in: Proc. 3rd Int. Symposium on Cooperative Database Systems for Advanced Applications (CODAS’01
Bejing, April 2001, pp. 53-62

Enriched Relationship Processing
in Object-Relational Database Management Systems

Nan Zhang, Norbert Ritter, Theo Harder

Database & Information Systems Group, University of Kaiserslautern
P.0O.Box 3049, D-67653 Kaiserslautern
e-mail: {zhand ritter / haerder}@informatik.uni-kl.de

Abstract Motivated by these observations, we address how to exploit

_ _ _ _ the extensibility as well as the expressiveness of current OR-

In this paper, we bring together two important topics of current pgMSs to realize an enhanced support of relationship semantics.
database research: enhancing the data model by refined rela-ag the paseline of the whole work, Sect. 2. presents modeling
t|on_sh|p semantics and epr0|t_|ng QRDBMS .extenS|t.)|||ty to concepts to capture semantic properties of relationships in the
equip t.he system with new functionality. Regardlng the f!rst t0P- roal world and discusses the implications such a data model en-
ic, we introduce a framework to capture diverse semantic char- richment has. Our main concern lies in adequately incorporating

acteristics of application-specific relationships. Then, in order to he pronosed concents into the svstem. For this puroose. a Data-
integrate the conceptual extensions with the data model providedt prop b y ’ PUTPOSE,

by SQL:1999, the second topic comes into play. Our efforts to re-'?’l"j‘de'b"leGd approach Whi.Ch tries (o balancg ¢ he Qesired integra—
alize semantically rich relationships by employing current tion depth against the ayallable OR extgn5|b|l|t¥ is explored in
ORDB technology clearly point up the benefits as well as the Sect. 3.. Therg, u;er-deﬂned relationships are |mplemented.as
shortcomings of its extensibility facilities. Unfortunately, defi- Constructs resided inthe database server, namely, as user-defined
ciencies still prevail in the OR-infrastructure, since the features outines (UDRs), thereby making the relationship supporta more
specific to the extensions cannot sufficiently be taken into ac-integral part of the system than just a conventional on-top supple-
count by DBMS-internal processing such as query optimization, ment. Our effort will reveal how well the ORDB technology can
and there are very limited mechanisms of adequately suppor[ingmeet the demands of handling semantically rich relationships.
the required properties, e. g., by adjusted index and storage This leads us to a thorough deliberation on DBMS extensibility
structures as well as suitable operational units of processing. in Sect. 4., by inspecting the mechanisms that are employed to
support DBMS extensibility (especially, those of the prospering
oot ORDBMSS). Finally, we give our opinion upon what character-
1. Motivation istics a proper extensibility infrastructure should present, what

To meet the increasinaly challending requirements of today’ fundamental principles should be followed, as well as where the
0 meet Inencreasingly challenging requirements of to aySchallenging problems or risks may remain. We believe, such a

applica.tions, .b0th database research and industry are being e sound understanding of the problem-specific processing will
?Sgli/ldslg) a,idrl:gj;egf;?tait#rtﬁisstgi;jeagggr??se r?;gzgﬁgzn;;fgen&i%monstrate a progressive step towards attaining a realistic no-
ject-relational DBMSs (ORDBMSS), which gain more and more tion of DBMS extensibility, as to be concluded in Sect. 5..
popularity due to their extensibility, i. e., the ability to allow user-

defined extensions to be added to the system and used in th&. Capturing Relationship Semantics

same way as native DBMS facilities [18].

As a typical sort of extension, relationships which capture the Relationships are “semantically rich” in that their interpreta-
meaning of the associations among DB objects are of particulartion does not solely lie in their names or their structural connec-
interest and importance in database applications. Thus, it wouldtions, but also in the constraints which restrict their behavior and
be very beneficial to have relationships available as modelingmust be satisfied. Semantically rich relationships exist in many
constructs and implemented in the database. However, littleapplication domains (e. g., CAx, document management, etc.).
progress has occurred in effectively incorporating their seman-To obtain an impression of the diversity they exhibit, we take a
tics into DBMSs, including the current ORDBMSSs. In most cas- simplified scenario from another project SENSOR (“Supporting
es, warranting specific relationship semantics remains to beSoftware Engineering Processes by Object-Relational Database
burdened on the application developer [17]. Technology” [9], sub-project of the SFB 501 “Development of

Table 1. Relationship examples with their semantics

Semantic aspect (generic) aggregation (application-specific) con§|st_of

0 ‘ P O (moduld ‘ P (function ‘ P (procedurd
Degree - 3
Composition O 0 (aggregation
Cardinality 11 - O 0,8 1,10
Sharability | - O] O
Existence dependency RCI, MD/CD RI/CI O RI,MD O cl o cl
Transitive operation CSs - 0 CS, MU (last_modified) CU (length) CU (length)

Notes: ‘O” owner; “P” participant; ‘0" predefined; *” to be further specified;[" inherited; “I' not existing

Large Systems with Generic Methods”, funded by the German gregationwith add-on semantics (denoted withl ") as to be
Research Association DFG) conducted in our group. In this sce-discussed later on in this section. In the table, symbbirieans
nario, software constituents arising throughout the whole devel-that a semantic aspect is not necessary for the relationship.
opment process are interrelated. At the implementation level, a Below we give a brief introduction of the structural and oper-
program consists of several modules. Each module, in turn, isational properties that are relevanttnsist_afSome of the se-
made up of different functions and procedures. All these compo-mantic properties have also been (partly) analyzed by related
nents are managed in a repository. To achieve the “traceability"work such as [6, 13, 16]. However, a thorough consideration of
between different development phases, software components arghem can be found nowhere else but in [22].

further divided into packages according to the requirement spec- . .
ifications they realize. Moreover, programs and modules may b eS’[ructural properties. In respect of structural connections, we

continuously under evolvement. Some changes in a program m’dent'fy the following fundamental chgrgctenstlcs. . .
module produce a new version of it. While the new version re- * Degreedefines the number of participants associated in the

places the old one, the dated version might be archived for future'€lationship. Foconsist_dfit is three.

reference. This scenario encompasses a number of relationships, Cardinality places restrictions on the number of instances of
including not only generic ones but also application-specific e participant that can be associated with a single instance of
ones. Typical examples of generic relationships are among othih€ relationship. in our example, at least one and at most ten pro-
ers aggregation relationships [14] (e.g., the relationship cedures have to be included in a module.

consist_obxpressing that entityoduleis assembled with entity ~ * Composition determines how the participants of a relation-
functionand entityprocedurg. Thus, the data involved is ingen- Ship cohere. A relationship with the composition property is
eral not only structurally related to, but also semantically depen- called a “composite relationship” (e. gonsist_obs mentioned

dent on each other, which has great implications both on data@Pove); otherwise, it is a “non-composite relationship™ An
modeling and on data processing. instance of a composite relationship is a “composition”. While

in a non-composite relationship all participants play the uniform
role, the composition property assigns different participants of a
relationship different rolesOwner (e. g., modulg plays the
superordinated role anghrticipant (e. g.,functiony from now

on, when speaking about participants in a composite relation-
ship, we always mean patrticipants other than the owner) are sub-
ordinated to the owner. Operations are propagated from the

In our approach, we considerelationship modeling an as-
sociation between two or more entitigg(ticipants). We use
the term “relationship” as synonym of “relationship type” and
“participant” as synonym of “participating type”. Relationships
are primary modeling constructs with their exact, application-
specific properties modeled in an explicit manner. Generic, built-
in relationships are supported as well. In this way, it is possible,

on one hand, to capture subtle differences among relationshipéjWner to gther part|C|p:_;1nts.]]
and, on the other hand, to make the relationship facility easy to* Sharability (orexclusivenespdenotes, in case of a composite
be reused and extended. relationship, whether a participant instance can be associated in

. . . , more than one relationship instancecbmnsist_gfa function or
Tab. 1 characterizes two relationship examples. The first ex- .
. . . a procedure can not be shared among different modules.
ampleaggregationdeals with how a complex object (a compos-
ite object or an aggregate) is assembled with its integral parts (orOperational properties. Operational properties can be inter-
components). The aggregate (denoted@9 ‘and all its parts ~ preted as consecutive actions that an operation on a participant
(denoted asP”) should be addressed collectively as a whole and may cause, i. e., operation propagation. To govern existence de-
can be defined to exist together. As a generic relationabigre- pendency, certain insertion or deletion operations should auto-
gationhas some properties predefined (denoted witt) While matically trigger actions on related objects. Besides, there are
others varying in concrete application domains (denoted with “ also other cases when DB operations must be executed transi-
). The second examplepnsist_qfreflects that a module is as- tively. For instance, selection operations at the aggregate level
sembled with functions and procedures. Itis a special kirdjof ~ can be propagated to the part levels, or vice versa.

» Mandatory Deletion (MD): Upon deletion of an object, its the relationship to be addressed is explicitly indicated following
associated objects are also deleted, even though they may bthe referencing construct,’like m.consist_oin the first query.
involved in other relationship instances. In addition, the corre- « The contents to be accessed is specified with the dereferencing
sponding relationship instances are also removecbhsist_af construct “>". To avoid obscurity when several participants of a
the deletion of a module will cause the deletion of all its parts. relationship have the same attribute (elanguagg, a certain

« Conditional Selection (CS) The selection of an object participant (e. g.functior) can be designated with the partici-
returns this object and (only) those associated objects involvedpant-resolving construc{)” following the relationship name.

in the given relationship instance.donsist_gfselectingamod- « OrientSQL's query facility considers a complex object and all
ule also renders its parts. its parts collectively, in accordance with the composition prop-

« Conditional Insertion (CI) : Upon insertion of an object, the erty and the selection semantics. For this purpose, the owner
relationship instance is established between this object and thosée. g.,modulg and the relationship name (e. gansist_of are
associated objects that already exist, while associated objectexplicitly used in theFROM clause to specify the scope of the
that do not exist yet are represented with placeholders (stubs). Iquery. The second query then returns not only the qualified
consist_afa function or procedure can always be inserted even modules but also their functions and procedures.

if there exists no module for it. In this case, a “stub” module is Query1l: Find the names of all modules which consist of

used to establish a “partial” relationship instance. functions written in Java.

« Restricted Insertion (RI): Upon insertion of an object, the OrientSQL: EEBE,\%%E%"‘;

relationship instance must be established between this object WHERE m.consist_of (function) -> language = ‘Java’
and all other associated objects. If any associated object is N0t query 2. Find all modules designed by Zhang together with

available in the database, the insertion is deniedolmsist_of their constituents.
the insertion of a module cannot take place if there exists no ~ OrientSQL: SELECT * _

. . e . . FROM module (consist_of) m
function or procedure yet. In this case, an “entire” relationship WHERE m.designer = ‘Zhang’
instance is required.

For semantics controlling purpose, the modeling constructs
should be reflected at the database language level. Both, DDLRelationship insertion and insert block To build a consistent
extensions for the definition of semantically rich relationships as relationship instance, a special facility is provided for two pur-
well as DML extensions for the retrieval and manipulation of the poses: First, for the user to intentionally group together several
data corresponding to the specified schemas are needed. This r@perations so that participating objects are inserted before the in-
sults in OrientSQL, with SQL-like syntax conforming to the cur- sertion of a relationship instance; second, for the system to ensure
rent database standard [21]. While a thorough description ofthe “success unit” of all necessary operations to build a consistent
OrientSQL can be found in [22], some examples are given hererelationship instance. This facility is calledert block.

An insert block comprises a sequence of insertion operations
that will be executed with the examination of insertion semantics
delayed at the block end. F&I property, it will be checked up

Figure 2: Querying examples

Relationship specification The statements in Fig. 1 define a
new relationship on the basis of a generic one.

CREATE RELATIONSHIP aggregation to the block end, which associated objects of the relationship in-
gg,\?ggftéT%V\,\lﬂ'\LEDFj\TORY DELETION stance are missing and whether stubs have to be create®ll For
ON SELECT CONDITIONAL SELECTION, property, it will be decided up to the block end, whether all the
part PARTICIPANT); associated objects have already been inserted so that the relation-
CREATE RELATIONSHIP consist_of UNDER aggregation (ship instance can be constructed, or whether all the insertions
module OWNER (aggregate) within the block have to be rejected.

ON INSERT RESTRICTED INSERTION
ON UPDATE (last_modified) MANDATORY UPDATE,

function PARTICIPANT (part) 3
NON SHARABLE :
CARDINALITY [0,8]

Implementation Approach

ON INSERT CONDITIONAL INSERTION Our work has two primary goals in respect of relationship
ON UPDATE (length) CONDITIONAL UPDATE, - AL

procedure PARTICIPANT (part) support. The first is to exceed the modeling limitations imposed
NON SHARABLE by the DBMS and its data model. Such a goal has been achieved
CARDINALITY [1,10] ; .
ON INSERT CONDITIONAL INSERTION through two Ieve,Is of extepsmns [22]. the F:onceptugl construqts
ON UPDATE (length) CONDITIONAL UPDATE); close to the user’s perception of relationship semantics appearing

in the real world, and the language mechanisms allowing rela-
tionships semantics to be defined in the schema and considered
Querying: Fig. 2 shows two simplified OrientSQL queries. in data retrieval and manipulation. The second goal, i. e., to make
 OrientSQL's path extensions enable to access data objectthe DBMS responsible for enforcing the specified relationship
across user-defined relationships. For this purpose, the name aemantics, will be addressed in this section.

Figure 1: Relationship definition

tem through existing interfaces instead of touching the internal
processing. Our relationship support follows this way.

Generally, for any extension of DBMS facilities, there exist It makes particular sense to implement relationships as con-
different implementation approaches that entail varying accept-structs handled in the system, thereby reducing the client/server
ability of the resulting system. These alternatives can be distin-communication overhead and enclosing application semantics in
guished according to the depth of integration between thequerying. The OR extensibility appears to be very instrumental
underlying DBMS and the extensions. to this task: In contrast to the classical way of defining a supple-

One extreme along this dimension is a “naive” mapping ap- mentary layer on top of the system, ORDBMSs offer several
proach in which declarative OrientSQL constructs are realized asmeans for the user to compile and reside programming code
“syntactic sugar” of built-in constructs of the logical data model, within the server as “predefined database routines”. These means
without resorting to any procedural code. The functionality include stored procedures, triggers, and UDRs. Among them,
achieved, however, is restricted by native features of the under{UDRs are most attractive to us because of their portability, the
lying system. In our case, even with the expressive power of ob-expressiveness they exhibit, as well as the ability to define type-
ject-relational data model (ORDM) constructs, e. g., references,specific behavior and to hierarchically organize “relationship”
PK/FK pairs, collection types, declarative constraints, and trig- UDTs. Accordingly, the intended functionality can be achieved
gers, some precise relationship semantics such as compositioin such a manner that:
still gets obscured during translation or is difficult to translate, as « User-defined relationships are realized as UDTs with specially
evident in [22]. designed data structures and operations.

3.1. General consideration

............ P module ¢ oo » UDTs are organized into a hierarchy to support refinement and
""""""" oA o T extension during implementation.
owner yrefrent » The whole implementation is encapsulated in a pluggable
¥ |] ngﬁ?;;;‘;;-‘” . | package, which extends the system with desired relationship
L oretrep] ¥ participansy Rt rept o support and can live inside the DBMS V\{hen needed. .
s [T function | [procedure] 1] x This way, a reasonable compromise is made between desired
s *: T . integration depth and available OR extensibility. Below, we will
Gt OR(. ::getAPR0:: ' .get0RB(' discuss the implementation philosophy in more detail.
getRO() "TQERP(0 T '"getBO) " ,
imp_consist_of 3.2. Basic constructs
C | | | —> -—--P ORDMs allow the definition of UDTs to build up an organi-
visible to user invisible to user referencing mediating

zational framework for the new functionality.

Figure 3: Relationship definition . . .
9 P Representation constructs First of all, to represent relation-

The other extreme is deep integration that seamlessly coupleships and to accommodate their instances, special data structures
newly-added modeling constructs with the rest of the DBMS. To are defined in a DB schema. This is accomplished through “sche-
achieve this promising goal, reasonable extensions at the proma expansion” in that a user-defined relationship is expanded
cessing level are indispensable. Unfortunately, this demand caninto a structured type and a corresponding table. As shown in
not be met, even by current ORDBMSs that are labeled Fig. 3, the schema expansion process has several steps:
“extensible”. Some functions, such as the support for a kind of O Type definition: A separate “relationship representation type”

block atomicity necessary for the construction of composite rela-
tionship instances, may not be realizable. This is because none of
the available ORDBMSs (and of course other commercial sys-
tems) provide access to transaction manager information, nor do
they allow us to gain control as needed and to define the commit[]
or abort methods. While the OR extensibility makes the integra-
tion of user-defined types (UDTs) and type-specific behavior rel-
atively easy, its application to the relationship support which
goes beyond the scope of data types is still not feasible [22]. O
Between these two extremes is a spectrum of layered archi-
tectures where extensions are built on top of the existing DBMS.
In comparison with “direct mapping”, this alternative aims at
dedicated implementation rather than only naive use of the built-
in data model features. Moreover, it also differs from “seamless
integration” in that it incorporates new functionality in the sys-

(or “representation type'onsist_ofis defined to represent
the relationshigonsist_obetween the participants, which, in
turn, are represented by structured types (i. e., “participant
representation typesfiinction procedureandmodule
Multi-connection: The relationship representation type
consist_ofs connected to its associated participant represen-
tation types via reference attribufgsrticipant;, participans,
andowner, respectively.

Reference mediation: In the opposite direction, a hidden
reference attributeef_reptis added to each of the participant
representation types to refer to the relationship representation
typeconsist_afSuch a reference attribute actually mediates
the connection between one participant to the other partici-
pants through the user-invisible relationship representation
type in the expanded schema.

Each instance of a representation type, i. e., “representatiorthe removal of an aggregate causes the propagation of the remov-
object”, describes an occurrence of the user-defined relationshipal to all its parts. When a user-initiated operation is executed, the
Interfaces to manipulate representation objects, such as the cremonitoring implementation types activate enforcers. In case of
ation of new ones and the connection of them with participating rejection, the effect of a user-initiated operation must be undone.
objects, are provided by special UDRs (see below). For this purpose, the transaction mechanism can be employed.
The propagation processing, on the other hand, is more compli-
cated. Propagation means manipulating multiple instances of this
and other related participants as well as multiple instances of the
. 2 : . o involved relationships. Hence, the “enforcement target” such as
participant-indicating attributes, semantics-describing at- to-be-deleted” has to be determined before the propa-
tributes, semantics-ensuring routineg“enforcers” governing ms_tances to_ € : prop

. gation. For this reason, each enfore®outine (pjs composed

semantics specified for a user-defined relationship and “moni- . i
: : . of two subroutines: one (such @$argetDelete (p, J)determin-
tors” scheduling the enforcers attached to an implementation. (asarg (b,)d

) . : o . ing the enforcement target, the other (sucteBelete (1) per-
type; they supply the basis for operation rewriting which prepro- . . . '
. forming the operation propagation to enforce the semantics.
cesses SQL DML statements to let them pay attention to the.. . . . :
o : - : y : Since an implementation type may be equipped with a number of
specified semanticsfraversal-mediating routines (“media-

tors” leading the traversal through the participating objects in the enfo_rcers, they_must be correctly arr_anged and scheqluled by
. . . -monitors to deliver expected semantics control behavior. For
presence of the relationship (representation) constructs; on this s L . .\
. . . A each participant, a monitor is defined. All the enforcers “related

basis, the referencing/dereferencing mechanism is overloadedso,, the participant. i. e. needed to maintain certain semantic
that it can continue to work in OrientSQL just as in SQL:1999), P pant, I €., S

relationship-manipulating routines (“manipulators” process- prqpemes th_at may b_e violated b_y operations issued on th_at par-
ing those OrientSQL statements that support the manipulation Oft|C|pant, are included in that monitor. These enforcers are identi-

lationshi h 48SERT RELATIONSHIR ide th fied by analyzing the entries in the catakeigoutinavhere all the

relationships such as: . Ihey provi €€ " enforcers defined for the relationship concerned are registered. A
instance-level operations on representation constructs in the fol-

) . - . . monitor includes a “checker” and a “dispatcher”. The checker
lowing forms: instantiation of representation types, retrieval/ . - :
g : ; . . . detects the operations on the participant that may violate seman-
maodification/deletion of representation objects, connection/dis-

. : . . : .. tics under the current condition. Based on the checker’s output,
connection of relationship representation objects and participat- . . .
) . the dispatcher then activates the enforcers encapsulated in the
ing objects). MONItor.

Implementation types are arranged within a hierarchy. At the
top level of this hierarchy is the most generic typeentRela- Operation rewriting . Note, aforementioned routines them-
tionshipwhich delivers common behavior embedded in all rela- selves do not exhibit inherent active behavior. EXp'ICIﬂy invok-
tionships. Specialization down the hierarchy enables subtypes tdnd them from the application code would entail all the negatives
inherit or augment the structure as well as to inherit or even over-Of user-managed semantics. Hence, it is more reasonable to exe-
write the behavior of the supertype, thus facilitating incremental cute them impilicitly. In this way, the impact of semantics-ensur-
implementation. In the hierarchy, the bottom level reflects appli- iNg measures on regular SQL DML statements will also be
cation-specific implementations; and those at the higher levelsminimized. For this purpose, the SQL data manipulation requests
are generic with their semantics common in several applications.are rewritten (by OrientPre, cf. Sect. 3.5) to those that invoke ap-

The following two subsections will address the procedural Propriate monitors encapsulated in appropriate implementation
part of implementation constructs, regarding how to ensure se-YPes: Inthis way, DML operations are endowed with new mean-

mantics and how to traverse relationships, respectively. ing. A deletion operation on the modutgfor example, is at first
captured by the rewriting process and then augmented with a call

to the monitor defined fanodule After proper checking and dis-
patching, this monitor will invoke the subroutireDelete (1)

Automatically warranting relationship semantics demands wherel is o_btamed by calculating the enforcement target using
the subroutineTargetDelete (m,)

the system to react on given DB operations, which can be natu-
rally reflected using a set of descriptions based on the ECA no- . . .
tion. These descriptions, called “enforcement rules” [22], supply 3.4. Traversing relationships
a suitable basis for constructing semantics-ensuring measures.

Implementation constructs A user-defined relationship is im-
plemented as an object type in its own right. Such a “relationship
implementation type” or “implementation type”, is composed of

3.3. Ensuring semantics

To support OrientSQL’s paths, SQL:1999's referencing/
Enforcers and monitors. An abstract enforcement rule is “ma- dereferencing mechanism which facilitates traversal across refer-
terialized” by replacing its action part with a procedural enforcer. ences should be overloaded to allow traversal via user-defined
Basically, the reactions to semantics violation are of two kinds: relationships. Mediators build an essential basis for this by pro-
“rejection” and “propagation”. For instance, the existence of an viding the participating objects with a local view on the relation-
aggregate object causes the rejection of the removal of a part, andhip. As mentioned previously, for each user-defined

relationship, there is a group of mediators. A mediator retrieves ImptBuilder is more complicated, especially regarding how in-
participating objects of one type from a participating object of cremental, extensible implementation is facilitated. For this pur-
another type via the representation object. Assume, from an in-pose, OrientDic and OrientLib deliver the necessary support.
stance tfn) of the referencing typenfodulg to an instancef) of OrientLib packages all the existing implementation types (orga-
the referenced typdunction, there is an instance)(of the rep- nized into a hierarchy as mentioned in Sect. 3.2), from which
resentation type cpnsist_of The expression new ones can be derived. As a complement, OrientDic provides
m.consist_of (functior} resolved using the mediator encapsu- the metadata needed for the generation process. It supplies cata-
lated in the corresponding relationship implementation construct.logs that contain information about existing implementations:
eRuleindicating enforcement rules already consideefthutine
3.5. ORIENT prototype indicating enforcers already generated, as watgTypendi-

Now, we build the prototype ORIENT (Object-based Rela- cating implementation types and monitors already constructed.
tionship Integration ENvironmenT) with system-controlled use OrientSQL/SQL DML

of relationships as the focus and other auxiliary specification and
maintenance support around. Its architecture is outlined in Fig. 4.

[Orentoraw]

OrientSQUISQL gikgran OrientSQL/SQL s

0
‘ OrientMap ’
- [

refldere call to
overloading|+ mediator

(2]
S operaion
§ OrientCop o) ~ rewriting |- _ 4
OrientSQL OrientSQL/SQL | SQL @ native SQI *e
9 5002 T A 2 | w < callto s 5
& P g. il T manipulato =
8 rientGen rientPre - {rewriting/recording]| call to 2
implementatio SQL + monitor sy =
type UDR call] i Lo’
- ~END WORK—1 [Taaling |-
DBMS no (rParticipating (initTarget)
OrientLib : .
Figure 4: Architecture of ORIENT Figure 5: Processing steps of OrientPre

OrientDraw : The schema editor provides an easy-to-use designQOrientPre: The precompiler rewrites a user-initiated request to
interface by supporting ESR (Entity/Semantic-Relationship) di- meet the need for relationship-specific processing. It augments

agrams [22]. the user-initiated request with invocation of appropriate routines
OrientMap : The schema translator is responsible maps graphi-(i. e., mediators or monitors) using three kinds of transformation:
cal elements into corresponding OrientSQL specifications. The first overloads SQL:1999's referencing/dereferencing

OrientLib : The extension package contains relationship imple- mechanism to support OrientSQL paths; the second translates
mentation types. This component is considered to be a pluggabledrientSQL DML operations into appropriate manipulators; and
module of the database server. the third rewrites native SQL DML operations by activating
OrientDic: The metadata manager contains all metadata usefulproper semantics enforcement code. While the first two tasks can
for ORIENT. It is utilized and also continually enriched by the be realized almost purely through syntactic analysis, some expla-
other components. nation of the third is necessary. Ideally, to support the non-local
OrientCop: The statement dispatcher is a “filter” of user-initiat- nature of a relationship, an implementation type should be able
ed requests or statements. It distinguishes statements that nead supervise the operations applied to its participants. However,
ORIENT-specific processing from statements that do not. For there is no direct communication path for a UDR encapsulated in
each OrientSQL statement of the former kind, OrientCop makesan implementation type to be aware of any operation performed
a call to OrientGen or OrientPre, depending on whether thaton any participant. To solve this problem, OrientPre adds a “re-
statement is for definition or for manipulation purpose. cording” mechanism through which information about opera-
OrientGen: The package generator converts declarative Ori- tions issued on DB objects is collected. The resultis stored in the
entSQL (DDL) specifications into operational ORDM con- tableinitTarget with entries describing user-initiated operation
structs. It is composed of two submodules: ReptBuilder (OP), target participantR), and target participant instances. (
responsible for the creation of relationship representation typesThen, OrientPre uses an “awaking” mechanism to choose and to
and ImptBuilder responsible for the generation of relationship call proper monitors for ensuring the relationship semantics
implementation types. In comparison with ReptBuilder which which may be violated. The monitors are determined with the aid
conducts schema expansion as discussed in Sect. 3.2, the task of a certainrParticipating catalog in OrientDic. This catalog

lists, for each entity in the schema concerned, all the relationships ~ Another problem is the interaction of declarative queries with

it participates in, together with the monitors defined for the given UDRs that embody relationship processing, whose optimization
participant in the corresponding implementation types. Thus, raises a question as how to convey knowledge about relation-
with the help of OrientPre, relationship semantics is controlled in ships and their semantics to the system. Current ORDBMSs can-
such a way that an implementation type is equipped with the not deliver a satisfactory answer, since they treat UDRSs as “black
“simulated” ability to supervise the participants. This preprocess- boxes”. While ORDBMSs optimize relational operations like
ing alone, however, places only extensions to individual DB op- JOIN, there is hardly any optimization for UDRS, since the sys-
erations. To make relationship maintenance an integral part oftem understands little semantics about each UDR. A UDR is
normal transaction processing, it is certainly not enough to takemerely a name or a signature, with minimal information such as
semantics-ensuring measures only as “side effects” of single DBside effects or user-speculated costs. Due to the closed system ar-
operations. Rather, a user-initiated transaction as an entiretychitecture, it is a delicate task to preprocess OrientSQL in such a
should be considered as the rewriting granularity and conse-fashion that the resulting query is not “misunderstood” by the
quently the enforcement granularity. Generally, a DB transaction query optimizer. To this end, sound knowledge of the underlying
is composed of a sequence of user-initiated operations whichsystem, particularly of its query optimizer, is imperative. But
must be applied to the database as an atomic unit. Having this ireven then the DBMS may be too “dumb” for passing its valuable
mind, the rewriting is carried out in a “bulk” fashion: Until the optimization information.

last command within a user-initiated transaction is encountered, Therefore, the presented approach is still an “on top” one, in
the enforcement code is not constructed, but rather “accumulatthat it is outside the DBMS engine and, consequently, outside all

ed” by OrientPre, which then works as in Fig. 5. its underlying constituents. This solution (and probably not only
for ORIENT) renders a new “application layer” in between the
3.6. Remarks DBMS and the real application. In the long run, we hope, the im-

provement of the OR extensibility as well as the evolvement of

Taking the commercial ORDBMS IDS/UD [11] as imple- our prototype will lead to a more satisfactory result. Particularly,
mentation platform, the UDRs together with UDTs that are en- When more knowledge of relationships is conveyed to the sys-

capsulated in OrientLib constitute a DataBlade which can be tem, their entailed potential for a more dedicated implementation
installed into or removed from IDS/UD. could be well utilized. But at present, the fundamental question

k- is still: What is the necessary infrastructure to achieve real exten-

Concerning extensibility, obviously, using an extension pack- = ="
g v y g P sibility?

age like DataBlade offers a way to enhance the DBMS function-
ality. However, registering OrientLib as a DataBlade in the

system only means that the systemis made aware of itsexistencel, Deficiencies of (O R)DBMS Extensibiﬁty
No customization of the internal DBMS implementation is pos-

sible. Deviations from the expected functionality are inevitable. The previous discussion reveals that integrating our relation-
In our setting, some tasks desired from the underlying DBMS ship concepts would be less painful and more effective, if some
cannot be realized or have to be simulated. For example, overadequate facilities could be provided by the underlying system.
loading the referencing/dereferencing mechanism only resem-DBMS extensibility addresses the need to get a DBMS offering
bles a kind of view substitution, rather than deeply-integrated enough possibilities to adapt or expand its functionality, so that
processing of relationships. Moreover, although registeredspecial processing could be better incorporated with the existing
UDRs decrease the communication overhead across the DBMSnechanisms. We have also observed that the current ORDBMSs
interface, this is only the case for seamless usage of extensionsare successfully presenting some degree of extensibility. Howev-
The implementation of ORIENT resorts to the precompiler Ori- er, the actual exploitation thereof often runs up against its limit.
entPre to invoke appropriate UDRs, which implies a layer of in- Therefore, this topic still deserves our further investigation. Let
direction between ORIENT and the DBMS. us at first review the efforts (especially, those of the ORDB tech-
Furthermore, the “bulk” rewriting approach taken by Orient- nology) that intend to make DBMSs more or less extensible.
Pre seems to comply with the insert block concept which requires Since the mid-eighties, several research projects have been
to delay the enforcement of insertion semantics. However, thedealing with extensibility [4]. Some of them select a specific data
way OrientPre processes an insert block, the only possible actiormodel (mostly relational) and implement interfaces through
when the insert block must be rejected is to let the whole transac-which extensions can be added. Usually, they open up the type
tion embodying that block be rolled back. True block atomicity system to incorporate more complex data types [20]. Abstract
cannot be obtained. To provide the desired failure handling se-data types (ADTS), their functions, and possibly their access
mantics and to avoid the complete transaction rollback, nestedmethods can be defined by the user. Once registered with the da-
transactions or user-defined checkpoints are needed, but, unfortabase system, an ADT (ADT is termed differently in different
tunately, are not supported by IDS/UD. places, e. g., UDT or structured type in SQL:1999 [21] or opaque

type in IDS/UD [11]) is used just like a built-in type. This ap- role in query optimization if well exploited. Taking the second
proach is pioneered by the ADT-Ingres project, carried on by the query in Fig. 2 as example, the owner (e.rgqdulg and other
Postgres project [20], and now followed by the ORDB technolo- participants (e. gfunctionand procedurg are expected to be
gy [11]. Others such as Exodus [7], Genesis [1], and Openused together in one query to build up the complex objects. In
OODB [3] strive for more generality by supplying a set of kernel [22], it is specially treated by means of a new operator which
facilities plus “toolkits” for constructing domain-specific brings all the target objects of a propagated operation into the
DBMSs, but toolkits did not gain general acceptance [5]. processing scope. Regrettably, it is difficult for current OR-

Driving the relational database technology in the direction of DBMSs to correctly optimize (expensive) UDRs. Although the
object orientation, current (ORDBMS) products provide support developer can provide simple information about user-defined ex-
for two kinds of “objects”, ADTs and row types. Row types offer tensions to influence query optimization and the optimization
a direct enhancement of the type system for relation tuples. Infules can access certain system tables to get this information,
comparison, the role of ADTSs, & la Postgres [20], is to enable themMore semantic knowledge (such as that about explicitly specified
set of built-in types to be expanded with the UDTSs. In this sense, élationships and their semantics) cannot be exploited. More-
the ADT concept embodies more extensibility and reflects a big OVer, although UDRs offer theoretically unlimited possibilities to
step forward from the “BLOB” approach used by relational sys- €xtend the operations available for data, they cannot provide ex-
tems to support complex data. Currently, vendors or third-party tensibility at the level of operators or algorithms. The reason is
developers are marketing ready-made, ADT-based extensioriha, in the table-driven way, the query optimizer is unable to get
packages (e. g., DataBlades [11], DataCartridges [15], and Ex-2dditional strategies for the processing of new features.

tenders [10]) for managing complex data such as text and imagegensiple access methodinother shortcoming of current ex-

Current ORDBMSs follow a “table-driven” approach [20]in tensibility mechanisms occurs, when special relationship indexes
regard to the ADT concept, i. e., they are able to “recognize” the or path indexes containing condensed information about inter-
newly-added extensions and, this way, allow users to integratepbject references are expected to accelerate the construction of
them into “normal” processing. However, with the table-driven complex objects or the traversal in a relationship structure [22].
mechanism, additional features are treated by the system just likey/hile generalized B-trees in some ORDBMSs make B-trees ex-
the existing ones. Extensibility demands calling for more chang- tensible with respect to the data types that can be indexed, they
es of processing logic, unfortunately, cannot be satisfied, as to bejo not allow to define all kinds of index structures such as those
exemplified below. across more than one type or table.

Extensible query optimization. Considering, e. g., the first Ori- Extensible transaction model.Yet another shortcoming is evi-
entSQL query given in Fig. 2, the transformation performed by dent, when trying to support the insert block concept introduced
OrientPre (cf. Sect. 3.5) results in several extensions such as thén Sect. 2.. Here, an extensible or at least flexible, hierarchical
UDT defining the relationship implementation type and UDRS processing concept is needed to support atomicity at block level,
representing traversal-mediating routines (Sect. 3.2). Traversato facilitate error reporting related to the block granule, to provide
mediation introduces path elements (i. e., relationships and parplock-internal recovery, as well as to conduct multi-statement
ticipants) of an OrientSQL path into processing scope, thus per-optimization which considers the set of statements contained in
mitting to traverse from one participant to another via existing the same insert block as a unit. An extremely important topic in
relationships. This, however, facilitates only naive following of a this context is about the transactional boundaries. The associativ-
relationship structure, which is not always optimal when com- ity of operators influences where those boundaries can be put.
puting an OrientSQL path. As indicated in [22], query processing Especially, the use of an insert block inside a normal transaction
would be more efficient if the optimizer could recognize the op- requires dedicated “scope control” so that semantics checking is
timization potential embodied in the path, analyze feasible per-delayed only to the block end when all relevant insertion opera-
mutations of the path computation sequence, and rewrite the pathions are executed. Since SQL (and also most of the commercial
into joins if necessary. For this purpose, it is essential to represenDBMSs) guarantees only statement atomicity, an effective solu-
an OrientSQL path as a sequence of new operators which makéion is the use of nested transactions to support the fine-tuning of
all inter-object relationships explicit and to extend the optimizer the control/rollback scope [22, 23]. When the deferred checks do
by additional operator-shuffling transformations. Besides, ORI- not reveal a violation of the specified semantics, the block con-
ENT relationships are not merely descriptions of structural con- cept behaves just like SQL’s deferred constraint checking mode.
nections, they also possess a lot of semantic meaning which mayn case of an integrity violation, the subtransaction bracketing the
have considerable influence on query optimization. Particularly, insert block is rolled back, thereby providing the desired failure
special composition properties not only determine the construc-handling logic. All this implies that existing rules of drawing
tion of a complex object and sharing of part objects, but also transaction borders might have to be modified upon introducing
characterize the transitive propagation of operations in a (possihew operators for flexible transaction control. According to
bly multi-level) hierarchy. Hence, they can play an important Sect. 3.3, data update requests are rewritten to take semantics-en-

suring operators into account. This processing, however, only re-Modular system architecture. Nowadays, modular architec-
tains SQL's statement atomicity in such a way that a user- tures are prevailing. In the database area, some approaches try to
initiated DB operation will still be logically atomic in spite of open the architecture of a DBMS by dividing it into a collection
several physical operations involved for semantics-control pur- of modules that carry out different functions. These modules can
poses. In case the block atomicity is heeded, transaction semarbe added or deleted with well-defined, localized effects on other
tics should be respected during internal rewriting. What is neededmodules. This allows to extend database functionality in a flexi-
are not only additional operators for maintaining relationship se- ble way. ADTs or DataBlades are built modularly [20]. That
mantics, but also additional operators for providing adequate means, an ADT and its routines can be added to or removed from
transaction support. However, in available ORDBMSs, it is al- the DBMS without affecting the rest of the system. However, as
most impossible to provide extensible transaction models. stated previously, such an OR approach relies on assumptions
In a word, when pursuing a deep integration of our relation- about the architecture and design of the DBMS into which ADTs
ship concept that goes far beyond the scope of data types, changr the like are plugged. The system architecture is not affected as
es to the internal processing are indispensable. Unfortunatelya whole. Recently, more extensibility than that of ADTs is pur-
many extensions that are required for processing relationship-sued by an enhanced notion of ADTs, that is, E-ADTs [19]. Each
specific characteristics cannot be facilitated by the current ORE-ADT is able to define its own declarative language, query op-
extensibility. timizer, catalog management, etc. Built on top of a layer of com-
mon database utilities such as persistent storage and concurrency
control, E-ADTSs are “loosely-coupled” modules in that there is
little interaction between them. Hence, it is possible to plug in a
_ o new E-ADT or take out an existing one without adversely influ-
~ Obviously many database applications demand for an en-gping other data types in the system. A more general way is fol-
riched relationship support encompassing adequatg mOde“n%wed by some earlier prototypes such as Open OODB [3].
constructs as well as semantics enforcement mechanisms. In th'ﬁxtensibility is facilitated, e. g., in its query optimizer, through

paper, we presented a model fulfilling this task and discussed thep,e genaration between different submodules (such as between
corresponding ORIENT prototype which exploits the extensibil- 5|4epraic operators and execution algorithms) which allows ex-

ity features of current generation ORDBMSs. Regretfully, we ploration with alternative methods for implementing certain fa-

have ,to rea}lize that current gxtensibility featgres do nqt allow.t.o cilities (such as algebraic operators). Nevertheless, it seems still
effectively integrate our enriched relationship processing facili- unclear how and by which mechanisms an open architecture can
ties into the DBMS server, because there are too less possibilitiesbe conveniently tailored to a concrete and efficient DBMS

of tailoring internal processing, . g., query optimization and ac- Therefore, up to now, no adequate architectural framework for

cess methods, to the specific properties of the extensions needetﬁ)BM Ss is known. Designing such a framework is worth further
and of associating appropriate processing units, e. g., ‘sub-transétudy '

actions’. Thus, this paper demands for a better extensibility infra-

structure, ORDBMS have to be equipped by. Certainly, we have Common internal interface. The key to extensibility in an open

to admit that we are not quite sure about how much extensibility architecture lies in how interfaces are designed between modular
is good. The success stories of ORDBMS technology alreadycomponents. Common internal interfaces provide the foundation
demonstrates the importance of making a compromise betweeripon which specific extensions can be defined and implemented.
two extremes of extending DBMS: the “all-by-yourself’ way Therefore, extensible systems call for a clean and comprehensi-
versus the “encyclopedic” way. The former is impractical, since ble internal structure. In extended relational prototypes [20] and
the user has to develop too complex code and needs too mucWRDBMSs [11], each ADT implements a common interface
knowledge of the DBMS internals. The latter, on the other hand, through which the system can access and manipulate ADT in-
is far less flexible and requires the DBMS vendor to continually stances. The interface includes functions for the storage and in-
modify its product to accommodate new types. The current OR-dexed retrieval of ADT instances as well as methods for
DBMSs, combining benefits of both approaches, allow third par- manipulating or querying ADT instances. Therefore, a package
ty “experts” to provide special type libraries that might be containing the definition and implementation of one or more
needed. Pre-defined or third-party extensions such as DataBladeADTs can be plugged into or removed from the system. Howev-
are offered as building blocks for application development. Such er, the OR extensibility is targeted to the type system only. Actu-
a practical strategy has largely accelerated the acceptance of thally, besides complex data types, semantically rich relationship
ORDB technology. Nevertheless, regarding the deficiencies ob-concepts are also a typical sort of extension which can be added,
served, we are convinced that extensibility features have to beike version facilities and active features. Their integration, going
improved. In the following, we outline our vision of extensibility beyond the scope of data types, is much more challenging. Rea-
by discussing some, as we think, crucial issues. sonable access and changes to the existing system constituents

5. Conclusions and Outlook

are essential. Hence, a more open solution to common interfacef?] Batini, C., Ceri, S., Navathe, S. B.: Conceptual Database Design:
than what ORDBMSs offer still needs to be pursued. An Entity-Relationship Approach, Benjamin Cummings, 1992.

. S y . [3] Blakeley, J. A., Mckenna, W. J., Graefe, G.: Experiences Building
Proper abstraction. (_Benera_lly, whlle_ a “black box_ abstractl_on the Open OODB Query Optimizer, Proc. 1993 ACM SIGMOD Conf.,
(through, e. g., functional signature interfaces) might be suitablewashington, D. C., May 1993, 287-296.

for developing applications where code can be reused withoutreq4] - carey, M. J. (ed.): IEEE Data Engineering Bulletin 10:2, Special
lying on anything else but the specification, reasonable exten-|ssue on Extensible Database Systems, 1987.

sions to a DBMS demand a controlled part of its processing logic [s] carey, M. J., Dewitt, D. J.: Of Objects and Databases: A Decade
to be revealed, thereby leading to a “grey box” abstraction. We of Turmoil, Proc. 22nd VLDB Conf., Mumbai, India, Sept. 1996, 3-14.
consider two issues of great importance, metadata and internge] Diaz, O.: The Operational Semantics of User-Defined Relation-
rule set. Both possess the same capability to give things that willships in Object Oriented Database Systems, Data & Knowledge Engi-
change a handle that does not change. Postgres [20] and its OReering 16 (1995), 223-240.

successors [11] adopt registration and cataloging mechanisms tf¢] Graefe, G, DeWitt, D.: The EXODUS Optimizer Generator, Proc.
add UDTs, UDRs, as well as access methods and to supply metal987 ACM SIGMOD Contf., San Francisco, California, May 1987, 160-
data on type-specific operations and access methods. The systef/2:

constituents can then “react” to the extensions in a table-driven(8] Haas, L., Chang, W., Lohman, G., McPherson, J., et al.: Starburst
fashion. With user-supplied code also serving as a proceduraMid-Flight: As the Dust Clears, IEEE TKDE 2:1, 1990, 143-160.
specification of the evaluation strategy, each ADT is merely a [9] Harder, T., Mahnke, W., Ritter, N., Steiert, H.-P.: Generating Ver-
“plack box” [19] (some existing products such as IDS/UD [11] S°Ning Facilities for a Design-Data Repository Supporting Cooperative
also allow the specification of simple semantics such as side ef_Appllcatlons, Int. Journal of Intelligent & Cooperative Information Syst.

S S -~ 9:1-2, 2000, 117-146.
fect or cost estimation, so that optimized access plans for querle?lo] IBM DB2 Universal Database (Version 6.1), IBM Corp., 1999

involving the new type can be generated. However, such a facil- 111 Informix D s b ion. Informix Softw
ity is far from general enough to deal with arbitrary routines hav- I[nc] 1n98gmnx ynamic Server Documentation, Informix Software,
ing arbitrary behavior). Therefore, it is still a crucial issue inthe : _ i

9 y) [12] Jaedicke, M., Mitschang, B.: User-Defined Table Operators: En-

OR context how to expose internal processing logic adequately.h ancing Extensibility for ORDBMS, Proc. 25nd VLDB Cont., Edin-
Furthermore, to incorporate the relationship support fully in the burgh, Scotland, Sept. 1999, 494-505.

system, the registration mechanism and integrated storage 013] Kim, W., Bertino, E., Garza, J. F.: Composite Objects Revisited,
metadata should accommodate more semantic implications Oprac, 1989 ACM SIGMOD Contf., Portland, Oregon, June 1989, 337-
extension-describing information. And the whole DBMS pro- 347,

cessing (such as query transformation, transaction control, ang14] mattos, N. M.: Abstraction Concepts: the Basis for Data and
semantics enforcement) should be accompanied by that informaknowledge Modeling, Proc. 7th ER Conf., Rom, Italy, Nov. 1988, 331-
tion. Internal rules provide another flexible mechanism for ex- 350.

pressing the behavior of system facilities and for responding to[15] Oracle8 Resource Page, Oracle Corp., http://www.oracle.com/st/
changes at different levels. But until now, most of the work that products/uds/oracle8/.

reveals internal processing logic by means of rule-based tech{16] Peckham, J., Maryanski, F.: Semantic Data Models, ACM Com-
niques concentrates on the addition of new query transformationgouting Surveys 20:3, 1988, 153-189.

and new physical operators [8]. For most of the systems and pro{17] Rumbaugh, J.: Relations as Semantic Constructs in an Object-Ori-
totypes, rule usage at the application level does not guarantee thanted Language, Proc. 2nd OOPSLA Conf., Orlando, Florida, Oct.
rules can be employed at the system level as well. Therefore, it ist987, 466-481.

important to have the rule support available in the DBMS and us- [18] Stonebraker, M., Brown, P.: Object-Relational DBMSs — Track-
able to modify the internals of the system itself. For ORIENT, es- I"d the Next Great Wave, 2nd ed., Morgan Kaufmann, 1999.

pecially, rules can be employed to supply the guidelines for [19] Seshadri, P.: Enhanced Abstract Data Types in Object-Relational
transforming queries, setting transaction boundaries, dispatchingfatabases' The VLDB Journal 7:3, 1998, 130-140.

semantics enforcement measures, and so on. 20] Stonebraker, M., Kemnitz, G.: The POSTGRES Next Generation

DBM ACM 34:10, 1991, 78-92.
In summary, extensibility is a matter of degree and up to now S, CACM 34:10, 1991, 78-9

. . . o [21] ANSI/ISO/IEC 9075-2-1999: Information Technology — Data-
subjected to a certain expertise. The doubts about exten5|b|I|ty[bas]e Languages — SOL — Part 2: Foundation (SQL Fou%ation) Sept.

with respect to security, stability and performance should inspire ;goq
us to do better instead of giving up. We believe, the object-rela-

.) 22] Zhang, N.: Supporting Semantically Rich Relationships in Exten-
tional approach presents a good reference point to go further. [22] g pparng Y b

sible Object-Relational Database Management Systems, Doctoral The-
sis, Dept. of Computer Science, Univ. of Kaiserslautern, Sept. 2000.

References [23] Zhang, N., Harder, T.: On a Buzzword “Extensibility” — What we
[1] Batory, D., Barnett, J. R., Garza, J. F., Smith, K. P, etal.:. GENE- have learned from the ORIENT Project, Proc. Int. Database Engineering
SIS: An Extensible Database Management System, IEEE TSE 14:11and Applications Symposium (IDEAS'99), Montreal, Canada, Aug.
1988, 1711-1730. 1999, 360-369.

	Abstract
	1. Motivation
	2. Capturing Relationship Semantics
	• Degree defines the number of participants associated in the relationship. For consist_of, it is...
	• Cardinality places restrictions on the number of instances of the participant that can be assoc...
	• Composition determines how the participants of a relationship cohere. A relationship with the c...
	• Sharability (or exclusiveness) denotes, in case of a composite relationship, whether a particip...
	• Mandatory Deletion (MD): Upon deletion of an object, its associated objects are also deleted, e...
	• Conditional Selection (CS): The selection of an object returns this object and (only) those ass...
	• Conditional Insertion (CI): Upon insertion of an object, the relationship instance is establish...
	• Restricted Insertion (RI): Upon insertion of an object, the relationship instance must be estab...
	Figure�1:� Relationship definition

	• OrientSQL’s path extensions enable to access data objects across user-defined relationships. Fo...
	• The contents to be accessed is specified with the dereferencing construct “->”. To avoid obscur...
	• OrientSQL’s query facility considers a complex object and all its parts collectively, in accord...
	Figure�2:� Querying examples

	3. Implementation Approach
	3.1. General consideration
	Figure�3:� Relationship definition
	• User-defined relationships are realized as UDTs with specially designed data structures and ope...
	• UDTs are organized into a hierarchy to support refinement and extension during implementation.
	• The whole implementation is encapsulated in a pluggable package, which extends the system with ...

	3.2. Basic constructs
	3.3. Ensuring semantics
	3.4. Traversing relationships
	3.5. ORIENT prototype
	Figure�4:� Architecture of ORIENT
	Figure�5:� Processing steps of OrientPre

	3.6. Remarks

	4. Deficiencies of (OR)DBMS Extensibility
	5. Conclusions and Outlook

	References
	[1] Batory, D., Barnett, J. R., Garza, J. F., Smith, K. P., et al.: GENESIS: An Extensible Databa...

	Enriched Relationship Processing in Object-Relational Database Management Systems
	Nan Zhang, Norbert Ritter, Theo Härder
	Database & Information Systems Group, University of Kaiserslautern P.O.Box 3049, D-67653 Kaisersl...

