in: Proc. 6th (German) Conf. on Measurement, Modelling and Evaluation of
Computer Systems, Springer-Verlag, Munich, Sep. 1991.

[CKB89] Cohen, E.I.; King, G.M.; Brady, J.T.: Storage Hierarchies.IBM Systems Journal 28 (1),
62-76, 1989.

[CKKS89] Copeland, G.; Keller, T.; Krishnamurthy, R.; Smith, M.: The Case for Safe RAM. Proc.
15th VLDB, 1989.

[DDY91] Dan, A.; Dias, D.M.; Yu, P.S.: Modelling a Hierarchical Buffer for the Data Sharing Env
ronment. IBM Research Report RC 15707, Proc. ACM SIGMETRICS, 1991

[DIRY89] Dias, D.M.; Iyer, B.R.; Robinson, J.T.; Yu, P.S.: Integrated Concurrency-Coherency Con
trols for Multisystem Data Sharing. IEEE Trans. on Software Engineering 15 (4), 437-
448, 1989.

[Gro85] Grossman, C.P.: Cache-DASD Storage Design for Improving System Performance. IBM
Systems Journal 24 (3/4), 316-334, 1985.

[Gro89] Grossman, C.P.: Evolution of the DASD Storage Control. IBM Systems Journal 28 (2),
196-226, 1989.

[KGP89] Katz, R.H.; Gibson, G.A.; Patterson, D.A.: Disk System Architectures for High Perfor-
mance Computing. Proc. of the IEEE 77 (12), 1842-1858, 1989.

[Ku87] Kull, D.: Busting the I/O Bottleneck. Computer & Communications Decisions, 101-109,
May 1987.

[LR88] Leland, M.D.P.; Roome, W.D.: The Silicon Database Machine: Rationale, Design, and R
sults.in: Database Machines and Knowledge Base Machines, Kitsuregawa, M.; Tana-
ka, H. (eds.), 311-324, 1988 (Proc. 5th Int. Workshop on Database Machines, 1987).

[MNP90] Mohan, C.; Narang, I.; Palmer, J.: A Case Study of Problems in Migrating to Distributed
Computing: Data Base Recovery Using Multiple Logs in the Shared Disks Environment.IBM
Research Report RJ 7343, San Jose, 1990.

[Ra86] Rahm, E.: Primary Copy Synchronization for DB-Sharing. Information Systems 11 (4),
275-286, 1986.

[Ra88] Rahm, E.: Design and Evaluation of Concurrency and Coherency Control Techniques for
tabase Sharing Systems. TR 182/88, Computer Science Dept., Univ. Kaiserslautern,
1988.

[Ra91a] Rahm, E.: Recovery Concepts for Data Sharing Systems.Proc. 21st Int. Symp. on Fault-
Tolerant Computing, Montreal, IEEE Computing Press, 368-375, 1991.

[Ra91b] Rahm, E.: Performance Evaluation of Extended Storage Architectures for Transaction
cessing. Techn. Report, Computer Science Dept., Univ. Kaiserslautern, 1991.

[Ru89] Rubsam, K.G.: MVS Data Services. IBM Systems Journal 28 (1), 151-164, 1989.

[Se90] Selinger, P. G.: The Impact of Hardware on Database Systems..Proc. Int. IBM Symp. "Da-
tabase Systems of the 90s", Lecture Note in Computer Science 466, 316-334, 1990.

[Sm85] Smith, A.J.: Disk Cache - Miss Ratio Analysis and Design Considerations. ACM Trans. on
Computer Systems 3 (3), 161-203, 1985.

	1 Introduction
	2 Global Extended Memory
	3 Communication via GEM
	4 Use of GEM in Data Sharing Systems
	5 Conclusions

