
SFB-Bericht 26/88, SFB 124, University of Kaiserslautern, 1988
Key Concepts of the PRIMA Access System
Andrea Sikeler

University Kaiserslautern

Abstract

PRIMA, as the kernel of a non-standard database management system (NDBMS), is divided into multiple

layers representing different levels of abstraction. The access system is an internal layer implementing

an atom-oriented interface which allows for direct and navigational retrieval as well as manipulation of

single atoms. Different kinds of scan operations support sequential access to either homogeneous or het-

erogeneous atom sets. Some scan operations, however, depend on certain storage structures (namely

access path structures, sort orders, and atom clusters) which introduce redundancy to be maintained by

the access system.

This paper describes the current state of the access system and its embedding into the overall PRIMA

system (especially transaction concept). It gives an overview of our design decisions and of some imple-

mentation aspects.

1. Introduction

The design of PRIMA (prototype implementation of the molecule-atom data model, [Hä87]) is strongly

influenced by the investigation of four different application areas for which we have implemented and

evaluated sizable prototype systems: VLSI circuit design, construction of solids in 3D modeling

[HHLM87], and map handling in geographic information systems as well as diagnostic expert systems

[HMP87]. The observations made during these investigations motivated some important design guide-

lines:

• The data model supported by PRIMA has to be object-oriented in that it allows for the manipulation of

sets of complex objects [BB84, Mi85]. Complex objects have to be constructed dynamically out of ba-

sic objects and relationships among these. All kinds of relationship types, 1:1, 1:n as well as n:m,

should be represented in a direct way thus allowing for symmetric traversal and use of complex ob-

jects.

• PRIMA as the implementation of the data model should support object processing by a variety of stor-

age structures, use of tuning mechanisms, and performance enhancements transparent at the data

model interface. Therefore, a clean break-up of PRIMA into different layers with appropriate tasks is

mandatory.

In the molecule-atom data model (MAD model, [Mi88]), the objects the user has to deal with are called

molecules corresponding to the above mentioned complex objects. Each molecule consists of more

primitive molecules or atoms and belongs to a certain molecule type. This type is defined in terms of its

component types and the relationships among these types (see Fig. 1 for the three generic types of mol-

ecule structures). Each atom is composed of attributes of various types, has an identifier, and belongs

to a corresponding atom type. The atom type is put together by the constituent attribute types to be cho-
69

A

B B C

A

a) hierarchical molecule types

A

B C

D

b) network-like molecule type

A

B

C

c) recursive molecule type

Figure 1: Three generic types of molecule structures
sen from a richer selection than in conventional data models. With respect to molecule management the

most important of these types are the IDENTIFIER type and the REFERENCE type. The IDENTIFIER

type serves as a surrogate [ML83] which allows for the identification of each atom. Based on this IDEN-

TIFIER type it is easy to define the REFERENCE type as a typed reference to another atom of the same

or of different type. However, each reference requires a corresponding back-reference in order to support

symmetric processing. Hence, the REFERENCE type together with the repeating-group type SET can

be used to express all kinds of relationship types between two atom types. The whole set of attribute

types offered by MAD is summarized in Fig. 2. Additionally, MAD supports user-defined keys, in that un-

ambiguity is guaranteed for the corresponding key values.

The MAD query language (or molecule query language, MQL) distinguishes three sublanguages in order

to define and modify a database schema, to manipulate the database contents, and to establish tuning

mechanisms:

• The data definition language (DDL) comprises of means to create or drop an atom type as well as to

expand or shrink an atom type, i.e. to add or remove some attributes, and to rename an atom type.

Additionally, molecule types may be defined and released. Fig. 3 shows a simple example for a MAD

schema and corresponding molecule type definitions.

• The query capabilities of the data manipulation language (DML) allow for vertical access, i.e. retrieving

selected molecules as a whole or parts of them, as well as horizontal access, i.e. retrieving all mole-
70

attribute types description

basic types : BOOLEAN
CHAR (n) fixed length character string
BYTE (n) fixed length byte string
BIT (n) fixed length bit string
INTEGER 2 byte integer
LONGINT 4 byte integer
REAL
TIME (n) timestamp
HULL_DIM (n) rectangular box of dimension n

special types : IDENTIFIER surrogate
REF_TO single reference
CHAR_VAR variable length character string
BYTE_VAR variable length byte string
CODE

composed types : ARRAY of basic type or composed type
RECORD of basic type or composed type

repeating-group types : SET_OF of basic type or reference type or composed type
LIST_OF of basic type or reference type or composed type

Figure 2: Attribute types offered by MAD

Figure 3: Example for the MAD-DDL

A

0..n

0..n 1..n

1..1

1..1

1..1

CREATE ATOM_TYPE A

(a_id : IDENTIFIER,

a1 : INTEGER,

a_to_b : SET_OF (REF_TO (B.b_to_a)) (0, VAR),

a_to_c: : SET_OF (REF_TO (C.c_to_a)) (1, VAR))

CREATE ATOM_TYPE B

(b_id : IDENTIFIER,

b1 : CHAR (3),

b_to_a : SET_OF (REF_TO (A.a_to_b)) (0, VAR))

CREATE ATOM_TYPE C

(c_id : IDENTIFIER,

c1 : BYTE (7),

c_to_a : REF_TO (A. a_to_c),

c_to_d : REF_TO (D. d_to_c))

CREATE ATOM_TYPE D

(d_id : IDENTIFIER,

d1 : CHAR_VAR,

d_to_c : REF_TO (C. c_to_d))

DEFINE MOLECULE_TYPE ABC

FROM A - (B - C)

DEFINE MOLECULE_TYPE ABCD

FROM A - (B, C - D)

a) MAD schema

b) atom type definitions

c) molecule type definitions

B C

D

cules, of a certain type, perhaps satisfying certain selection criteria. Both kinds of queries are illustrat-

ed in Fig. 4 a and b, respectively. The FROM-clause establishes the structure of the desired mole-

cules, in that all essential atom types and the corresponding REFERENCE attributes are named (brief-

ly "-" when unambiguous). The (optional) WHERE-clause restricts the appropriate result set by

evaluating the specified qualification criteria (including quantifiers). The SELECT-clause allows for a

projection either unqualified or qualified. The unqualified projection selects atoms and attributes of the

result molecules on type level, whereas the qualified projection selects atoms and attributes of all re-

sult molecules satisfying an additional condition. Additional features, such as sorting, aggregation, etc.

are also supported. In a similar way to these query capabilities the INSERT, MODIFY, UPDATE, and

DELETE operations of the DML deal with integral molecules as well as with its components (see Fig.

4 c and d). Again, the FROM-clause and WHERE-clause are used to determine the desired mole-

cules, whereas the projection selects the corresponding components (attributes, atoms) to be manip-

ulated.

• The third sublanguage is the load definition language (LDL) used by the database administrator to en-

hance performance. This language comprises of means to define or release various types of storage

structures:

- several access methods for one or more attributes permitting multidimensional access

- (vertical) partitioning of atoms to improve clustering of frequently accessed attributes

- sort orders to speed up sequential processing according to a given sort criterion

- "physical clusters", called static molecules, to provide physical contiguity for atoms belonging to

frequently requested molecules.

However, the MAD model itself, i.e. the DML, makes no reference to these storage structures.

Based on this short description of the MAD model and its transparent support by additional tuning mech-

anisms, the following chapter gives an overview of the concepts and ideas used in PRIMA for its imple-
71

SELECT A, B, C, D := SELECT D

FROM RESULT

WHERE D.d1 = ’example’

FROM A - (B, C - D)

WHERE A.a1 = 4711

a) vertical access combined with a qualified projection

SELECT ALL

FROM C

b) horizontal access (the most simple case)

c) insertion

d) modification

Figure 4: Examples for the MAD-DML

INSERT A.a1 := 1024

A.a_to_b := VALUE (SELECT B.b_id

FROM B

WHERE B.b1 = ’ex ’)

FROM A

UPDATE D.d1 := ’modified’

FROM D

WHERE D.d1 = ’example’
mentation only as far as they are necessary for the comprehension of a detailed description of the access

system. Subsequently, a basic version of the access system is described (chapter 3). This version offers

all concepts needed for the support of the MAD query language. Optimizing of query evaluation, howev-

er, is not well enough supported. Therefore, additional storage structures (access path structures, sort

orders, atom-cluster types, and partitions) are introduced in order to support efficient query processing

(chapter 4). According to these additional storage structures, the access system has to cope with redun-

dancy (chapter 5). Dynamic aspects, i.e. the transaction concept, will be shortly discussed in chapter 6,

whereas chapter 7 addresses the current state of the implementation. The paper concludes with a short

summary and an outlook as to current and future work.

2. The PRIMA Architecture

PRIMA is divided into multiple layers representing different levels of abstraction (Fig. 5). Each of these

layers makes available at its interface a number of objects and operations fulfilling certain requirements

of the non-standard applications needed at the chosen level of abstraction:

• The DBS-kernel, i.e. the data system as the highest layer, makes available at its interface the mole-

cule-atom data model which we have described in the introduction.

• The interface of the access system is atom-oriented. Its expressiveness is similar to the interface of

the Research Storage System (RSS, [As81]) of SYSTEM R [As76].

• The storage system implements a set of "infinite" linear address spaces which allow for virtual ad-

dressing by the higher layers. Hence, the storage system of PRIMA represents a lower level of ab-
72

user interface
application-oriented

data model interface
molecule-set-oriented,
object-oriented

storage structures
atom-oriented

page allocation structures
page-set-oriented

disc accesses

external devices

molecules

atoms

segments, pages,

page sets
storage system

access system

data system

application layer

P

R

I

M

A

Figure 5: Architecture of a non-standard database system

physical records
straction than RSS [As81], the Wisconsin Storage System [Ch85] or the Storage System of the DAS-

DBS [DPS86].

In the following sections, the data system and the storage system are described in more detail, whereas

the access system is treated throughout the rest of the paper.

2.1 The Data System

The main task of the data system [Sch88] is to transform the molecule-set oriented MQL interface into

lower level programs as well as their subsequent execution. This is done by first transforming the user-

submitted MQL statements into valid, semantically equivalent, but not necessarily optimal query evalua-

tion plans (QEP). These are stored within so-called access modules (compilation phase). In an optimi-

zation phase, these QEPs are rearranged according to different heuristics in order to speed up their pro-

cessing. Subsequently, these QEPs are evaluated yielding the desired result (evaluation phase). Thus,

compilation and optimization are separated from execution, allowing for repeated execution without re-

peated compilation. This is an important aspect with respect to the execution of DML statements which

are expected to be used more than once, since they are normally embedded in application programs.

A QEP consists of an operator tree describing the execution sequence within the data system. In the

case of DDL or LDL statements, the operator tree is simple: Description information is generated and

stored using the meta-data system (MDS [We87]), and the access system is invoked to establish the cor-

responding storage structure. Considering DML statements, however, the operator tree may become

rather complex.

The compilation phase first checks the syntactical correctness of the retrieval statement. Following this,

a couple of query transformation steps (e.g. macro expansion, molecule-structure simplification, etc.) is

performed in order to achieve standardization and simplification of the queries to be dealt with. The

nodes of the resulting QEP may be divided into two classes. The leaf nodes are used to construct the

molecules, whereas the inner nodes operate on the derived molecules (projection, recursion, aggrega-

tion, etc.). Thus, only leaf nodes invoke the access system in order to retrieve the desired atoms. Leaf

nodes are always of the type "construction of simple molecules", i.e. they deliver simple molecules of a

non-recursive, hierarchical structure, according to a query of the following form:
73

SELECT <unqualified projection> <optionally: order specification>

FROM <one non-recursive, hierarchical molecule type>

WHERE <molecule qualification>

In the optimization phase, the resulting QEP is first rearranged guided by a set of rules and heuristics

leading to an improved QEP. Subsequently, evaluation strategies are chosen for the different nodes, e.g.

nested loop or merging scan join. For the "construction of simple molecules", for example, the most ob-

vious strategy (called "top down") is to call the root atom first (since exactly one root atom is present in

each molecule). Starting with this root atom all children, grandchildren and so on may be called, termi-

nating after all leaves of the molecule structure are reached. Calling children means performing the hier-

archical join which is supported by attributes of the REFERENCE type. However, sometimes a "bottom

up" strategy might be more efficient, i.e. starting with a child atom, executing the hierarchical join in the

direction of the root atom, and constructing the whole molecule as in the "top down" approach. However,

the strategy, which should be chosen, strongly depends on the existing storage structures and on the

operations allowed for these structures. Thus, the optimization phase also determines the storage struc-

tures to be used for the "construction of simple molecules".

During the execution phase, the QEP operator tree is interpreted node by node, in that an agent (e.g. a

process or a procedure) is provided for each operator type executing the operator's computation.

2.2 The Storage System

The storage system [Si88] as the lowest layer of PRIMA pursues two major tasks: It manages the data-

base buffer and organizes the external storage devices, thus being responsible for the data exchange

between main storage and disk storage. By managing the database buffer, it provides a number of "infi-

nite" linear address spaces with visible page boundaries. Therefore, the database is divided into various

segments consisting of a set of logically ordered pages. All pages of a segment are of equal size, which

can be chosen to be 1/2, 1, 2, 4, or 8 kbytes and which is kept fixed during the lifetime of a segment.

Segments are dynamic in that the segment-internal free place administration, which is integrated into the

storage system, automatically allocates new pages when space is required which cannot be satisfied by

existing pages. Similarly, the FPA automatically deletes empty pages when they reside at the end of the

segment. Otherwise, empty pages are reused as soon as possible when space is required.

Hence, two different page types are distinguished within a segment. FPA pages, used only for free place

administration, are managed by the storage system. Therefore, they are not visible outside the storage

system. Data pages, however, are used by the access system to map the different storage structures.

They are requested by the FIX-PAGE operator indicating whether the page is needed for read or write

purposes and they are released by the UNFIX-PAGE operator indicating whether or not the page has

actually been modified.

The five page sizes, however, are not sufficient with respect to the mapping process performed by the

access system. The restriction to a certain page size, even 8 kbytes, is too stringent, especially regarding

arbitrary length objects which may grow up to some Mbytes. Therefore, page sequences are introduced

as predefined page sets supported by physical clustering. A page sequence is a set of logical consecu-

tive pages of a segment which contain (from the viewpoint of the access system) one single object span-

ning these pages [DPS86]. A page sequence consists of a so-called header page and one or more com-

ponent pages. Page sequences are dynamic since component pages may be added and removed arbi-

trarily depending on the current length of an object. Requesting a page sequence (FIX-PAGE-

SEQUENCE operator) causes the storage system to fix all pages in the database buffer belonging to that
74

page sequence. These pages, however, are distributed over the buffer, i.e. the page sequence does not

build one contiguous linear address space within the buffer, and the access system must be aware of the

page boundaries. Correspondingly, the UNFIX-PAGE-SEQUENCE operator releases the whole page

sequence, indicating for each page whether or not it has actually been modified.

Additionally, the storage system offers three operators to handle not only such predefined page sets but

also arbitrary page sets. The (UN)FIX-PAGE-SET operator is just a shorthand for a number of subse-

quent (UN)FIX-PAGE/(UN)FIX-PAGE-SEQUENCE operators. In other words, all specified pages and

page sequences are fixed (unfixed) in the buffer. On the other hand, the FIX-ONE-PAGE operator sup-

ports access to replicated data fixing only one of the specified pages or page sequences, selecting that

page or page sequence with minimum cost, i.e. the storage system performs a "page contest" along cer-

tain selection criteria (e.g. "already in buffer", page size, lock conflicts).

Fig. 6 summarizes the operations offered by the storage system.

3. The Basic Version of the Access System

Although the access system supports quite different storage structures, most of these structures are in-

tended to increase performance. Therefore, a basic version of the access system, comprising means to

support data definition, update, and "simple" retrieval, is sufficient in order to guarantee the functional

behaviour of MQL. However, before we go into particulars concerning these operations, we first describe

the mapping of atoms onto the different "containers" offered by the storage system.

3.1 The Mapping of Atom Types and Atoms

In the basic version of the access system, each atom type is assigned to a single segment which includes

all atoms of the corresponding type. This decision essentially simplifies some of the operations, especial-

ly deleting an atom type, although it is also possible to store atoms of different types in the same segment

(or even in the same page) due to the addressing concept described in section 5.1.

Atoms are initially mapped onto so-called physical records. A physical record is a byte string of variable

length, which represents, in the case of the basic version of the access system, exactly one atom (in con-

trast to other storage structures, where physical records represent either a part of an atom or a set of

atoms, see chapter 4). The composition of a physical record considers two important aspects:

1. When inserting an atom, values may be assigned either to all or only to a few selected attributes.

2. Shrinking an atom type happens in a deferred manner, i.e. there may exist physical records which

still contain deleted attributes.

Therefore, a physical record is composed of an administration part and a data part (Fig. 7):

• The first entry of each physical record corresponds to the value of the IDENTIFIER attribute of the ap-

propriate atom. Since this value is unique, it is used to locate a physical record within a segment, i.e.

within a page.

• The second entry delivers the total length of the physical record (administration part as well as data

part). This entry is restricted to 4 bytes, so that the maximum length of a physical record is 232-1 bytes.
75

operation description

INIT_SEGMENT

DELETE_SEGMENT

GET_FREE_PLACE

MODIFY_FPA

INCREMENT_FPA

DECREMENT_FPA

creates a new segment, generates an appropriate number of empty pages and initializes the

segment-internal FPA.

deletes a segment

determines a set of pages which together satisfy the requested free place, perhaps allocates

new pages, and delivers the corresponding page numbers.

modify the FPA entry of a page by either overwriting or altering the existing value.

FIX_PAGE

UNFIX_PAGE

locates a page in the database buffer

releases a page

FIX_PAGE_SEQUENCE

UNFIX_PAGE_SEQUENCE

locates a page sequence in the database buffer

releases a page sequence

FIX_PAGE_SET

UNFIX_PAGE_SET

FIX_ONE_PAGE

locates a number of pages and/or page sequences

releases a number of pages and/or page sequences

locates a page or a page sequence out of a number of pages and/or page sequences

Figure 6: Operations offered by the storage system
• The third entry encodes the state of the physical record with respect to a not yet finished shrink oper-

ation.

• The fourth entry consists of a variable length bitmap and a leading length field (4 byte). This bitmap

indicates for each attribute whether or not a corresponding value exists. Hence, the absence of an

attribute value is represented indirectly by a NULL bit instead of an explicit NULL value. As a conse-

quence, expanding an atom type requires expanding the bitmap of each physical record belonging to

the corresponding atom type. However, this is also done in a deferred manner, i.e. the bitmap is mod-

ified along with the next update operation on the atom. Thus, read access to a bit, i.e. attribute, behind

the bitmap is interpreted as NULL bit.

These four entries form the administration part, whereas the fifth entry contains the primary data, i.e. the

attribute values. Attribute values are stored without an identification code of the appropriate attribute, al-

though such a code would allow for more flexibility in arranging attribute values. Such a code, however,

would also require additional storage thus leading to fairly large overhead especially in the case of small

attribute values. Therefore, the arrangement of attribute values within a physical record of a certain atom

type is determined by description information available from the MDS.

The way attribute values are stored depends on their attribute type. For this purpose, the attribute types

supported by MAD (Fig. 2) are divided into three groups:

• Group 1 comprises of all attribute types of fixed length, i.e. all basic types, composed types (all com-

ponents have to be of fixed length) as well as the special types IDENTIFIER and REF_TO. Appropri-

ate attribute values are stored without additional information as a byte string of fixed length depending

on the attribute type. The corresponding length information is derived from the MDS.

• Group 2 are the special types except IDENTIFIER and REF_TO. They are stored with a leading length

field of 4 bytes indicating the current length (in byte). Hence, attribute values are restricted to a max-

imum length of 232-1 bytes.
76

IDENTIFIER length state bitmap attribute valueslength

5 byte 4 byte 1 byte variable length variable length

administration part data part

Figure 7: Structure of a physical record
• Group 3 includes the repeating-group types. They are also stored with a leading length field of 4 bytes

indicating now the current number of elements. The length of a single element, however, is derived

from the MDS, since the element type has to correspond to an attribute type of group 1.

Physical records are, in turn, mapped onto pages and page sequences according to their current length.

This means, if a record goes beyond the page size of the segment assigned to the corresponding atom

type, this record is mapped onto a page sequence. Otherwise, the record is mapped onto a page. Within

a page sequence only one record is stored, whereas within a page multiple records may be stored sub-

sequently without intermediate space. As a consequence, modifying a record may cause movement of

other records within the page. However, only the record to be modified may move to another page or

page sequence.

In order to locate a physical record, a physical address indicating the appropriate segment and page or

page sequence is assigned to each physical record. However, this physical address cannot be used as

IDENTIFIER value, since with respect to the additional storage structures multiple physical records may

be assigned to a single atom. Therefore, we use a special address structure maintaining all physical ad-

dresses assigned to an IDENTIFIER value. The organization of this address structure will be described

in section 5.1 in more detail. However, for the following description of the operations offered by the basic

version of the access system it is sufficient to know that such an address structure exists.

3.2 The Interface

As already mentioned, the basic version of the access system comprises of means to support data def-

inition, update, and "simple" retrieval. The data definition operations directly correspond to appropriate

atom-oriented MQL-DDL statements, whereas the update and retrieval operations, in contrast to MQL-

DML statements, are restricted to a single atom.

Data Definition

The creation of a new atom type requires little effort within the access system. A new segment as well

as a corresponding address structure are initialized. User-defined keys, however, raise some problems.

The overhead to check for duplicates may become enormous without appropriate access path struc-

tures, such as B-trees, allowing for fast value-dependent access. Therefore, an access path structure

should be initialized for each user-defined key. This, however, is only possible when the current config-

uration of the access system includes appropriate components implementing the desired structures (see

chapter 4). Information about these access path structures are stored in the MDS.

In order to delete an atom type, the appropriate segment and address structure as well as all dependent

storage structures are deleted.

Both expanding and shrinking an atom type are processed in a deferred manner. While expanding an

atom type it is sufficient to defer the adjustment of the bitmap till the next update operation on an atom.
77

While shrinking an atom type, however, it appears useful, due to storage utilization, to initialize a process

performing the required updates subsequently on each atom instead of waiting for the next update oper-

ation on an atom. To indicate a running shrink operation the state information maintained by the MDS is

altered. As a consequence, it has to be checked for each access to a physical record whether the state

information stored within the physical record corresponds to this state information. If not, the record still

contains the deleted attributes. However, only one shrink operation may run in parallel since the state

information only encodes two states.

Update

Update operations are restricted to single atoms identified by their logical address. This logical address

corresponds, as already mentioned, to the IDENTIFIER attribute of an atom. The appropriate value is

assigned by the access system when the atom is inserted and it is released when the atom is deleted.

Modification of a logical address, i.e. of the IDENTIFIER attribute, is not allowed.

When inserting an atom (INSERT_ATOM operation) values may be assigned to all or only selected at-

tributes. The access system has to check whether or not values are assigned to all attributes belonging

to a user-defined key and whether or not the corresponding values are unique. Hence, either the above

mentioned access path structures are utilized, if such structures or the appropriate access path compo-

nents exist, or all atoms of the atom type are searched sequentially. Additionally, for each REFERENCE

attribute it has to be checked whether or not the referenced atoms exist. For this purpose, the address

structure of the referenced atom types is used. Afterwards, the logical address is determined and the cor-

responding physical record is constructed and stored either in a page or a page sequence.

Accordingly, it is allowed to modify single attribute values within an atom, either as a whole or selected

parts, depending on the corresponding attribute type (MODIFY_ATOM operation). The latter holds for

structured types (i.e. ARRAY and RECORD) as well as for the repeating-group types (i.e. SET and LIST).

Concerning the structured types, the appropriate part is specified by an offset and a length, whereas in

the case of the repeating-group types special operations exist which enable the modification of single

elements (Fig. 8). If these elements are of type ARRAY or RECORD, offset and length may be specified

additionally. Again the access system has to check for user defined keys and REFERENCE attributes

before the corresponding physical record is modified. If the size of a physical record changes due to the

modification, other records within the same page have to be rearranged. Moreover, the record itself has

to be stored in another page or even in a page sequence if it no longer fits in its original page.

Deleting an atom is quite simple (DELETE_ATOM operation). The corresponding physical record is

erased and the other records within the same page are rearranged. The logical address assigned to a

deleted atom may be reused when a new atom is inserted.

Performing any update operation, the access system is responsible for the automatic maintenance of the

referential integrity defined by the REFERENCE attributes (system-enforced integrity). Therefore, each

update operation on a REFERENCE attribute includes implicit update operations on other atoms to ad-

just the appropriate back REFERENCE attributes.

Moreover, each update operation requires maintenance of all additional storage structures defined for

the corresponding atom type. The actions to be performed, however, will be described in chapter 4, sep-

arately for each storage structure.

Retrieval

Retrieval operations of the basic version of the access system include direct access to a single atom

identified by its logical address, as well as sequential access to all atoms of a certain type, either in sys-
78

tem-defined order or sorted following a certain sort criterion. In accordance to the update operations, it

is possible to read an atom as a whole or to select single attribute values. Again offset and length for

structured types and special operations (Fig. 8) for repeating-group types may be specified in order to

project parts of an attribute.

When directly accessing an atom (READ_ATOM operation), the address structure of the appropriate

atom type is utilized to determine all physical addresses assigned to the corresponding logical address.

These physical addresses are passed to the storage system by a FIX_ONE_PAGE operation. Thus, the

storage system delivers a page or a page sequence which contains one of the physical records assigned

to the requested atom. This physical record has to be interpreted according to the underlying storage

structure (see chapter 4) in order to return the atom in a form described by the so-called projection list.

The projection list determines the (parts of the) attributes to be retrieved as well as the ordering of the

attributes within the result atom.

Sequential access requires an OPEN_SCAN operation which defines the characteristics of the result set

of the appropriate scan, subsequent READ_NEXT operations in order to retrieve the atoms of the result

set step by step, and a CLOSE_SCAN operation which explicitly ends the scan. The characteristics of

the result set are determined by different parameters depending on the corresponding scan type, i.e.

atom type scan or sort scan. Again a projection list describes the desired attributes as well as their or-

dering within a result atom. A simple search argument (SSA) restricts the result set to atoms satisfying

the specified condition. A sort criterion defines the sequence in which the atoms of the result set are de-

livered by subsequent READ_NEXT operations. Additionally, a start/stop condition may limit the result

set to a certain range within the sort sequence defined by the sort criterion. However, specifying a sort

criterion and an additional start/stop condition is restricted to a sort scan, whereas specifying a projection

list as well as an SSA is allowed for both atom-type scan and sort scan.

An atom-type scan is performed by scanning the address structure of the corresponding atom type in

order to obtain all logical addresses eventually. In accordance to the READ_ATOM operation, for each

logical address all physical addresses are passed to the storage system which delivers a single page or

page sequence containing an appropriate physical record. It is checked whether or not the physical

record satisfies the specified SSA. If not, the next logical address is treated. Otherwise, the result atom

is built up according to the projection list.

A sort scan, however, requires much more effort within the access system. All atoms of the appropriate

atom type have to be sorted according to the specified sort criterion. Simultaneously, the SSA as well as

the start/stop condition have to be evaluated. The result set has to be successively processed by subse-

quent READ_NEXT operations. Therefore, it is stored in a segment which has to be deleted at the end

of the scan. More information about sorting is given in chapter 4.

All operations offered by the basic version of the access system as well as the corresponding parameters

are summarized in the appendix.

3.3 Parameter Formats

In order to avoid multiple copying of data within the different layers, the data exchange format between

the access system and the data system is strongly influenced by the internal representation of an atom

used in the data system. This internal representation consists of a pointer array which includes an entry

for each attribute present in the corresponding atom. These entries point to the appropriate attribute val-

ues which may be located anywhere. This means, the result of a retrieval operation is an atom structured

in the described way (moreover, the pointer array and the desired attribute values are clustered (Fig. 9)).
79

operation

position

count_list

read_elements

read_list

insert_elements

change_elements

replace_list

delete_elements

delete_list

description

determines first position of an element within the list

counts the number of elements

reads one or more elements of the list

reads all elements of the list

inserts one or more elements to the list

exchanges one or more elements of the list by one or more new elements

replaces the whole list by a new one

deletes one or more elements of the list

deletes the whole list

operation

check_element

count_set

read_set

insert_value

replace_set

delete_value

delete_set

description

checks whether or not a set contains a value

counts the number of values

reads the whole set

adds a new value to the set

replaces the whole set by a new one

removes a value from the set

deletes the whole set

a) LIST operations

b) SET operations

Figure 8: LIST and SET operations
However, this also means in the case of an update operation (insert or modify), the attributes to be in-

serted or modified are delivered in the same way.

As a consequence, we need an additional parameter which allows for the interpretation of the corre-

sponding data. In the case of retrieval, the projection list determines which attributes have to be retrieved

and how these attributes have to be arranged within the result atom. For this purpose, the projection list

consists of multiple entries (Fig. 9) describing a single attribute value by a number of different specifica-

tions:

• Length encodes the total length either of the appropriate attribute or of a single element for attributes

of type LIST or SET.

• Offset and offset_length specify the desired part of an attribute or element of type ARRAY or

RECORD.

• List/set operation defines the retrieval operation to be performed on an attribute of type LIST or SET

(Fig. 8). Additional parameters of this operation are specified using number of elements and position.

The sequence of these entries within the projection list, however, defines the arrangement of the corre-

sponding attribute values within the result atom. In the same way, the projection list is utilized to describe

the input data on an update operation, i.e. offset and offset_length specify the part of an attribute or ele-

ment to be modified and list/set operation defines an update operation on an attribute of type LIST or

SET (Fig. 8).

An SSA as well as a start/stop condition consists of an operator tree describing the expression to be eval-

uated and a descriptor list specifying the attributes for which the expression has to be evaluated. The
80

evaluation of an expression itself is performed by a separate component to which the operator tree as

well as the appropriate attribute values have to be passed.

The sort criterion defines the sort attributes. If more than one attribute is specified, the atoms are sorted

on the basis of the first attribute, and within each of these values on the basis of the second attribute,

and so on. Hence, for each attribute a sort order, either ascending or descending, may be defined.

3.4 Meta-Data System

As already mentioned, we utilize a special component called meta-data system (MDS) in order to main-

tain the description information needed throughout the mapping process within the data system and the

access system. This MDS may be compared, with respect to both functional behaviour (objects and op-

erations) and internal mapping mechanisms, to the basic version of the access system, i.e. it maintains

record-oriented structures representing meta-data.

The data definition operations offered by the MDS allow for the interactive definition, retrieval, modifica-

tion, and deletion of the so-called meta-schema (Fig. 10). The meta-schema defines the description in-

formation by means of meta-data types (which corresponds to atom types) and relationships among

these types. In contrast to the access system, however, the number of attribute types are restricted to

IDENTIFIER, REFERENCE, and BYTE string. Fig. 11 shows the currently used meta-schema. This

meta-schema only consists of the meta-data types which are needed by the currently implemented com-

ponents of PRIMA. New components such as the extensions of the access system described in the next

chapter, however, may require additional meta-data types. Therefore, it is important that an existing

meta-schema is kept extensible.

In order to store information about the meta-data types themselves, the MDS utilizes a "basic schema"

which is directly mapped onto segments and pages (Fig. 12). This basic schema has to be interpreted

throughout each MDS operation. Therefore, it is a critical point regarding the overall system performance.

First experiences have already proven that we should redesign the MDS with respect to this, since meta-

data access is too slow.

The data manipulation operations (Fig. 10) offered by the MDS are utilized by all PRIMA components in

order to insert, read, modify, and delete meta-data, i.e. description information. As in the case of the ac-

cess system, the MDS offers a record-oriented interface which only allows for direct and navigational re-

trieval and manipulation of single meta-data records. Moreover, the MDS does not support a sort scan

or even SSAs.

4. Extensions to the Access System

Whereas the design of the basic version of the access system (except the sort scan) is completed and a

first prototype is already running, the extensions described in this chapter are still in the design phase.

4.1 Access Path Structures

Access path structures provide appropriate means for fast value-dependent access to records, i.e. at-

oms, of a certain type. However, depending on different characteristics of the access pattern one access
81

atom_type role # attributes attribute description attribute description

attribute description = RECORD
attribute identifier
length
offset
offset_length
list/set operation
number of elements
position

END

atom header attribute
value

attribute
value

attribute
value................

a) projection list - attribute description

b) data exchange format - attribute values

Figure 9: Parameter formats
path structure may be more efficient than another one. Therefore, multiple access path structures should

be supported by the access system with regard to the following access pattern:

• exact match as well as exact range queries for a single attribute,

• exact match, partial match, exact range, and partial range queries for multiple attributes,

• spatial access as well as temporal access.

For each of these access patterns (except temporal access) a broad variety of access path structures is

described in the literature [Be79, BF74, BM72, CF81, Fr83, Gu84, NHS84, Ta81, Ya84]. We have put in

some effort in order to compare these structures in an appropriate way [Si85], and we have decided to

utilize the following access path structures:

• B-tree [BM72] for single attribute access,

• grid file [NHS84] for multiple attribute access,

• R-tree [Gu84] for spatial access,

• no special structure for temporal access.

In both tree structures references to the appropriate atoms are maintained. These references correspond

to the logical addresses of the atoms. As a consequence, an additional access to the address structure

is required in order to obtain the corresponding physical addresses. However, the access path structures

are isolated from the redundancy introduced by the different extensions of the access system. Moreover,

moving a physical record does not affect any access path structure. On the other hand, the two-disk-ac-

cess principle is an important characteristic of the grid file structure. Therefore, a grid file directly main-

tains physical records, although maintenance of logical addresses should be possible. As a result, re-

dundancy is introduced the first time, since multiple grid files may be defined for a single atom type.

An access path structure is constructed either on behalf of the database administrator (DBA) issuing a

DEFINE_ACCESS_PATH operation or during a CREATE_ATOM_TYPE operation in order to support

checking of user-defined keys. In either cases the corresponding access path structure is determined by

the access system according to the following criteria:
82

data definition: CREATE_META_DATA_TYPE
READ_META_DATA_TYPE
MODIFY_META_DATA_TYPE
DELETE_META_DATA_TYPE

data manipulation: INSERT_META_DATA
READ_META_DATA
MODIFY_META_DATA
DELETE_META_DATA
OPEN_SCAN
READ_NEXT
CLOSE_SCAN

Figure 10: Operations of the MDS
• Use a B-tree for a single attribute of a basic type (Fig. 2).

• Use a grid file for multiple attributes each of a basic type.

• Use a R-tree for a single attribute of type HULL.

This means, the access system only supports value-dependent access to a few selected attribute types,

whereas value-dependent access to complex attribute types (such as SET or LIST) has to be performed

by the data system.

Analogously, access path structures are deleted on behalf of a RELEASE_ACCESS_PATH operation,

during a DELETE_ATOM_TYPE operation for the appropriate atom type, or when removing a corre-

sponding attribute by a SHRINK_ATOM_TYPE operation.

We have decided to provide a uniform access path scan for all access path structures supported by the

access system. Thus, any access path structure may be added or removed without affecting the data

system (except the query optimizer). As a consequence, the access path scan itself becomes more com-

plex. Start/stop conditions and directions may be specified individually for every attribute or even for ev-

ery dimension of the spatial HULL attribute, thus extending the OPEN_SCAN operation.

In the case of the update operations, the access path structures have to be maintained in an appropriate

way, i.e. inserting, modifying, or deleting an access path entry (in the tree structures) or a physical record

(in the grid file).

4.2 Sort Orders

A sort scan is expected to be a rather frequent operation, since sorting is required with respect to the

ORDER_BY clause of the SELECT statement, and moreover sorting considerably speeds up internal

processing of the data system, for example when performing a merging-scan join. However, sorting an

entire atom type, repeatedly for each sort scan, is expensive and time consuming. Therefore, a sort scan

may be supported by a redundant storage structure, the sort order.

A sort order is generated on behalf of the DBA (DEFINE_SORT_ORDER operation), whereas it is delet-

ed either on behalf of the DBA (RELEASE_SORT_ORDER operation) or when the appropriate atom type

is deleted (DELETE_ATOM_TYPE operation).

The storage structure generated for a sort order consists of a sorted list of physical records, one for each

atom of the corresponding atom type. Initially, these physical records are stored in subsequent pages

according to the sort criterion. Update operations, however, would require a reorganization of the whole

structure. Therefore, the corresponding pages are chained. As a consequence, physical records may be

added or removed at arbitrary points as pages are split or merged.

Sorting itself is performed in a straight-forward manner. This means, starting with an empty sort order an

atom-type scan is initialized and each atom, i.e. physical record, delivered by the scan is successively
83

m

n

1

ATOM_TYPE identifier
external_name
state
update
.....

MOLECULE_TYPE identifier
external_name
query
.....

ACCESS_MODULE

KEYS

SIMPLE_STRUCTURE

m

n

m

n

1

n

n

m

n

1

n

Figure 11: Current meta-schema

ATTRIBUTE identifier
external_name
data type
length
.....
inserted into the sort order at the appropriate point. This procedure, however, is rather inefficient. There-

fore, different sort techniques (such as quicksort, [Hä77]) have to be investigated with respect to their

applicability in the access system. Moreover, the extent in which existing access path structures or sort

orders may be utilized has to be considered.

4.3 Atom-Cluster Types and Atom Clusters

The concept of atom clusters has been introduced in order to speed up construction of frequently used

molecules, by allocating all atoms of a corresponding molecule in physical contiguity. Atom clusters, how-

ever, are restricted to simple molecules of a non-recursive, hierarchical structure according to a query of

the following form:

SELECT ALL

FROM <one non-recursive, hierarchical molecule type>

Such an atom cluster corresponds either to a heterogeneous or to a homogenous atom set described by

a so-called characteristic atom. This characteristic atom simply contains references to all atoms, grouped

by atom types, belonging to the atom cluster (Fig. 13a). Each atom cluster is mapped onto one physical

record containing the characteristic atom as well as all atoms referenced by the corresponding charac-

teristic atom (Fig. 13b). The physical record is, in turn, mapped onto a page or a page sequence depend-

ing on its current length. Thereby, the mapping of a physical record onto a page sequence is performed
84

meta-data type descriptions
attribute descriptions

for the first meta-data type

attribute descriptions

for the n-th meta-data type

attribute descriptions

for the second meta-data type
.....

page 1 page 2 page 3 page n+1

meta-data type descriptions = ARRAY [1 .. max_number] of RECORD
identifier
name
page containing the corresponding attribute descriptions
segment containing the corresponding meta-data records

END

attribute descriptions = ARRAY [1 .. number_of_attributes] of RECORD
identifier
name
data type

END

Figure 12: "Basic schema" of the MDS
as follows (Fig. 13c): All atoms of a single atom type are placed into a subrecord. All subrecords are sub-

sequently mapped onto pages. If a subrecord exceeds the free space available within a page, a new

page is allocated. If a subrecord requires multiple pages, these pages are exclusively used by the sub-

record. However, in order to locate an atom within an atom cluster, i.e. within a page sequence, an ad-

ditional address structure (described in the next chapter) is required.

Performing an update operation on an atom, the access system is responsible for maintaining the appro-

priate atom clusters. This means, the access system has to automatically include atoms into an atom

cluster, move them from one cluster into another, and delete them from a cluster depending on the cor-

responding update operation. This is fairly simple for a non-recursive, hierarchical molecule structure:

• When inserting a root atom, all "down references" have to be evaluated and the referenced atoms

have to be incorporated into the atom cluster. For these atoms, again all "down references" have to

be evaluated, and so on.

• When inserting a child atom, all "up references" have to be evaluated in order to obtain all predeces-

sors of the atom. For each predecessor, the atom clusters it belongs to are revealed using the address

structure of the corresponding atom type. Now, the new atom as well as all its descendants have to

be included into the revealed clusters.

• When deleting a root atom, the whole cluster has to be deleted.

• When deleting a child atom, this atom as well as all its descendants have to be removed from all atom

clusters it belongs to.

• When modifying "down references" within an atom, all atoms which are no longer referenced, as well

as their descendants, have to be removed from all atom clusters the modified atom belongs to. On the

other hand, all atoms which are now referenced, as well as their descendants, have to be included

into those clusters.
85

• When modifying "up references" within an atom, the modified atom as well as its descendants have

to be removed from those atom clusters which are determined by the predecessors no longer refer-

enced, and they have to be included into those clusters which are determined by those predecessors

now referenced.

For recursive and/or network-like structures, however, this is much more complicated as it depends on

the semantics of the structures. Therefore, atom-cluster types are restricted to simple molecule types.

Whereas the scans, described up until now, only support horizontal access to a homogeneous atom set

belonging to one atom type, the two scans defined for atom-cluster types allow for access to a heteroge-

neous atom set across several atom types. The atom-cluster type scan delivers all characteristic atoms

of an atom-cluster type in a system-defined order. As for all other scans, the result set of the atom-cluster

type scan may be restricted by a complex search argument (CSA), which must be decidable in one pass

through a single atom cluster (single scan property [DPS86]). Subsequently, direct access to all atoms

belonging to an atom cluster is possible as each characteristic atom contains the corresponding logical

addresses. The atom cluster scan, however, offers another possibility for accessing the atoms of an atom

cluster. It reads all atoms of a certain atom type within one single atom cluster in a system-defined order,

again with the possible restriction by a simple search argument.

4.4 Partitions

A further extension to the access system are partitions. A partition allows for a vertical partitioning of an

atom type. Thus, frequently used attributes of an atom type may be clustered and stored independently

from other attributes clustered in a similar way. As a consequence, multiple physical records, one for

each attribute cluster, are assigned to a single atom. Each of these physical records consists of the ap-

propriate attribute values as well as the IDENTIFIER attribute in order to locate the physical record within

a page. A partition is automatically utilized by the access system. Therefore, no explicit retrieval opera-

tion referring to a partition is required.

5. Maintaining Redundancy

All extensions introduced in the above chapter generate additional storage structures which embody ei-

ther homogeneous or heterogeneous result sets. For example, an atom cluster serves to embody mole-

cules, whereas partitions collect the results of projections. The underlying concept is to make storage

redundancy available outside the access system by offering appropriate retrieval operations (i.e. scans),

whereas in the case of update operations storage redundancy has to be concealed by the access sys-

tem. As a consequence, maintaining storage redundancy in an efficient way is a major task of the access

system. Especially in the case of update operations, new concepts have to be investigated in order to

speed up a single update operation. However, before concentrating on this problem, the already men-

tioned address structure has to be described in more detail.
86

5.1 The Addressing Concept

The addressing concept of PRIMA [Si87a] establishes the way in which the different objects handled

within the access system, i.e. atoms, atom clusters, and physical records, are addressed and the way in

which the different addresses are mapped onto each other.

Addressing Atoms

Each atom is, as already mentioned, uniquely identified by its logical address which is assigned when

the atom is inserted. The structure of a logical address is very similar to that of the IDENTIFIER type in-

troduced in [Lo84], i.e. a logical address consists of an atom-type identifier (unique within the whole sche-

ma) and of an atom identifier (unique within a single atom type):

atom type identifier atom identifier
87

characteristic atom

atom type A

atom type B

atom type C

references

page header

page-sequence
header

a) logical view

b) mapping onto a physical record

c) mapping onto a set of pages

Figure 13: Atom cluster

As a consequence, a logical address is unique system-wide, easy to reuse, and independent of every

storage structure.

Addressing Atom Clusters

Since each atom cluster is described by a characteristic atom (see section 4.3), the logical address of

this characteristic atom may be utilized in order to access the corresponding atom cluster. That is, the

concept of logical addresses is also sufficient for the addressing of atom clusters.

Addressing Physical Records

In order to locate a physical record within the "containers" offered by the storage system, the physical

address assigned to each physical record consists of a segment number and of a page number or page-

sequence number indicating the corresponding page or page sequence in which the record is stored:

However, an information part is required in order to distinguish between a page number and a page-se-

quence number. Additionally, a physical address contains an identification of the storage structure the

physical record belongs to. Thereby, the type of the storage structure (sort order, partition etc.) is also

encoded in the information part, whereas the structure identifier determines the actual storage structure.

Mapping Logical Addresses onto Physical Addresses

Mapping a logical address onto the appropriate physical addresses requires a flexible address structure,

since depending on the additional storage structures a variable number of physical records may exist for

each atom. Therefore, a so-called address list is initially assigned to each atom. This address list consists

of the corresponding logical address, of a length field indicating the number of physical addresses as-

signed to the logical address, and of the physical addresses themselves:

The access to such an address list is performed by means of an appropriate address translation method.

We have investigated different methods (Fig. 14) with respect to the number of page accesses required

for the access to a single address list and with respect to the overhead which arises when physical ad-

dresses are either added or removed [Si85]. Although these investigations are not yet finished, the most

promising method seems to be a dynamic hash method [Si87b], e.g. linear virtual hashing [Li80].

However, we have designed a special address component [Wi87] which conceals the realization of the

address translation method in order to allow for an easy exchange of the different methods.

Mapping of Physical Addresses onto Logical Addresses

The mapping of a physical address onto the appropriate logical addresses is implicitly contained in each

physical record. If a physical record corresponds to either an attribute cluster or a complete atom, the

IDENTIFIER attribute, i.e. the logical address, resides at the beginning of the corresponding physical

record. Otherwise, if a physical record corresponds to an atom cluster, the appropriate characteristic

atom (at the beginning of the physical record) includes all logical addresses of the atoms belonging to

the atom cluster (Fig. 13).

segment number information part page number /
page-sequence number structure identifier

logical address length physical address physical address• • • • •
88

Moreover, each physical record assigned to an atom cluster requires an additional address structure

which allows for the fast location of a single atom within the corresponding physical record. This address

structure, however, strongly depends on the current size of the physical record. If the record fits into a

single page, no additional address structure is necessary, since within a page a sequential search is al-

ways performed. If the record is spread over a page sequence, the address structure initially consists of

a simple table indicating for each atom type the (first) page to which the appropriate subrecord is mapped

(Fig. 13). In addition, each subrecord which requires multiple pages contains a further table indicating for

each atom the page in which it is stored. However, this procedure has to be investigated in more detail

when the concept of atom clusters is really implemented.

5.2 Updating Storage Redundancy

Introducing storage redundancy serves to speed up retrieval. On the other hand, however, it slows down

update, since during a single update operation on an atom multiple physical records and access paths

have to be altered in order to achieve consistent storage structures. Sequential update of all physical

records and access path structures results in a lack of efficiency which is not acceptable. Therefore, new

concepts such as deferred update and parallel update have to be investigated in more detail with respect

to their applicability in PRIMA.

Deferred Update

Deferred update means that during an update operation on an atom initially only one of the appropriate

physical records is altered. All other physical records as well as the corresponding access paths are

marked as invalid. Finally, a "process" is initialized which alters the invalid structures in a deferred man-

ner, whereas the update operation itself is finished.

In order to mark a physical record as invalid the information part of the appropriate physical address is

used, i.e. a bit within the information part indicates whether or not the corresponding physical record is

valid. Therefore, all operations which utilize the address structure in order to locate a physical record may

determine the valid records. Most of the scan operations (except the atom type scan), however, do not

utilize the address structure. Hence, the corresponding storage structures themselves (access paths,

sort orders, and atom clusters) have to be marked as invalid. Consequently, when performing a scan op-

eration on such an invalid structure, each physical record has to be checked as to whether or not it is

valid. This, however, requires an additional access to the appropriate address structure, i.e. the scan op-

eration becomes slower, since each access to the address structure may result in an external disk ac-

cess. In order to avoid this, all invalid atoms (or their logical addresses), may be collected in a number

of special pages assigned to each storage structure. These pages may be kept in the database buffer

throughout the whole scan operation thus avoiding extra disk accesses. Nevertheless, each physical

record has to be compared with the atoms collected in these pages. In this context, some problems arise,

especially in the case of access paths and sort orders, which still have to be investigated in more detail

(e.g. when a modification alters a sort sequence). Moreover, deferred update is related to the underlying

transaction concept described in the next chapter.

Parallel Update

The problem of maintaining invalid storage structures, however, is avoided by parallel update. Parallel

update means that each update operation on an atom invokes a number of processes which alter the

appropriate physical records and access paths in parallel. The update operation is finished when all pro-
89

cesses are finished. Depending on how the access system is structured, there are different ways to per-

form a parallel update:

• Each update operation is passed directly to all components maintaining a single storage structure type

(i.e. sort component, etc.). Each component checks which storage structures of the appropriate type

are affected by the update operation, and the corresponding storage structures are modified either se-

quentially or again in parallel.

• On the other hand, a general component may check which storage structures are affected by the up-

date operation. For each of the affected storage structures the appropriate component is invoked in

order to perform the modification.

However, additional investigations are still necessary in order to determine the best way (e.g. with re-

spect to extensibility or performance).

Again, parallel update is strongly related to the underlying transaction concept which will be described in

the next chapter.

6. Dynamic Aspects

The requirement for long transactions (e.g. design transactions) and the desire for executing subopera-

tions of complex operations concurrently introduces a new quality of dynamically controlling parallelism.

Therefore, we have decided to combine the concept of multilevel transactions [WS84] and the concept

of nested transactions [Mo81] in order to improve concurrency among suboperations and to obtain a finer

granule of recovery [CP88].

As far as the access system is concerned two transaction levels have to be considered:

• The storage system supports transactions on the page level, i.e. the granule of synchronization and

recovery are pages.

• The data system and the access system support hierarchically nested transactions on the atom level.

Hence, each operation at the access-system interface (direct access, scan, update) corresponds to a

subtransaction on the atom level and on the page level. As a consequence, the access system has to

invoke an appropriate lock and log component in order to request locks or to write log information.

For synchronization purposes, we have chosen hierarchical locks on atom types and on atoms. However,

locks are not only requested for the atom type or atom which are affected by the current operation, but

also for all atom types or atoms which are referenced by this atom type or atom. That is:

• Each direct access to an atom requests S-locks on the corresponding atom and on all atoms whose

references are selected. The appropriate IS-locks on the atom types are implicitly set.

• Each update operation requests X-locks on the corresponding atom and on all atoms whose back-

references have to be adapted. Again, the appropriate IX-locks on the atom types are implicitly set.

• Each scan operation requests SIX-locks on the corresponding atom type and on all atom types whose

references are selected.

However, this procedure may result in a number of fictitious synchronization conflicts which dramatically

decreases parallel processing. Especially, in the case of scans and locking of referenced atoms the cho-
90

logical address

address
translation
table

hash method

address list

B-tree

Figure 14: Different address translation methods
sen lock granule may be too coarse. Therefore, the synchronization concept should be revised in order

to avoid such conflicts.

The concept for logging and recovery on the atom level is still in the design phase. Especially, the DDL

operations SHRINK_ATOM_TYPE and DELETE_ATOM_TYPE cause some problems whose solution

probably may require a redesign of the corresponding operation.

Moreover, the transaction concept has to be reflected with respect to deferred update as well as parallel

update.

7. Implementation of the Access System

The implementation language of PRIMA is LADY [WM85], a language for distributed systems designed

at the University of Kaiserslautern. LADY has three distinguishable language layers:

• A system consists of a set of teams interconnected via ports. The interconnection structure is given

by either directed port-to-port channels or by logical busses (multicast, broadcast).

• Each team (more precisely: each team type) is decomposed into a set of processes and monitors.

Monitors serve for intra-team-communication.

• At the module level the algorithmic behavior of each module type (process, monitor, class, procedure)

is specified. Modules may be compiled separately.

The access system is part of a team type which comprises of a number of processes and monitors need-

ed to implement PRIMA. The first prototype of the access system consists of

• a monitor representing the interface of the access system,

• a process implementing the basic version of the access system except the sort scan,

• a process maintaining the address structure described in section 5.1, and
91

• a monitor representing the interface to the address structure.

The implementation of this prototype is finished [Sch87, Wi87]. A B-tree component is already imple-

mented [De88], has still to be integrated into the overall system.

8. Conclusions

The design of PRIMA is characterized by a clean break-up into three different layers with appropriate

tasks. The main tasks of the access system comprise of

• mapping a number of different storage structures (access paths, sort orders, atom clusters, and par-

titions) onto the "containers" offered by the storage system,

• maintaining the redundant storage structures according to the update operations, and

• supporting different access types based on them.

For this purpose, the access system offers an atom-oriented interface which allows for direct and navi-

gational retrieval and manipulation of single atoms. To satisfy the retrieval requirements of the data sys-

tem in the case of "construction of simple molecules", it supports direct access to a single atom as well

as sequential access to either homogeneous or heterogeneous atom sets. Performing update operations

it is responsible for the automatic maintenance of the referential integrity defined by REFERENCE at-

tributes. Update operations and direct access operate on atoms identified by their logical address. Con-

cerning access to atom sets, scans (atom type scan, sort scan, access path scan, atom-cluster type

scan, and atom cluster scan) are introduced as a concept to control such an atom set, to hold a current

position in it, and to successively deliver single atoms. The result set of a scan may be restricted by sim-

ple or complex search arguments (SSA, CSA) and perhaps by some additional start/stop conditions and

directions. SSA and CSA as well as start/stop conditions have to be decidable on a single atom or atom

cluster. Some scan operations, however, depend on a corresponding storage structure such as an ac-

cess path, a sort order, or an atom cluster.

A first prototype of the access system consisting of the basic version (except sort scan) is running. The

next step will be to finish the design of the different extensions, to implement appropriate components,

and to integrate them into the overall system. As a prerequisite, however, the redesign of the transaction

concept with respect to either parallel or deferred update has to be completed.

9. References

As76 Astrahan, M.M., et al.: SYSTEM R: A Relational Approach to Database Management, in: ACM

Transactions on Database Systems, Vol. 1, No. 2, June 1976, pp. 97-137.

As81 Astrahan, M.M., et al.: A History and Evaluation of SYSTEM R, in: Communications of the ACM,

Vol. 24, No. 10, October 1981, pp. 632-646.

BB84 Batory, D.S., Buchman, A.P.: Molecular Objects, Abstract Data Types and Data Models: A

Framework, in: Proceedings of the 10th International Conference on Very Large Databases,

Singapore, 1984, pp. 172-184.
92

Be79 Bentley, J.L.: Multidimensional Binary Search Trees Used for Associative Searching, in: Com-

munications to the ACM, Vol. 18, No. 9, 1975, pp. 509-517.

BF74 Bentley, J.L., Finkel, R.A.: Quad Trees - A Data Structure for Retrieval on Composite Keys, in:

Acta Informatica, Vol. 4, 1974, pp. 1-9.

BM72 Bayer, R., McCreight, E.: Organization and Maintenance of Large Ordered Indexes, in: Acta In-

formatica, Vol. 1, 1972, S. 173-189.

Ch85 Chou, H.T., et al.: Design and Implementation of the Wisconsin Storage System, in: Software -

Practice and Experience, Vol. 15, No. 10, October 1985, pp. 934-962.

CF81 Chang, J.-M., Fu, K.S.: Extended K-d Tree Database Organization: A Dynamic Multiattribute

Clustering Method, in: IEEE Transactions on Software Engineering, Vol. SE-7, No. 3, 1981, pp.

284-290.

CP88 Christmann, H., Profit, M.: Transaction Support in PRIMA, in: The PRIMA Project - Design and

Implementation of a Non-Standard Database System, T. Härder (ed.), SFB 124 Research Re-

port No. 26/88, University Kaiserslautern, March 1988.

De88 Dehnrich, G.:Entwurf und Implementierung einer Komponente zur Verwaltung von B*-Bäumen

auf der Basis paralleler Algorithmen, University Kaiserslautern, 1988.

DPS86 Deppisch, U., Paul, H.-B., Schek, H.-J.: A Storage System for Complex Objects, in: Proceed-

ings of the International Workshop on Object Oriented Database Systems, Asilomar, ed.: K. Dit-

trich, U. Dayal, 1986, pp. 183-195.

Fr83 Frank, A.: Probleme der Realisierung von Landinformationssystemen - Storage Methods for

Space Related Data: The FIELD TREE, Report No. 71, Eidgenössische Technische Hochs-

chule Zürich, Institut für Geodäsie und Photogrammetrie, 1983.

Gu84 Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching, in: Proceedings of the

ACM SIGMOD Conference, SIGMOD RECORD, Vol. 14, No. 2, Proceedings of the Annual

Meeting, 1984, pp. 47-57.

Hä77 Härder, T.: A Scan-Driven Sort Facility for a Relational Database System, in: Proceedings of

the 3rd International Conference on Very Large Data Bases, Kyoto, 1977, pp. 236-243.

Hä87 Härder, T., et al.: PRIMA - a DBMS Prototype Supporting Engineering Applications, in: Pro-

ceedings of the 13th International Conference on Very Large Data Bases, Brighton, 1987, pp.

433-442.

HHLM87Härder, T., Hübel, C., Langenfeld, S., Mitschang, B.: KUNICAD - ein datenbankgestütztes

geometrisches Modellierungssystem für Werkstücke, in: Informatik Forschung und Entwick-

lung, Vol. 2, No. 1, 1987, pp. 1.-18.

HMP87 Härder, T., Mattos, N., Puppe, F.: Zur Kopplung von Datenbank- und Expertensystemen, in:

State of the Art, Vol. 1, No. 3, 1987, pp. 23-34.

Li80 Litwin, W.: Linear Hashing - A New Algorithm for Files and Table Addressing, in: Proceedings

of the International Conference on Databases, Aberdeen, 1980, pp. 260-276.

Lo84 Lorie, R., et al.: Supporting Complex Objects in a Relational System for Engineering Databas-

es, in: Query Processing in Database Systems, ed.: Kim, W., Reiner, D.S., Batory, D.S., Spring-

er, Berlin Heidelberg New York Tokyo, 1984, S. 145-155.

Mi85 Mitschang, B.: Charakteristiken des Komplex-Objekt-Begriffs und Ansätze zu dessen Real-

isierung, in: Proceedings of the GI Conference on Database Systems in Office, Engineering,
93

and Science Environments, Karlsruhe, ed.: A. Blaser, P. Pistor, Informatik-Fachberichte No. 94,

Springer, Berlin Heidelberg New York Tokyo, 1985, pp. 382-400.

Mi88 Mitschang, B.: The Molecule-Atom Data Model, in: The PRIMA Project - Design and Implemen-

tation of a Non-Standard Database System, T. Härder (ed.), SFB 124 Research Report No. 26/

88, University Kaiserslautern, 1988.

ML83 Meier, A., Lorie, R.: A Surrogate Concept for Engineering Databases, in: Proceedings of the 9th

International Conference on Very Large Data Bases, Florenz, 1983, pp. 30-32.

Mo81 Moss, J.E.B.: Nested Transactions: An Approach to Reliable Distributed Computing, PhD The-

sis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, 1981.

NHS84 Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The Grid File: An Adaptable, Symmetric Multikey

File Structure, in: ACM Transactions on Database Systems, Vol. 9, No. 1, 1984, pp. 38-71.

Sch87 Schares, R.: Implementierung der Operationen auf permanenten und temporären Atom-Typen

sowie auf Atomen, University Kaiserslautern, 1987.

Sch88 Schöning, H.: The PRIMA Data System: Query Processing of Molecules, in: The PRIMA Project

- Design and Implementation of a Non-Standard Database System, T. Härder (ed.), SFB 124

Research Report No. 26/88, University Kaiserslautern, 1988.

Si85 Sikeler, A.: Untersuchungen von Speicherungsstrukturen für 3-dimensionale Objekte, SFB 124

Research Report No. 19/85, University Kaiserslautern, 1985.

Si87a Sikeler, A.: Ein Adressierungskonzept zur Unterstützung der objekt-orientierten Verarbeitung in

PRIMA, in: Proceedings of the GI Conference on Database Systems in Office, Engineering, and

Science Environments, Darmstadt, ed.: H.-J. Schek, G. Schlageter, Informatik-Fachberichte

No. 136, Springer, Berlin Heidelberg New York Tokyo, 1985, pp. 487-491.

Si87b Sikeler, A.: Untersuchung von Verfahren zur Adreßabbildung in PRIMA, in: Angewandte Infor-

matik, Vol. 8/9, September 1987, pp. 358-368.

Si88 Sikeler, A.: Buffer Management in a Non-Standard Database System, in: The PRIMA Project -

Design and Implementation of a Non-Standard Database System, T. Härder (ed.), SFB 124 Re-

search Report No. 26/88, University Kaiserslautern, March 1988.

Ta81 Tamminen, M.: The EXCELL Method for Efficient Geometric Access to Data, Acta Polytechnica

Scandinavica - Mathematics and Computer Science Series No. 34, Technical University Hels-

inki, 1981.

We87 Weber, B.: Implementierung eines einfachen Verwaltungssystems für die Metadaten in PRIMA,

University Kaiserslautern, 1987.

Wi87 Wintzheimer, V.: Zuordnungstabelle und Lineares Virtuelles Hashing - Zwei verschiedene Ver-

fahren zur Adreßabbildung in PRIMA, University Kaiserslautern, 1987.

WM85 Wybranietz, D., Massar, R.: An Overview of LADY - A Language for the Implementation of Dis-

tributed Operating Systems, SFB 124 Research Report No. 11/85, University Kaiserslautern,

1985.

WS84 Weikum, G., Schek, H.J.: Architectural Issues of Transaction Management in Multi-Layered

Systems, in: Proceedings of the 10th International Conference on Very Large Data Bases, Sin-

gapore, 1984, pp. 454-465.

Ya84 Yamaguchi, K. et al.: Octree-Related Data Structures and Algorithms, in: IEEE Computer

Graphics and Applications, Vol. 4, No. 1, 1984, pp. 53-59.
94

Appendix : Operations offered by the basic version of the access system

CREATE_ATOM_TYPE IN: transaction identifier

atom-type identifier

OUT: returncode

DELETE_ATOM_TYPE IN: transaction identifier

atom-type identifier

OUT: returncode

EXPAND_ATOM_TYPE IN: transaction identifier

atom-type identifier

attribute-number list

OUT: returncode

SHRINK_ATOM_TYPE IN: transaction identifier

atom-type identifier

attribute-number list

OUT: returncode

INSERT_ATOM IN: transaction identifier

atom-type identifier

atom description

attribute values

OUT: atom identifier

returncode

READ_ATOM IN: transaction identifier

atom identifier

atom description

OUT: attribute values

returncode

MODIFY_ATOM IN: transaction identifier

atom identifier

atom description

attribute values

OUT: returncode

DELETE_ATOM IN: transaction identifier

atom identifier

OUT: returncode

OPEN_SCAN IN: transaction identifier

atom-type identifier

atom description
95

simple search argument

sort criteria

start/stop condition

OUT: scan identifier

returncode

READ_NEXT IN: transaction identifier

scan identifier

OUT: attribute values

returncode

CLOSE_SCAN IN: transaction identifier

scan identifier

OUT: returncode
96

97

98

99

100

	1. Introduction
	2. The PRIMA Architecture
	2.1 The Data System
	2.2 The Storage System

	3. The Basic Version of the Access System
	3.1 The Mapping of Atom Types and Atoms
	1. When inserting an atom, values may be assigned either to all or only to a few selected attribu...
	2. Shrinking an atom type happens in a deferred manner, i.e. there may exist physical records whi...

	3.2 The Interface
	Data Definition
	Update
	Retrieval

	3.3 Parameter Formats
	3.4 Meta-Data System

	4. Extensions to the Access System
	4.1 Access Path Structures
	4.2 Sort Orders
	4.3 Atom-Cluster Types and Atom Clusters
	4.4 Partitions

	5. Maintaining Redundancy
	5.1 The Addressing Concept
	Addressing Atoms
	Addressing Atom Clusters
	Addressing Physical Records
	Mapping Logical Addresses onto Physical Addresses
	Mapping of Physical Addresses onto Logical Addresses

	5.2 Updating Storage Redundancy
	Deferred Update
	Parallel Update

	6. Dynamic Aspects
	7. Implementation of the Access System
	8. Conclusions
	9. References
	Appendix : Operations offered by the basic version of the access system

