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Abstract

In this paper, we bring together two important topics of current
database research: enhancing the data model by refined rela-
tionship semantics and exploiting ORDBMS extensibility to
equip the system with new functionality. Regarding the first top-
ic, we introduce a framework to capture diverse semantic char-
acteristics of application-specific relationships. Then, in order to
integrate the conceptual extensions with the data model provided
by SQL:1999, the second topic comes into play. Our efforts to re-
alize semantically rich relationships by employing current
ORDB technology clearly point up the benefits as well as the
shortcomings of its extensibility facilities. Unfortunately, defi-
ciencies still prevail in the OR-infrastructure, since the features
specific to the extensions cannot sufficiently be taken into ac-
count by DBMS-internal processing such as query optimization,
and there are very limited mechanisms of adequately supporting
the required properties, e. g., by adjusted index and storage
structures as well as suitable operational units of processing.

1. Motivation

To meet the increasingly challenging requirements of today’s
applications, both database research and industry are being en-
gaged in adding new features to database management systems
(DBMSs). A major effort in this direction is represented by ob-
ject-relational DBMSs (ORDBMSs), which gain more and more
popularity due to their extensibility, i. e., the ability to allow user-
defined extensions to be added to the system and used in the
same way as native DBMS facilities [18].

As a typical sort of extension, relationships which capture the
meaning of the associations among DB objects are of particular
interest and importance in database applications. Thus, it would
be very beneficial to have relationships available as modeling
constructs and implemented in the database. However, little
progress has occurred in effectively incorporating their seman-
tics into DBMSs, including the current ORDBMSs. In most cas-
es, warranting specific relationship semantics remains to be
burdened on the application developer [17].

Motivated by these observations, we address how to exp
the extensibility as well as the expressiveness of current O
DBMSs to realize an enhanced support of relationship semant
As the baseline of the whole work, Sect. 2. presents model
concepts to capture semantic properties of relationships in
real world and discusses the implications such a data model
richment has. Our main concern lies in adequately incorporat
the proposed concepts into the system. For this purpose, a D
Blade-based approach which tries to balance the desired inte
tion depth against the available OR extensibility is explored
Sect. 3.. There, user-defined relationships are implemented
constructs resided in the database server, namely, as user-de
routines (UDRs), thereby making the relationship support a mo
integral part of the system than just a conventional on-top supp
ment. Our effort will reveal how well the ORDB technology ca
meet the demands of handling semantically rich relationshi
This leads us to a thorough deliberation on DBMS extensibili
in Sect. 4., by inspecting the mechanisms that are employed
support DBMS extensibility (especially, those of the prosperin
ORDBMSs). Finally, we give our opinion upon what characte
istics a proper extensibility infrastructure should present, wh
fundamental principles should be followed, as well as where t
challenging problems or risks may remain. We believe, such
sound understanding of the problem-specific processing w
demonstrate a progressive step towards attaining a realistic
tion of DBMS extensibility, as to be concluded in Sect. 5..

2. Capturing Relationship Semantics

Relationships are “semantically rich” in that their interpreta
tion does not solely lie in their names or their structural conne
tions, but also in the constraints which restrict their behavior a
must be satisfied. Semantically rich relationships exist in ma
application domains (e. g., CAx, document management, et
To obtain an impression of the diversity they exhibit, we take
simplified scenario from another project SENSOR (“Supportin
Software Engineering Processes by Object-Relational Datab
Technology” [9], sub-project of the SFB 501 “Development o
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Table 1. Relationship examples with their semantics

Semantic aspect
(generic) aggregation (application-specific) consist_of

O P O (module) P (function) P (procedure)

Degree - 3

Composition ✓ ➛ (aggregation)

Cardinality 1,1 - ➛ 0,8 1,10

Sharability ✗ - ➛ ✗ ✗

Existence dependency RI/CI , MD /CD RI /CI ➛ RI , MD ➛ CI ➛ CI

Transitive operation CS - ➛ CS, MU (last_modified) CU (length) CU (length)

Notes: “O” owner; “P” participant; “✓” predefined; “-” to be further specified; “➛” inherited; “✗” not existing
Large Systems with Generic Methods”, funded by the German
Research Association DFG) conducted in our group. In this sce-
nario, software constituents arising throughout the whole devel-
opment process are interrelated. At the implementation level, a
program consists of several modules. Each module, in turn, is
made up of different functions and procedures. All these compo-
nents are managed in a repository. To achieve the “traceability”
between different development phases, software components are
further divided into packages according to the requirement spec-
ifications they realize. Moreover, programs and modules may be
continuously under evolvement. Some changes in a program or
module produce a new version of it. While the new version re-
places the old one, the dated version might be archived for future
reference. This scenario encompasses a number of relationships,
including not only generic ones but also application-specific
ones. Typical examples of generic relationships are among oth-
ers aggregation relationships [14] (e. g., the relationship
consist_ofexpressing that entitymoduleis assembled with entity
functionand entityprocedure). Thus, the data involved is in gen-
eral not only structurally related to, but also semantically depen-
dent on each other, which has great implications both on data
modeling and on data processing.

In our approach, we consider arelationship modeling an as-
sociation between two or more entities (participants). We use
the term “relationship” as synonym of “relationship type” and
“participant” as synonym of “participating type”. Relationships
are primary modeling constructs with their exact, application-
specific properties modeled in an explicit manner. Generic, built-
in relationships are supported as well. In this way, it is possible,
on one hand, to capture subtle differences among relationships
and, on the other hand, to make the relationship facility easy to
be reused and extended.

Tab. 1 characterizes two relationship examples. The first ex-
ample,aggregation, deals with how a complex object (a compos-
ite object or an aggregate) is assembled with its integral parts (or
components). The aggregate (denoted as “O”) and all its parts
(denoted as “P”) should be addressed collectively as a whole and
can be defined to exist together. As a generic relationship,aggre-
gationhas some properties predefined (denoted with “✓”) while
others varying in concrete application domains (denoted with “-
”). The second example,consist_of, reflects that a module is as-
sembled with functions and procedures. It is a special kind ofag-

gregationwith add-on semantics (denoted with “➛”) as to be
discussed later on in this section. In the table, symbol “✗” means
that a semantic aspect is not necessary for the relationship.

Below we give a brief introduction of the structural and ope
ational properties that are relevant toconsist_of. Some of the se-
mantic properties have also been (partly) analyzed by rela
work such as [6, 13, 16]. However, a thorough consideration
them can be found nowhere else but in [22].

Structural properties . In respect of structural connections, w
identify the following fundamental characteristics.
• Degreedefines the number of participants associated in t
relationship. Forconsist_of, it is three.
• Cardinality places restrictions on the number of instances
the participant that can be associated with a single instance
the relationship. In our example, at least one and at most ten p
cedures have to be included in a module.
• Composition determines how the participants of a relation
ship cohere. A relationship with the composition property
called a “composite relationship” (e. g.,consist_ofas mentioned
above); otherwise, it is a “non-composite relationship”. A
instance of a composite relationship is a “composition”. Whi
in a non-composite relationship all participants play the unifor
role, the composition property assigns different participants o
relationship different roles:Owner (e. g., module) plays the
superordinated role andparticipant (e. g.,function; from now
on, when speaking about participants in a composite relatio
ship, we always mean participants other than the owner) are s
ordinated to the owner. Operations are propagated from
owner to other participants.
• Sharability (or exclusiveness) denotes, in case of a composite
relationship, whether a participant instance can be associate
more than one relationship instance. Inconsist_of, a function or
a procedure can not be shared among different modules.

Operational properties. Operational properties can be inter
preted as consecutive actions that an operation on a particip
may cause, i. e., operation propagation. To govern existence
pendency, certain insertion or deletion operations should au
matically trigger actions on related objects. Besides, there
also other cases when DB operations must be executed tra
tively. For instance, selection operations at the aggregate le
can be propagated to the part levels, or vice versa.
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• Mandatory Deletion (MD) : Upon deletion of an object, its
associated objects are also deleted, even though they may be
involved in other relationship instances. In addition, the corre-
sponding relationship instances are also removed. Inconsist_of,
the deletion of a module will cause the deletion of all its parts.
• Conditional Selection (CS): The selection of an object
returns this object and (only) those associated objects involved
in the given relationship instance. Inconsist_of, selecting a mod-
ule also renders its parts.
• Conditional Insertion (CI) : Upon insertion of an object, the
relationship instance is established between this object and those
associated objects that already exist, while associated objects
that do not exist yet are represented with placeholders (stubs). In
consist_of, a function or procedure can always be inserted even
if there exists no module for it. In this case, a “stub” module is
used to establish a “partial” relationship instance.
• Restricted Insertion (RI): Upon insertion of an object, the
relationship instance must be established between this object
and all other associated objects. If any associated object is not
available in the database, the insertion is denied. Inconsist_of,
the insertion of a module cannot take place if there exists no
function or procedure yet. In this case, an “entire” relationship
instance is required.

For semantics controlling purpose, the modeling constructs
should be reflected at the database language level. Both, DDL
extensions for the definition of semantically rich relationships as
well as DML extensions for the retrieval and manipulation of the
data corresponding to the specified schemas are needed. This re-
sults in OrientSQL, with SQL-like syntax conforming to the cur-
rent database standard [21]. While a thorough description of
OrientSQL can be found in [22], some examples are given here.

Relationship specification: The statements in Fig. 1 define a
new relationship on the basis of a generic one.

Querying: Fig. 2 shows two simplified OrientSQL queries.
• OrientSQL’s path extensions enable to access data objects
across user-defined relationships. For this purpose, the name of

the relationship to be addressed is explicitly indicated followin
the referencing construct “.”, like m.consist_of in the first query.
• The contents to be accessed is specified with the dereferen
construct “->”. To avoid obscurity when several participants of
relationship have the same attribute (e. g.,language), a certain
participant (e. g.,function) can be designated with the partici
pant-resolving construct “()” following the relationship name.
• OrientSQL’s query facility considers a complex object and a
its parts collectively, in accordance with the composition pro
erty and the selection semantics. For this purpose, the ow
(e. g.,module) and the relationship name (e. g.,consist_of) are
explicitly used in theFROMclause to specify the scope of the
query. The second query then returns not only the qualifi
modules but also their functions and procedures.

Relationship insertion and insert block: To build a consistent
relationship instance, a special facility is provided for two pu
poses: First, for the user to intentionally group together seve
operations so that participating objects are inserted before the
sertion of a relationship instance; second, for the system to ens
the “success unit” of all necessary operations to build a consist
relationship instance. This facility is calledinsert block.

An insert block comprises a sequence of insertion operatio
that will be executed with the examination of insertion semanti
delayed at the block end. ForCI property, it will be checked up
to the block end, which associated objects of the relationship
stance are missing and whether stubs have to be created. FoRI
property, it will be decided up to the block end, whether all th
associated objects have already been inserted so that the rela
ship instance can be constructed, or whether all the inserti
within the block have to be rejected.

3. Implementation Approach

Our work has two primary goals in respect of relationsh
support. The first is to exceed the modeling limitations impos
by the DBMS and its data model. Such a goal has been achie
through two levels of extensions [22]: the conceptual constru
close to the user’s perception of relationship semantics appea
in the real world, and the language mechanisms allowing re
tionships semantics to be defined in the schema and conside
in data retrieval and manipulation. The second goal, i. e., to ma
the DBMS responsible for enforcing the specified relationsh
semantics, will be addressed in this section.

Figure 1: Relationship definition

CREATE RELATIONSHIP consist_of UNDER aggregation (
module OWNER (aggregate)

ON INSERT RESTRICTED INSERTION
ON UPDATE (last_modified) MANDATORY UPDATE,

function PARTICIPANT (part)

CARDINALITY [0,8]
NON SHARABLE

ON INSERT CONDITIONAL INSERTION

procedure PARTICIPANT (part)
NON SHARABLE
CARDINALITY [1,10]
ON INSERT CONDITIONAL INSERTION

ON UPDATE (length) CONDITIONAL UPDATE,

ON UPDATE (length) CONDITIONAL UPDATE);

CREATE RELATIONSHIP aggregation (

ON DELETE MADATORY DELETION
ON SELECT CONDITIONAL SELECTION,

aggregate OWNER

part PARTICIPANT);

Figure 2: Querying examples

Query 1: Find the names of all modules which consist of

OrientSQL: SELECT m.name

WHERE m.consist_of (function) -> language = ‘Java’
FROM module m

Query 2: Find all modules designed by Zhang together with

OrientSQL: SELECT *

WHERE m.designer = ‘Zhang’
FROM module (consist_of) m

functions written in Java.

their constituents.
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3.1. General consideration

Generally, for any extension of DBMS facilities, there exist
different implementation approaches that entail varying accept-
ability of the resulting system. These alternatives can be distin-
guished according to the depth of integration between the
underlying DBMS and the extensions.

One extreme along this dimension is a “naive” mapping ap-
proach in which declarative OrientSQL constructs are realized as
“syntactic sugar” of built-in constructs of the logical data model,
without resorting to any procedural code. The functionality
achieved, however, is restricted by native features of the under-
lying system. In our case, even with the expressive power of ob-
ject-relational data model (ORDM) constructs, e. g., references,
PK/FK pairs, collection types, declarative constraints, and trig-
gers, some precise relationship semantics such as composition
still gets obscured during translation or is difficult to translate, as
evident in [22].

The other extreme is deep integration that seamlessly couples
newly-added modeling constructs with the rest of the DBMS. To
achieve this promising goal, reasonable extensions at the pro-
cessing level are indispensable. Unfortunately, this demand can-
not be met, even by current ORDBMSs that are labeled
“extensible”. Some functions, such as the support for a kind of
block atomicity necessary for the construction of composite rela-
tionship instances, may not be realizable. This is because none of
the available ORDBMSs (and of course other commercial sys-
tems) provide access to transaction manager information, nor do
they allow us to gain control as needed and to define the commit
or abort methods. While the OR extensibility makes the integra-
tion of user-defined types (UDTs) and type-specific behavior rel-
atively easy, its application to the relationship support which
goes beyond the scope of data types is still not feasible [22].

Between these two extremes is a spectrum of layered archi-
tectures where extensions are built on top of the existing DBMS.
In comparison with “direct mapping”, this alternative aims at
dedicated implementation rather than only naive use of the built-
in data model features. Moreover, it also differs from “seamless
integration” in that it incorporates new functionality in the sys-

tem through existing interfaces instead of touching the intern
processing. Our relationship support follows this way.

It makes particular sense to implement relationships as c
structs handled in the system, thereby reducing the client/ser
communication overhead and enclosing application semantic
querying. The OR extensibility appears to be very instrumen
to this task: In contrast to the classical way of defining a supp
mentary layer on top of the system, ORDBMSs offer seve
means for the user to compile and reside programming co
within the server as “predefined database routines”. These me
include stored procedures, triggers, and UDRs. Among the
UDRs are most attractive to us because of their portability, t
expressiveness they exhibit, as well as the ability to define typ
specific behavior and to hierarchically organize “relationship
UDTs. Accordingly, the intended functionality can be achieve
in such a manner that:
• User-defined relationships are realized as UDTs with specia
designed data structures and operations.
• UDTs are organized into a hierarchy to support refinement a
extension during implementation.
• The whole implementation is encapsulated in a pluggab
package, which extends the system with desired relations
support and can live inside the DBMS when needed.

This way, a reasonable compromise is made between des
integration depth and available OR extensibility. Below, we w
discuss the implementation philosophy in more detail.

3.2. Basic constructs

ORDMs allow the definition of UDTs to build up an organi-
zational framework for the new functionality.

Representation constructs. First of all, to represent relation-
ships and to accommodate their instances, special data struc
are defined in a DB schema. This is accomplished through “sc
ma expansion” in that a user-defined relationship is expand
into a structured type and a corresponding table. As shown
Fig. 3, the schema expansion process has several steps:
❶ Type definition: A separate “relationship representation typ

(or “representation type”)consist_ofis defined to represent
the relationshipconsist_ofbetween the participants, which, in
turn, are represented by structured types (i. e., “participa
representation types”)function, procedure andmodule.

❷ Multi-connection: The relationship representation typ
consist_ofis connected to its associated participant represe
tation types via reference attributesparticipant1,participant2,
andowner, respectively.

❸ Reference mediation: In the opposite direction, a hidd
reference attributeref_reptis added to each of the participan
representation types to refer to the relationship representa
typeconsist_of. Such a reference attribute actually mediate
the connection between one participant to the other part
pants through the user-invisible relationship representat
type in the expanded schema.

Figure 3: Relationship definition

module

procedure

consist_of

function

participant1
participant2

owner

ref_rept

ref_rept

ref_rept

❷

❷
❷

❸

❸❸

❶

imp_consist_of

get_O_P1 () get_O_P2 ()get_P1_P2 ()

get_P2_P1 ()get_P1_O () get_P2_O ()

visible to user invisible to user referencing mediating
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Each instance of a representation type, i. e., “representation
object”, describes an occurrence of the user-defined relationship.
Interfaces to manipulate representation objects, such as the cre-
ation of new ones and the connection of them with participating
objects, are provided by special UDRs (see below).

Implementation constructs. A user-defined relationship is im-
plemented as an object type in its own right. Such a “relationship
implementation type” or “implementation type”, is composed of
participant-indicating attributes, semantics-describing at-
tributes, semantics-ensuring routines(“enforcers” governing
semantics specified for a user-defined relationship and “moni-
tors” scheduling the enforcers attached to an implementation
type; they supply the basis for operation rewriting which prepro-
cesses SQL DML statements to let them pay attention to the
specified semantics),traversal-mediating routines (“media-
tors” leading the traversal through the participating objects in the
presence of the relationship (representation) constructs; on this
basis, the referencing/dereferencing mechanism is overloaded so
that it can continue to work in OrientSQL just as in SQL:1999),
relationship-manipulating routines (“manipulators” process-
ing those OrientSQL statements that support the manipulation of
relationships such asINSERT RELATIONSHIP; they provide the
instance-level operations on representation constructs in the fol-
lowing forms: instantiation of representation types, retrieval/
modification/deletion of representation objects, connection/dis-
connection of relationship representation objects and participat-
ing objects).

Implementation types are arranged within a hierarchy. At the
top level of this hierarchy is the most generic typeOrientRela-
tionshipwhich delivers common behavior embedded in all rela-
tionships. Specialization down the hierarchy enables subtypes to
inherit or augment the structure as well as to inherit or even over-
write the behavior of the supertype, thus facilitating incremental
implementation. In the hierarchy, the bottom level reflects appli-
cation-specific implementations; and those at the higher levels
are generic with their semantics common in several applications.

The following two subsections will address the procedural
part of implementation constructs, regarding how to ensure se-
mantics and how to traverse relationships, respectively.

3.3. Ensuring semantics

Automatically warranting relationship semantics demands
the system to react on given DB operations, which can be natu-
rally reflected using a set of descriptions based on the ECA no-
tion. These descriptions, called “enforcement rules” [22], supply
a suitable basis for constructing semantics-ensuring measures.

Enforcers and monitors. An abstract enforcement rule is “ma-
terialized” by replacing its action part with a procedural enforcer.
Basically, the reactions to semantics violation are of two kinds:
“rejection” and “propagation”. For instance, the existence of an
aggregate object causes the rejection of the removal of a part, and

the removal of an aggregate causes the propagation of the rem
al to all its parts. When a user-initiated operation is executed,
monitoring implementation types activate enforcers. In case
rejection, the effect of a user-initiated operation must be undo
For this purpose, the transaction mechanism can be employ
The propagation processing, on the other hand, is more com
cated. Propagation means manipulating multiple instances of
and other related participants as well as multiple instances of
involved relationships. Hence, the “enforcement target” such
“instances-to-be-deleted” has to be determined before the pro
gation. For this reason, each enforcereRoutine (p)is composed
of two subroutines: one (such aseTargetDelete (p, I)) determin-
ing the enforcement target, the other (such aseDelete (I)) per-
forming the operation propagation to enforce the semanti
Since an implementation type may be equipped with a numbe
enforcers, they must be correctly arranged and scheduled
monitors to deliver expected semantics control behavior. F
each participant, a monitor is defined. All the enforcers “relate
to” the participant, i. e., needed to maintain certain seman
properties that may be violated by operations issued on that p
ticipant, are included in that monitor. These enforcers are iden
fied by analyzing the entries in the catalogeRoutinewhere all the
enforcers defined for the relationship concerned are registered
monitor includes a “checker” and a “dispatcher”. The check
detects the operations on the participant that may violate sem
tics under the current condition. Based on the checker’s outp
the dispatcher then activates the enforcers encapsulated in
monitor.

Operation rewriting . Note, aforementioned routines them
selves do not exhibit inherent active behavior. Explicitly invok
ing them from the application code would entail all the negativ
of user-managed semantics. Hence, it is more reasonable to
cute them implicitly. In this way, the impact of semantics-ensu
ing measures on regular SQL DML statements will also b
minimized. For this purpose, the SQL data manipulation reque
are rewritten (by OrientPre, cf. Sect. 3.5) to those that invoke a
propriate monitors encapsulated in appropriate implementat
types. In this way, DML operations are endowed with new mea
ing. A deletion operation on the modulem, for example, is at first
captured by the rewriting process and then augmented with a
to the monitor defined formodule. After proper checking and dis-
patching, this monitor will invoke the subroutineeDelete (I),
whereI is obtained by calculating the enforcement target usi
the subroutineeTargetDelete (m, I).

3.4. Traversing relationships

To support OrientSQL’s paths, SQL:1999’s referencin
dereferencing mechanism which facilitates traversal across re
ences should be overloaded to allow traversal via user-defin
relationships. Mediators build an essential basis for this by p
viding the participating objects with a local view on the relation
ship. As mentioned previously, for each user-define
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relationship, there is a group of mediators. A mediator retrieves
participating objects of one type from a participating object of
another type via the representation object. Assume, from an in-
stance (m) of the referencing type (module) to an instance (f) of
the referenced type (function), there is an instance (c) of the rep-
resentation type (consist_of). The expression
m.consist_of (function)is resolved using the mediator encapsu-
lated in the corresponding relationship implementation construct.

3.5. ORIENT prototype

Now, we build the prototype ORIENT (Object-based Rela-
tionship Integration ENvironmenT) with system-controlled use
of relationships as the focus and other auxiliary specification and
maintenance support around. Its architecture is outlined in Fig. 4.

OrientDraw : The schema editor provides an easy-to-use design
interface by supporting ESR (Entity/Semantic-Relationship) di-
agrams [22].
OrientMap : The schema translator is responsible maps graphi-
cal elements into corresponding OrientSQL specifications.
OrientLib : The extension package contains relationship imple-
mentation types. This component is considered to be a pluggable
module of the database server.
OrientDic : The metadata manager contains all metadata useful
for ORIENT. It is utilized and also continually enriched by the
other components.
OrientCop: The statement dispatcher is a “filter” of user-initiat-
ed requests or statements. It distinguishes statements that need
ORIENT-specific processing from statements that do not. For
each OrientSQL statement of the former kind, OrientCop makes
a call to OrientGen or OrientPre, depending on whether that
statement is for definition or for manipulation purpose.
OrientGen: The package generator converts declarative Ori-
entSQL (DDL) specifications into operational ORDM con-
structs. It is composed of two submodules: ReptBuilder
responsible for the creation of relationship representation types
and ImptBuilder responsible for the generation of relationship
implementation types. In comparison with ReptBuilder which
conducts schema expansion as discussed in Sect. 3.2, the task of

ImptBuilder is more complicated, especially regarding how in
cremental, extensible implementation is facilitated. For this pu
pose, OrientDic and OrientLib deliver the necessary suppo
OrientLib packages all the existing implementation types (org
nized into a hierarchy as mentioned in Sect. 3.2), from whi
new ones can be derived. As a complement, OrientDic provid
the metadata needed for the generation process. It supplies c
logs that contain information about existing implementation
eRuleindicating enforcement rules already considered,eRoutine
indicating enforcers already generated, as well asimptTypeindi-
cating implementation types and monitors already constructe

OrientPre: The precompiler rewrites a user-initiated request
meet the need for relationship-specific processing. It augme
the user-initiated request with invocation of appropriate routin
(i. e., mediators or monitors) using three kinds of transformatio
The first overloads SQL:1999’s referencing/dereferencin
mechanism to support OrientSQL paths; the second transla
OrientSQL DML operations into appropriate manipulators; an
the third rewrites native SQL DML operations by activatin
proper semantics enforcement code. While the first two tasks
be realized almost purely through syntactic analysis, some exp
nation of the third is necessary. Ideally, to support the non-loc
nature of a relationship, an implementation type should be a
to supervise the operations applied to its participants. Howev
there is no direct communication path for a UDR encapsulated
an implementation type to be aware of any operation perform
on any participant. To solve this problem, OrientPre adds a “
cording” mechanism through which information about oper
tions issued on DB objects is collected. The result is stored in
tableinitTarget, with entries describing user-initiated operatio
(OP), target participant (P), and target participant instances (p).
Then, OrientPre uses an “awaking” mechanism to choose an
call proper monitors for ensuring the relationship semanti
which may be violated. The monitors are determined with the a
of a certainrParticipating catalog in OrientDic. This catalog

OrientDraw

OrientSQL

ESR

OrientMap

implementation

OrientSQL/SQL

S
ystem
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OrientSQL/SQL OrientSQL/SQL

implementation type
OrientLib

DBMS

type

OrientGen OrientPre
SQL +

DMLDDL

UDR call

diagram

Figure 4: Architecture of ORIENT Figure 5: Processing steps of OrientPre
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lists, for each entity in the schema concerned, all the relationships
it participates in, together with the monitors defined for the given
participant in the corresponding implementation types. Thus,
with the help of OrientPre, relationship semantics is controlled in
such a way that an implementation type is equipped with the
“simulated” ability to supervise the participants. This preprocess-
ing alone, however, places only extensions to individual DB op-
erations. To make relationship maintenance an integral part of
normal transaction processing, it is certainly not enough to take
semantics-ensuring measures only as “side effects” of single DB
operations. Rather, a user-initiated transaction as an entirety
should be considered as the rewriting granularity and conse-
quently the enforcement granularity. Generally, a DB transaction
is composed of a sequence of user-initiated operations which
must be applied to the database as an atomic unit. Having this in
mind, the rewriting is carried out in a “bulk” fashion: Until the
last command within a user-initiated transaction is encountered,
the enforcement code is not constructed, but rather “accumulat-
ed” by OrientPre, which then works as in Fig. 5.

3.6. Remarks

Taking the commercial ORDBMS IDS/UD [11] as imple-
mentation platform, the UDRs together with UDTs that are en-
capsulated in OrientLib constitute a DataBlade which can be
installed into or removed from IDS/UD.

Concerning extensibility, obviously, using an extension pack-
age like DataBlade offers a way to enhance the DBMS function-
ality. However, registering OrientLib as a DataBlade in the
system only means that the system is made aware of its existence.
No customization of the internal DBMS implementation is pos-
sible. Deviations from the expected functionality are inevitable.

In our setting, some tasks desired from the underlying DBMS
cannot be realized or have to be simulated. For example, over-
loading the referencing/dereferencing mechanism only resem-
bles a kind of view substitution, rather than deeply-integrated
processing of relationships. Moreover, although registered
UDRs decrease the communication overhead across the DBMS
interface, this is only the case for seamless usage of extensions.
The implementation of ORIENT resorts to the precompiler Ori-
entPre to invoke appropriate UDRs, which implies a layer of in-
direction between ORIENT and the DBMS.

Furthermore, the “bulk” rewriting approach taken by Orient-
Pre seems to comply with the insert block concept which requires
to delay the enforcement of insertion semantics. However, the
way OrientPre processes an insert block, the only possible action
when the insert block must be rejected is to let the whole transac-
tion embodying that block be rolled back. True block atomicity
cannot be obtained. To provide the desired failure handling se-
mantics and to avoid the complete transaction rollback, nested
transactions or user-defined checkpoints are needed, but, unfor-
tunately, are not supported by IDS/UD.

Another problem is the interaction of declarative queries wi
UDRs that embody relationship processing, whose optimizat
raises a question as how to convey knowledge about relati
ships and their semantics to the system. Current ORDBMSs c
not deliver a satisfactory answer, since they treat UDRs as “bla
boxes”. While ORDBMSs optimize relational operations lik
JOIN, there is hardly any optimization for UDRs, since the sy
tem understands little semantics about each UDR. A UDR
merely a name or a signature, with minimal information such
side effects or user-speculated costs. Due to the closed system
chitecture, it is a delicate task to preprocess OrientSQL in suc
fashion that the resulting query is not “misunderstood” by th
query optimizer. To this end, sound knowledge of the underlyi
system, particularly of its query optimizer, is imperative. Bu
even then the DBMS may be too “dumb” for passing its valuab
optimization information.

Therefore, the presented approach is still an “on top” one,
that it is outside the DBMS engine and, consequently, outside
its underlying constituents. This solution (and probably not on
for ORIENT) renders a new “application layer” in between th
DBMS and the real application. In the long run, we hope, the im
provement of the OR extensibility as well as the evolvement
our prototype will lead to a more satisfactory result. Particularl
when more knowledge of relationships is conveyed to the s
tem, their entailed potential for a more dedicated implementat
could be well utilized. But at present, the fundamental questi
is still: What is the necessary infrastructure to achieve real ext
sibility?

4. Deficiencies of (OR)DBMS Extensibility

The previous discussion reveals that integrating our relatio
ship concepts would be less painful and more effective, if som
adequate facilities could be provided by the underlying syste
DBMS extensibility addresses the need to get a DBMS offeri
enough possibilities to adapt or expand its functionality, so th
special processing could be better incorporated with the exist
mechanisms. We have also observed that the current ORDBM
are successfully presenting some degree of extensibility. How
er, the actual exploitation thereof often runs up against its lim
Therefore, this topic still deserves our further investigation. L
us at first review the efforts (especially, those of the ORDB tec
nology) that intend to make DBMSs more or less extensible.

Since the mid-eighties, several research projects have b
dealing with extensibility [4]. Some of them select a specific da
model (mostly relational) and implement interfaces throug
which extensions can be added. Usually, they open up the t
system to incorporate more complex data types [20]. Abstr
data types (ADTs), their functions, and possibly their acce
methods can be defined by the user. Once registered with the
tabase system, an ADT (ADT is termed differently in differen
places, e. g., UDT or structured type in SQL:1999 [21] or opaq
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type in IDS/UD [11]) is used just like a built-in type. This ap-
proach is pioneered by the ADT-Ingres project, carried on by the
Postgres project [20], and now followed by the ORDB technolo-
gy [11]. Others such as Exodus [7], Genesis [1], and Open
OODB [3] strive for more generality by supplying a set of kernel
facilities plus “toolkits” for constructing domain-specific
DBMSs, but toolkits did not gain general acceptance [5].

Driving the relational database technology in the direction of
object orientation, current (ORDBMS) products provide support
for two kinds of “objects”, ADTs and row types. Row types offer
a direct enhancement of the type system for relation tuples. In
comparison, the role of ADTs, à la Postgres [20], is to enable the
set of built-in types to be expanded with the UDTs. In this sense,
the ADT concept embodies more extensibility and reflects a big
step forward from the “BLOB” approach used by relational sys-
tems to support complex data. Currently, vendors or third-party
developers are marketing ready-made, ADT-based extension
packages (e. g., DataBlades [11], DataCartridges [15], and Ex-
tenders [10]) for managing complex data such as text and image.

Current ORDBMSs follow a “table-driven” approach [20] in
regard to the ADT concept, i. e., they are able to “recognize” the
newly-added extensions and, this way, allow users to integrate
them into “normal” processing. However, with the table-driven
mechanism, additional features are treated by the system just like
the existing ones. Extensibility demands calling for more chang-
es of processing logic, unfortunately, cannot be satisfied, as to be
exemplified below.

Extensible query optimization.Considering, e. g., the first Ori-
entSQL query given in Fig. 2, the transformation performed by
OrientPre (cf. Sect. 3.5) results in several extensions such as the
UDT defining the relationship implementation type and UDRs
representing traversal-mediating routines (Sect. 3.2). Traversal
mediation introduces path elements (i. e., relationships and par-
ticipants) of an OrientSQL path into processing scope, thus per-
mitting to traverse from one participant to another via existing
relationships. This, however, facilitates only naive following of a
relationship structure, which is not always optimal when com-
puting an OrientSQL path. As indicated in [22], query processing
would be more efficient if the optimizer could recognize the op-
timization potential embodied in the path, analyze feasible per-
mutations of the path computation sequence, and rewrite the path
into joins if necessary. For this purpose, it is essential to represent
an OrientSQL path as a sequence of new operators which make
all inter-object relationships explicit and to extend the optimizer
by additional operator-shuffling transformations. Besides, ORI-
ENT relationships are not merely descriptions of structural con-
nections, they also possess a lot of semantic meaning which may
have considerable influence on query optimization. Particularly,
special composition properties not only determine the construc-
tion of a complex object and sharing of part objects, but also
characterize the transitive propagation of operations in a (possi-
bly multi-level) hierarchy. Hence, they can play an important

role in query optimization if well exploited. Taking the secon
query in Fig. 2 as example, the owner (e. g.,module) and other
participants (e. g.,functionandprocedure) are expected to be
used together in one query to build up the complex objects.
[22], it is specially treated by means of a new operator whi
brings all the target objects of a propagated operation into
processing scope. Regrettably, it is difficult for current OR
DBMSs to correctly optimize (expensive) UDRs. Although th
developer can provide simple information about user-defined e
tensions to influence query optimization and the optimizatio
rules can access certain system tables to get this informat
more semantic knowledge (such as that about explicitly specif
relationships and their semantics) cannot be exploited. Mo
over, although UDRs offer theoretically unlimited possibilities t
extend the operations available for data, they cannot provide
tensibility at the level of operators or algorithms. The reason
that, in the table-driven way, the query optimizer is unable to g
additional strategies for the processing of new features.

Extensible access method.Another shortcoming of current ex-
tensibility mechanisms occurs, when special relationship inde
or path indexes containing condensed information about int
object references are expected to accelerate the constructio
complex objects or the traversal in a relationship structure [2
While generalized B-trees in some ORDBMSs make B-trees e
tensible with respect to the data types that can be indexed, t
do not allow to define all kinds of index structures such as tho
across more than one type or table.

Extensible transaction model.Yet another shortcoming is evi-
dent, when trying to support the insert block concept introduc
in Sect. 2.. Here, an extensible or at least flexible, hierarchi
processing concept is needed to support atomicity at block lev
to facilitate error reporting related to the block granule, to provid
block-internal recovery, as well as to conduct multi-stateme
optimization which considers the set of statements contained
the same insert block as a unit. An extremely important topic
this context is about the transactional boundaries. The associa
ity of operators influences where those boundaries can be p
Especially, the use of an insert block inside a normal transact
requires dedicated “scope control” so that semantics checkin
delayed only to the block end when all relevant insertion ope
tions are executed. Since SQL (and also most of the commer
DBMSs) guarantees only statement atomicity, an effective so
tion is the use of nested transactions to support the fine-tuning
the control/rollback scope [22, 23]. When the deferred checks
not reveal a violation of the specified semantics, the block co
cept behaves just like SQL’s deferred constraint checking mo
In case of an integrity violation, the subtransaction bracketing t
insert block is rolled back, thereby providing the desired failu
handling logic. All this implies that existing rules of drawing
transaction borders might have to be modified upon introduci
new operators for flexible transaction control. According t
Sect. 3.3, data update requests are rewritten to take semantic
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suring operators into account. This processing, however, only re-
tains SQL’s statement atomicity in such a way that a user-
initiated DB operation will still be logically atomic in spite of
several physical operations involved for semantics-control pur-
poses. In case the block atomicity is needed, transaction seman-
tics should be respected during internal rewriting. What is needed
are not only additional operators for maintaining relationship se-
mantics, but also additional operators for providing adequate
transaction support. However, in available ORDBMSs, it is al-
most impossible to provide extensible transaction models.

In a word, when pursuing a deep integration of our relation-
ship concept that goes far beyond the scope of data types, chang-
es to the internal processing are indispensable. Unfortunately,
many extensions that are required for processing relationship-
specific characteristics cannot be facilitated by the current OR
extensibility.

5. Conclusions and Outlook

Obviously many database applications demand for an en-
riched relationship support encompassing adequate modeling
constructs as well as semantics enforcement mechanisms. In this
paper, we presented a model fulfilling this task and discussed the
corresponding ORIENT prototype which exploits the extensibil-
ity features of current generation ORDBMSs. Regretfully, we
have to realize that current extensibility features do not allow to
effectively integrate our enriched relationship processing facili-
ties into the DBMS server, because there are too less possibilities
of tailoring internal processing, e. g., query optimization and ac-
cess methods, to the specific properties of the extensions needed,
and of associating appropriate processing units, e. g., ‘sub-trans-
actions’. Thus, this paper demands for a better extensibility infra-
structure, ORDBMS have to be equipped by. Certainly, we have
to admit that we are not quite sure about how much extensibility
is good. The success stories of ORDBMS technology already
demonstrates the importance of making a compromise between
two extremes of extending DBMS: the “all-by-yourself” way
versus the “encyclopedic” way. The former is impractical, since
the user has to develop too complex code and needs too much
knowledge of the DBMS internals. The latter, on the other hand,
is far less flexible and requires the DBMS vendor to continually
modify its product to accommodate new types. The current OR-
DBMSs, combining benefits of both approaches, allow third par-
ty “experts” to provide special type libraries that might be
needed. Pre-defined or third-party extensions such as DataBlades
are offered as building blocks for application development. Such
a practical strategy has largely accelerated the acceptance of the
ORDB technology. Nevertheless, regarding the deficiencies ob-
served, we are convinced that extensibility features have to be
improved. In the following, we outline our vision of extensibility
by discussing some, as we think, crucial issues.

Modular system architecture. Nowadays, modular architec-
tures are prevailing. In the database area, some approaches
open the architecture of a DBMS by dividing it into a collectio
of modules that carry out different functions. These modules c
be added or deleted with well-defined, localized effects on oth
modules. This allows to extend database functionality in a fle
ble way. ADTs or DataBlades are built modularly [20]. Tha
means, an ADT and its routines can be added to or removed fr
the DBMS without affecting the rest of the system. However,
stated previously, such an OR approach relies on assumpt
about the architecture and design of the DBMS into which ADT
or the like are plugged. The system architecture is not affected
a whole. Recently, more extensibility than that of ADTs is pu
sued by an enhanced notion of ADTs, that is, E-ADTs [19]. Ea
E-ADT is able to define its own declarative language, query o
timizer, catalog management, etc. Built on top of a layer of com
mon database utilities such as persistent storage and concurr
control, E-ADTs are “loosely-coupled” modules in that there
little interaction between them. Hence, it is possible to plug in
new E-ADT or take out an existing one without adversely influ
encing other data types in the system. A more general way is
lowed by some earlier prototypes such as Open OODB [
Extensibility is facilitated, e. g., in its query optimizer, throug
the separation between different submodules (such as betw
algebraic operators and execution algorithms) which allows e
ploration with alternative methods for implementing certain fa
cilities (such as algebraic operators). Nevertheless, it seems
unclear how and by which mechanisms an open architecture
be conveniently tailored to a concrete and efficient DBMS
Therefore, up to now, no adequate architectural framework
DBMSs is known. Designing such a framework is worth furthe
study.

Common internal interface.The key to extensibility in an open
architecture lies in how interfaces are designed between mod
components. Common internal interfaces provide the foundat
upon which specific extensions can be defined and implement
Therefore, extensible systems call for a clean and comprehe
ble internal structure. In extended relational prototypes [20] a
ORDBMSs [11], each ADT implements a common interfac
through which the system can access and manipulate ADT
stances. The interface includes functions for the storage and
dexed retrieval of ADT instances as well as methods f
manipulating or querying ADT instances. Therefore, a packa
containing the definition and implementation of one or mo
ADTs can be plugged into or removed from the system. Howe
er, the OR extensibility is targeted to the type system only. Act
ally, besides complex data types, semantically rich relations
concepts are also a typical sort of extension which can be add
like version facilities and active features. Their integration, goin
beyond the scope of data types, is much more challenging. R
sonable access and changes to the existing system constitu
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are essential. Hence, a more open solution to common interfaces
than what ORDBMSs offer still needs to be pursued.

Proper abstraction.Generally, while a “black box” abstraction
(through, e. g., functional signature interfaces) might be suitable
for developing applications where code can be reused without re-
lying on anything else but the specification, reasonable exten-
sions to a DBMS demand a controlled part of its processing logic
to be revealed, thereby leading to a “grey box” abstraction. We
consider two issues of great importance, metadata and internal
rule set. Both possess the same capability to give things that will
change a handle that does not change. Postgres [20] and its OR
successors [11] adopt registration and cataloging mechanisms to
add UDTs, UDRs, as well as access methods and to supply meta-
data on type-specific operations and access methods. The system
constituents can then “react” to the extensions in a table-driven
fashion. With user-supplied code also serving as a procedural
specification of the evaluation strategy, each ADT is merely a
“black box” [19] (some existing products such as IDS/UD [11]
also allow the specification of simple semantics such as side ef-
fect or cost estimation, so that optimized access plans for queries
involving the new type can be generated. However, such a facil-
ity is far from general enough to deal with arbitrary routines hav-
ing arbitrary behavior). Therefore, it is still a crucial issue in the
OR context how to expose internal processing logic adequately.
Furthermore, to incorporate the relationship support fully in the
system, the registration mechanism and integrated storage of
metadata should accommodate more semantic implications of
extension-describing information. And the whole DBMS pro-
cessing (such as query transformation, transaction control, and
semantics enforcement) should be accompanied by that informa-
tion. Internal rules provide another flexible mechanism for ex-
pressing the behavior of system facilities and for responding to
changes at different levels. But until now, most of the work that
reveals internal processing logic by means of rule-based tech-
niques concentrates on the addition of new query transformations
and new physical operators [8]. For most of the systems and pro-
totypes, rule usage at the application level does not guarantee that
rules can be employed at the system level as well. Therefore, it is
important to have the rule support available in the DBMS and us-
able to modify the internals of the system itself. For ORIENT, es-
pecially, rules can be employed to supply the guidelines for
transforming queries, setting transaction boundaries, dispatching
semantics enforcement measures, and so on.

In summary, extensibility is a matter of degree and up to now
subjected to a certain expertise. The doubts about extensibility
with respect to security, stability and performance should inspire
us to do better instead of giving up. We believe, the object-rela-
tional approach presents a good reference point to go further.
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