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ABSTRACT 
Classical buffer replacement policies, e. g., LRU, are suboptimal for database systems 
having flash disks for persistence, because they are not aware of the distinguished 
characteristics of flash-based storage devices. We introduce the basic principles of buffer 
management for such devices and present two efficient buffer algorithms that apply these 
principles. These algorithms significantly improve the performance of flash-based 
databases, as confirmed by our trace-driven performance study. 
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1 INTRODUCTION 

Flash disks are playing an increasingly important role for server-side computing, 
because--compared to magnetic disks--they are much more energy efficient and they 
have no mechanical parts and, therefore, hardly any perceptible latency (Graefe, 2007). 
Typically, flash disks are managed by the operating system as block devices through the 
same interface types as those to magnetic disks. However, the distinguished performance 
characteristics of flash disks make it necessary to reconsider the design of DBMSs, for 
which the I/O performance is critical. 

1.1 Device Performance Characteristics 

The most important building blocks of flash disks are flash memory and flash translation 
layer (FTL). Logical block addresses are mapped by the FTL to varying locations on the 
physical medium. This mapping is required due to the intrinsic limitations of flash 
memory (Woodhouse, 2001; Gal & Toledo, 2005). The FTL implementation is 
device-related and supplied by the disk manufacturer. Many efforts are made to 
systematically benchmark the performance of flash disks (Gray & Fitzgerald, 2008; 
Härder, Schmidt, Ou, & Bächle, 2009; Bouganim, 2009). Using these observations, the 
most important conclusions of these benchmarks are: 

• For sequential read-or-write workloads, flash disks often achieve a performance 
comparable to high-end magnetic disks. 

• For random workloads, the performance asymmetry of flash disks and their 
difference to magnetic disks is significant: random reads are typically two orders 



of magnitude faster than those on magnetic disks, while random writes on flash 
disks are often even slower than those on magnetic disks. As an example, some 
flash disks achieve 12,000 IOPS for random reads and only 130 IOPS for random 
writes of 4 KB blocks (MTRON, 2008), while high-end magnetic disks typically 
have more than 200 IOPS for random I/O(Gray & Fitzgerald, 2008). 

• Due to the employment of device caches and further optimizations in the FTL 
(Kim, Kim, Noh, Min, & Cho, 2002; Lee, Park, Chung, Lee, Park, & Song, 2007), 
page-level writes with strong spatial locality can be served by flash disks more 
efficiently than write requests without locality. In our context, spatial locality 
refers to the property of contiguously accessed DB pages being physically stored 
close to each other. 

Interestingly, many benchmarks show that flash disks can handle random writes with 
larger request sizes more efficiently. For example, the bandwidth of random writes using 
units of 128 KB is more than an order of magnitude higher than writing at units of 8 KB. 
In fact, a write request of, say 128 KB, is internally mapped to 64 sequential writes of 
2-KB flash pages inside a flash block. Note that sequential access is an extreme case of 
high spatial locality. 

1.2 The Problem 

Flash disks are considered an important alternative to magnetic disks. Therefore, we 
focus here on the problem of buffer management for DBMSs having flash disks as 
secondary storage. If we denote the sequence of  logical I/O requests n 0 1 1( , , , )nx x x −K  
as X , a buffer management algorithm  is a function that maps A X  and a buffer with 

 pages into a sequence of  physical I/O requests Y y , , i. 
e., 
b m 0 1:= ( , , 1)my − m n≤,y K

( , ) =A X b Y . 
Let  denote the accumulated time necessary for a storage device to serve ( )C Y Y , 

we have . Given a sequence of logical I/O requests ( )C Y = ( ( , ))C A X b X , a buffer with 
 pages, and a buffer management algorithm b A, we say A is optimal, iff for any other 

algorithm A′ , ( ( , ))C A X b ( ( , ))C A X b′≤ . 
For magnetic disks,  is often assumed to be linear to . Clearly, this 

assumption does not hold for flash disks, because 
( )C Y | Y |

C heavily depends on the write/read 
ratio and the write patterns of Y . Therefore, each I/O request, either logical or physical, 
has to be represented as a tuple of the form , where  is either “R” (for a 
read request) or “W” (for a write request). 

( ,op )pageId op

While the above formalization defines our problem, our goal is not to find the optimal 
algorithm in theory, but a practically applicable one that has acceptable runtime overhead 
and minimizes I/O cost as far as possible. 

1.3 Basic Principles 

An intuitive idea to address the write pattern problem is to increase the DB page size, 
which is the unit of data transfer between the buffer layer and the file system (or the raw 



device directly) in most database systems. It would be an attractive solution if the overall 
performance could be improved this way, because only a simple adjustment of a single 
parameter would be sufficient. However, a naive increase of the page size generally leads 
to more unnecessary I/O (using the same buffer size), especially for OLTP workloads, 
where random accesses dominate. Furthermore, in multi-user environments, large page 
sizes favor thread contentions. Hence, simply increasing the granularity of I/O is not 
feasible, therefore, a more sophisticated solution is needed. 

Even with flash disks, maintaining a high hit ratio--the primary goal of conventional 
buffer algorithms--remains important, because memory access is still much faster (the 
bandwidth of main memory is at least an order of magnitude higher than the interface 
bandwidth provided by flash disks). Based on our discussion so far, we summarize the 
basic principles of flash-aware buffer management as follows:   

• P1  Minimize the number of physical writes.  
• P2  Address write patterns to improve the write efficiency.  
• P3  Keep a relatively high hit ratio.  
These principles can not be considered in isolation. For example, to reduce the 

number of physical writes (P1), one has to delay the replacement of dirty pages and 
choose to first replace clean pages having a higher probability of being re-referenced. 
(Clean pages are buffer pages that are not modified since being read from secondary 
storage, and dirty pages are those that are modified at least once in the buffer.) This 
would negatively impact the hit ratio (P3). A trade-off must be made among these 
partially conflicting optimization goals. 

To improve write efficiency (P2), a technique called clustered write is used by our 
algorithms presented in Section 3. A cluster is a set of pages physically located in 
proximity and having the same cluster number. We derive the cluster number by dividing 
their page number by a constant cluster size. Though page numbers are logical addresses, 
because of the space allocation in most DBMSs and file systems, the pages in the same 
cluster have a high probability of being physically neighbored, too. The byte size of a 
cluster should correspond, but does not have to be strictly equal to the size of a flash 
block, thus information about exact flash block boundaries are not required. 

To achieve write avoidance by delaying the replacement of dirty pages, the buffer 
manager should not be burdened with conflicting write/update propagation requirements. 
We assume a NoForce/Steal policy for the logging&recovery component providing 
maximum degrees of freedom (Härder & Reuter, 1983). NoForce means that pages 
modified by a transaction do not have to be forced to disk at its commit, but only the redo 
logs. Steal means that modified pages can be replaced and their contents can be written to 
disk even when the modifying transaction has not yet committed, provided that the undo 
logs are written in advance (observing the WAL principle (write ahead log)). With these 
options together, the buffer manager has a great flexibility in its replacement decision, 
because the latter is decoupled from transaction management. In particular, replacement 
of a specific dirty page can be delayed to save physical writes or even advanced, if 
necessary, to improve the overall I/O efficiency. Hence, it comes as no surprise that 
NoForce/Steal is the standard solution for existing DBMSs. 

Another aspect of recovery provision is checkpointing to limit redo recovery in case 
of a system failure, e. g., a crash. To create a checkpoint at a “safe place”, earlier 
solutions flushed all modified buffer pages thereby achieving a transaction-consistent or 



action-consistent firewall for redo recovery on disk. Such direct checkpoints are not 
practical anymore, because--given large DB buffer sizes--they would repeatedly imply 
limited responsiveness of the buffer for quite long periods. While checkpoints are written, 
which often occurs in intervals of few minutes, systems are restricted to read-only 
operations. Assume that many GBytes would have to be propagated to multiple disks 
using random writes (in parallel). Hence, reaction times for update operations could reach 
a considerable number of seconds or even minutes. Today, the method of choice is fuzzy 
checkpointing (Mohan, 1992), where only metadata describing the checkpoint is written 
to the log, but displacement of modified pages is obtained via asynchronous I/O actions 
not linked to any specific point in time. 

Prefetching of pages plays an important role for conventional disk-based buffer 
management: It is not hindered by flash disks. But, because of their random-read 
performance, prefetching becomes much less important, because pages can be randomly 
fetched on demand without (hardly) any penalty in the form of access latency. Because 
prefetching always includes the risk of fetching pages later not needed, it is even better 
for flash-aware buffer algorithms to not use this conventional optimization technique. 

1.4 Contributions 

This paper extends and improves our previous work (Ou, Härder, & Jin, 2010) and 
presents two efficient buffer management algorithms for flash-based databases: CFDC 
(Clean-First Dirty-Clustered) and SAWC (Self Adaptive with Write Clustering). The 
SAWC algorithm employs a novel and efficient technique: clustered write with 
frequency-based filtering, which distinguishes it from the CASA (Cost-Aware 
Self-Adaptive) algorithm (Ou & Härder, 2010), from which it is derived. 

We study the behavior of our algorithms under different types of workloads and give 
hints for practical application of these algorithms. The study also confirms the 
performance advantage of our algorithms over previous proposals. 

The remainder of this paper is organized as follows. Section 2 sketches the related 
work. Section 3 presents our algorithms, while the performance study is reported in 
Section 4. The concluding remarks are given in Section 5. 

2 RELATED WORK 

LRU and CLOCK (Corbato, 1969) are among the most widely-used replacement policies. 
The latter is functionally identical to the Second Chance algorithm (Tanenbaum, 1987): 
both of them often achieve hit ratios close to those of LRU.  

The ARC algorithm (Megiddo, 2003) manages the buffer pool in two lists: one for 
recently referenced pages and the other for frequently referenced pages. The sizes of the 
page lists are dynamically adjusted according to recent workload characteristics. Our 
SAWC and CASA algorithms take a similar approach to separate the buffer pool in two 
lists, according to the clean/dirty status of buffer pages. However, the list sizes in SAWC 
and CASA are determined not only by the workload, but also by page-replacement costs. 

CFLRU (Park, 2006) is a flash-aware replacement policy for operating systems based 
on LRU. At the LRU end of its list structure, it maintains a clean-first region, where 
clean pages are always selected as victims over dirty pages. Only when clean pages are 



not present in the clean-first region, the dirty page at the LRU tail is selected as victim. 
The size of the clean-first region is determined by a parameter  called the window size. 
By evicting clean pages first, the buffer area for dirty pages is effectively 
increased---thus, the number of flash writes can be reduced. 

w

One of the major problems of CFLRU is its tuning parameter , which is 
performance critical but difficult to determine. Its optimal value depends on the extent of 
R/W asymmetry of the storage device and the update intensity of the workload, which 
may vary over time. Although its authors have mentioned a dynamic version of CFLRU, 
which automatically adjusts the parameter “based on periodically collected information 
about flash read and write operations” (Park, 2006), its control logics is not presented. 
Yoo et al. proposed several variants of CFLRU (Yoo & Lee, 2007), aiming at reducing 
the number of flash erase operations and improving wear-leveling. These variants have 
the same limitation as CFLRU and their design goals are different from ours. The CASA 
algorithm, which will be introduced in Section 3.2, addresses the parameter tuning 
problem of CFLRU. 

w

LRUWSR (Jung, 2008) is a flash-aware algorithm based on LRU and Second 
Chance, using only a single list as auxiliary data structure. The idea is to evict clean and 
cold-dirty pages and keep the hot-dirty pages in buffer as long as possible. When a victim 
page is needed, it starts search from the LRU end of the list. If a clean page is visited, it 
will be returned immediately (LRU and clean-first strategy). If a dirty page is visited and 
is marked “cold”, it will be returned; otherwise, it will be marked “cold” (Second 
Chance) and the search continues. 

The authors of CCF-LRU (Li & Jin, 2009) further refine the idea of LRUWSR by 
distinguishing between cold-clean and hot-clean pages. Cold pages are distinguished 
from hot pages using the Second Chance algorithm. They define four types of eviction 
costs: cold-clean, cold-dirty, hot-clean, and hot-dirty, with increasing priority, thus 
cold-clean pages are first considered for eviction, then cold-dirty, and so on. Although 
LRUWSR and CCF-LRU don't require parameter tuning, their clean-first strategy is 
carried out only based on the coarse assumption of R/W cost asymmetry and hot-cold 
detection using the Second Chance algorithm, which, in turn, only approximates LRU. As 
a consequence, it is difficult for them to reason, when a cold-dirty page should be first 
considered for eviction over a hot-clean page, and vice versa. 

REF (Seo & Shin, 2008) is a flash-aware replacement policy that addresses the 
pattern of page flushes. It also maintains an LRU list and has a victim window at the 
MRU end of the list, similar to the clean-first region of CFLRU. Victim pages are only 
selected from the so-called victim blocks, which are blocks with the largest numbers of 
pages in the victim window. From the set of victim blocks, pages are evicted in LRU 
order. When all pages of the victim blocks are evicted, a linear search within the victim 
window is triggered to find a new set of victim blocks. This way, REF ensures that during 
a certain period of time, the pages evicted are all accommodated by a small number of 
flash blocks, thus improving the efficiency of FTL. 

The CRAW-C algorithm (Park, Lee, Hyun & Bahn 2009), designed for mobile 
systems which employ compressed file systems, partitions the buffer pool into a read 
area, write area, and a compressed area considering different costs of read, write, 
compress, and decompress operations. Each of the three areas is managed in a 
lightweight fashion similar to the CLOCK algorithm. 



Except REF, all previous proposals ignore the spatial locality of page requests and do 
not address the problem of write patterns (P2). However, REF can not reduce the number 
of flash writes (P1), because it does not distinguish between clean and dirty states of 
pages. 

3 THE ALGORITHMS 

In the following, we present two flash-aware buffer algorithms. Both algorithms try to 
address the problems ignored by previous proposals, but taking completely different 
approaches. 

 
Figure 1 Page movement in the two-region scheme 

3.1 The CFDC Algorithm 

3.1.1 Two-Region Scheme 

CFDC manages the buffer in two regions: the working region  for keeping hot pages 
that are frequently and recently revisited, and the priority region 

W
P responsible for 

optimizing replacement costs by assigning varying priorities to page clusters. 
A parameter λ , called priority window, determines the size ratio of P relative to 

the total buffer. Therefore, if the buffer has  pages, then b P contains bλ⋅  pages and 
the remaining (1 ) bλ− ⋅  pages are managed in . Note  does not have to be 
bound to a specific replacement policy. Various conventional replacement policies can be 
used to maintain high hit ratios in  and, therefore, prevent hot pages from entering 

W W

W
P . 

Figure 1 illustrates the page movement in our two-region scheme. The code to be 
executed upon a page request is sketched in Algorithm 1. If a page in  is hit (line 3), 
the base algorithm of  should adjust its data and structures accordingly. For example, 
if LRU is the base algorithm, it should move the page that was hit to the MRU end of its 
list structure. If a page in 

W
W

P is hit (line 5), a page  is determined by 's 
victim selection policy and moved (demoted) to 

( )min W W
P, and the hit page is moved 

(promoted) to . In case of a buffer fault, the victim is always first selected from W P 
(line 7). Only when no victim page is available from P ( e. g., all pages in P are 
fixed), we select the victim from  (line 9). Considering recency, the newly fetched 
page is promoted to  (line 15).  

W
W



 

3.1.2 Priority Region 

Priority region P maintains three structures: an LRU list  of clean pages, a priority 
queue  of clusters where dirty pages are accommodated, and a hash table with cluster 
numbers as keys for efficient cluster lookup.  

L
Q

 
The victim selection logic in P is shown in Function SelectVictimPr. Clean pages 

are always selected over dirty pages (line 1--2). If there is no clean page available, a 
cluster  having the lowest priority is selected from  and the LRU page in  is 
selected as victim (line 3--6). Once a victim is selected from a cluster, its priority is set to 
minimum (line 8) until all dirty pages in this victim cluster are consumed by subsequent 
page evictions, resulting in strong spatial locality of page evictions.  

c Q c



 

For a cluster  with  (in-memory) pages, its priority  is computed 
according to Formula 

c n ( )P c
(1):  
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 where  are the page numbers ordered by their time of entering the 
cluster. The algorithm tends to assign large clusters a lower priority for two reasons: 1. 
Flash disks are efficient in writing such clustered pages. 2. The pages in a large cluster 
have a higher probability of being sequentially accessed. 

0,..., np p −

Both spatial and temporal factors are considered by the priority function. The sum in 
the dividend in Formula (1), called inter-page distance (IPD), is used to distinguish 
between randomly accessed clusters and sequentially accessed clusters (clusters with only 
one page are set to 1). We prefer to keep a randomly accessed cluster in the buffer for a 
longer time than a sequentially accessed cluster. For example, a cluster with pages 

 has an IPD of , while a cluster with pages  has an IPD of . {0,1, 2,3} 3 {7,5, 4, 6} 5
The purpose of the time component in Formula (1) is to prevent randomly, but rarely 

accessed small clusters from staying in the buffer forever. The cluster timestamp 
 is the value of  at the time of its creation. Each time a dirty 

page is inserted into the priority queue (  is dirty),  is incremented 
by 1. We derive its cluster number and perform a hash lookup using this cluster number. 
If the cluster does not exist, a new cluster containing this page is created with the current 
globaltime and inserted to the priority queue. Furthermore, it is registered in the hash 
table. Otherwise, the page is added to the existing cluster and the priority queue is 
maintained if necessary. If page  is clean, it simply becomes the new MRU 
node in the clean list. 

( )timestamp c globaltime
mi

( )min W

( )n W globaltime

After demoting , the page to be promoted, say ( )min W p, will be removed from P 
and inserted to . If W p is to be promoted due to a buffer hit, we update its cluster IPD 
including the timestamp. This will generally increase the cluster priority according to 
Formula (1) and cause  to stay in the buffer for a longer time. This is desirable, 
because the remaining pages in the cluster will probably be revisited soon due to locality. 
In contrast, when adding demoted pages to a cluster, the cluster timestamp is not updated. 

c

The time complexity of CFDC depends on the complexity of the base algorithm in 
 and the complexity of the priority queue. The latter is , where  is the 

number of clusters. This should be acceptable since 
W (log )O m

B
m

m λ ⋅ , where Bλ⋅  is the 
number of pages in P. 

3.2 The SAWC Algorithm 

3.2.1 CASA Overview 
In the following, we first give an overview of the CASA algorithm, which the SAWC 
algorithm is based on. The CASA algorithm uses the notion of cost ratio to refer to the 



extent of R/W asymmetry of the underlying storage device, defined as the ratio of the 
long-term cost of physical reads to that of physical writes. 

 
Figure 2 CASA dynamically adjusts the size of the clean list and the dirty list 

CASA manages the buffer pool B of  pages using two dynamic lists: the clean 
list 

b
C for keeping clean pages that are not modified since being read from secondary 

storage, and the dirty list D  accommodating dirty pages that are modified at least once 
in the buffer. Pages in either list are ordered by reference recency. Both lists are initially 
empty while, in the stable state ( no empty buffer frames available), we have the 
following invariants: , as illustrated in | |= , , 0 | |b D≤ ≤| |C D 0 |b+ ≤ |C b≤ Figure 2. 

The algorithm continuously adjusts parameter τ , which is the dynamic target size of 
C, 0 bτ≤ ≤ . Therefore, the dynamic target size of D  is b τ− . The logic of adjusting 
τ  is simple: we invest in the list that is more cost-effective for the current workload. If 
there is a page hit in C, we heuristically model the current relative cost effectiveness of 
C with . Similarly, in case of a page hit in | |D | C÷ | D , we model its current relative 
cost effectiveness with . The relative cost effectiveness is considered when 
determining the magnitude of adjustment for 

| | |C D÷ |
τ . 

Besides the page request, the algorithm (see Algorithm 2) requires as input also the 
normalized costs  and , which can be derived from the cost ratio such that 

, i. e., important to the algorithm is the extent of the 
R/W asymmetry, not the exact costs of physical reads and writes. 

Rc
( Rc ÷

Wc
c  ( 1) ost raR W Wc c c+ = ∧ = tio)

The magnitude of the adjustment in τ  is determined both by the cost ratio and by 
the relative cost effectiveness. The adjustment is performed in two cases:   

Case 1  A logical -request is served in R C (line 3 of Algorithm 2);  
Case 2  A logical W -request is served in D  (line 8 of Algorithm 2)  
In Case 1, τ  is increased by (| | | |)Rc D C× ÷ . Note | | 0C ≠ , because it is a buffer 

hit. The increment combines the “saved cost” of this buffer hit  and the relative cost 

effectiveness . Similarly, in Case 2, we decrease 
Rc

| | |D C÷ | τ  by . (| | | |)Wc C D× ÷



 
In case of a buffer fault (line 12--26), if there is no empty page available, τ  guides 

the decision, from which list to select the victim page (line 16 and 19). The actual sizes of 
both lists are also influenced by the clean/dirty state of requested pages. The clean/dirty 
state of a requested page p is decided by its previous state in the buffer, i. e., in which 
list it resides, and the current request type (  or W ). If the state of the requested page R
p is clean (after serving the request), p will be moved to C (line 4 and 24), otherwise 
to D  (line 6, 9, 11, and 26). Therefore, the sizes of C and D  are dynamically 
determined by τ , and the update intensity. Under a workload with mixed -requests 
and -requests, a starvation of one list will never happen, even when 

R
( =W 0) ( = )bτ τ∨ , 

while under -only (or -only) workloads, a starvation of R W D  (or C) is desired and 
the starved list recovers as soon as the workload becomes mixed again.  



3.2.2 Dynamic Cost-Ratio Detection 
Being fundamentally different from algorithms which require parameter tuning, CASA 
automatically optimizes itself at runtime, given the knowledge concerning cost ratios, 
which can be provided, e. g., by the device manufacturer or by the administrator. It would 
be even better if, in the future, devices provide an interface for querying the cost ratio 
online. 

In fact, the elapsed time serving each physical I/O request can be measured online. 
Therefore, it can be used to derive the cost ratio information. However, these 
measurements are subject to severe fluctuations. For example, the latency of a physical 
read on magnetic disks depends on the position of the disk arm. On flash SSDs, a 
physical write may trigger a much more expensive flash erase operation or even a 
garbage collection process involving multiple flash erase operations (Bouganim, 2009). 
Therefore, an -point moving average of the measured values is used to smooth out 
short-term fluctuations, because only the long-term average cost is of interest. Hence, the 
average cost of the last  physical reads (or writes) is used as the basis for the 
normalized cost  (or ) required by Algorithm 2. Note, no change to the algorithm 
is needed to use the dynamically detected costs. 

n

n
cRc W

Maintaining the moving average requires the recent  measurements to be 
remembered. Assuming that two bytes are used to store a measured value, to remember, 
e. g., 32,768 values, eight pages (page size = 8 KB) are sufficient and, in total, only 16 
pages are required for both reads and writes. Two bytes can store timings ranging from 1 
to 65,536 

n

μseconds, which can cover the expected physical I/O cost values. 
Furthermore, burst values out of this range can be safely ignored. The time complexity of 
maintaining the moving average is independent of : in our implementation, each new 
measurement requires only an array element update and a few arithmetic operations. 

n

3.2.3 Integrating Clustered Writes 
Having addressed principles P1 and P3, CASA does not optimize its write patterns (P3). 
This can be improved with the clustered-write technique described as follows. A cluster 
table  is maintained, which keeps track of the dirty pages, and, for a given page T p, 
returns the set of dirty pages that are in the same cluster of p. To integrate the write 
clustering technique with CASA, we only have to replace line 20 of Algorithm 2 by 
Function ClusteredWrite. We call the resulting algorithm SAWC. 

For a physical-write request with regard to page p, Function ClusteredWrite not 
only writes page p, but also identifies and writes some pages in the same cluster of p. 
This improves the spatial locality of the flash write requests, but, on the other hand, it is 
obvious that, for the same workload, SAWC requires a larger number of physical writes 
than CASA does. For this reason, we filter the candidate pages based on their update 
frequency and skip the dirty pages that are more frequently updated than p. Function 
Freq gives, for page p, its update frequency, which is the number of logical write 
requests for p while p is in the buffer. This can be simply implemented with a 
counter associated with each buffer page. 



The intuition behind the frequency-based filtering is, if page  is more frequently 
updated than 

q
p, flushing  together with q p will have no performance gain, because 

 will likely be updated soon again. In contrast, pages that are less frequently updated 
will not likely be updated again, flushing them together with 
q

p improves the 
performance due to higher spatial locality. 

 

Unlike the priority queue  of CFDC, table  of SAWC does not maintain an 
ordering of the clusters, therefore, its maintenance requires only a constant number of 
operations. The time complexity of SAWC is  and it requires minimal auxiliary 
data structures. SAWC only uses knowledge local to the cluster to determine the write 
candidates, as opposed to the cluster selection of CFDC based on the global ordering of 
clusters. Therefore, CFDC can potentially utilize the buffer more efficiently. 

Q T

(1)O

3.3 Implementation Issues 

Algorithm 4 requires a request in the form of , i. e., the request type must be 
present. This may not be the case in some systems, where a page is first requested 
without explicitly claiming the request type, and it is read or updated some time later. 
However, most DBMSs use the classical pin-use-unpin (or fix-use-unfix) protocol 
(Effelsberg & Härder, 1984) (Gray & Reuter, 1993) for pages requests. It is easy to use 
an update flag, which is cleared upon the pin call and set by the actual page update 
operation. Upon the unpin call, the buffer manager knows the request type by checking 
this flag. 

( ,op pageId)

In practice, page flushes are normally not coupled with the victim replacement 
process--most of them are performed by background threads. For better clarity, the 
presented algorithms do not include the asynchronous page-flushing logic, although they 
are compatible with this technique. For example, line 2 to line 9 of Function 
ClusteredWrite can be executed in an asynchronous fashion, while in the case of CFDC, 
the background routines can directly use CFDC's dirty queue, where the dirty pages are 
already collected and clustered. 



4 PERFORMANCE STUDY 

Our previous work (Ou, Härder, & Jin, 2010) included an extensive empirical research 
comparing CFDC with related algorithms including CFLRU, LRUWSR, REF, and LRU. 
CFDC exhibits significant performance advantage in those experiments. In (Ou & 
Härder, 2010), we compared the CASA algorithm with CFLRU, LRUWSR, CCFLRU, 
and LRU, demonstrating its adaptivity. To extend our previous works and avoid 
repetition, we focus on the comparison among the three algorithms in this paper: CFDC, 
CASA, and SAWC, using buffer traces of standard benchmarks including TPC-C, 
TPC-H, and TPC-E. For completeness, we also report our experiments involving a larger 
set of algorithms using a real-life OLTP trace. 

The TPC-C and TPC-H trace was obtained using the PostgreSQL DBMS. Our 
specific code integrated into its buffer manager recorded the logical page requests 
received under TPC-C and TPC-H workloads. The TPC-E trace is provided by a leading 
IT enterprise. The real-life trace is a one-hour page reference trace of an OLTP 
production system of a Bank. This trace is well-studied and has been used in (O'Neil, 
1993; Johnson & Shasha, 1994; Lee & Choi, 2001; Megiddo & Modha, 2003; Jiang & 
Zhang, 2002). It contains 607,390 references to 8-KB pages in a DB having a size of 22 
GB, addressing 51,880 distinct page numbers. About 23% of the requests update the page 
referenced. Exhibiting substantial locality, 20% (10,376) of the pages are referenced by 
72% (434,702) of the requests. The common page size 8 KB is used throughout of this 
section. 

4.1 Test Setup 

Our test machine has an AMD Athlon Dual Core Processor, 512 MB of main memory, is 
running Ubuntu Linux with kernel version 2.6.24, and is equipped with a magnetic disk 
and a flash disk, both connected to the SATA interface. Both OS and the storage engine 
are installed on the magnetic disk. The data pages being read and updated resides on the 
flash disk which is a 32 GB MTRON MSP-SATA7525 based on NAND flash memory. 
The flash disk is accessed by the file manager as RAW devices, therefore, OS and file 
system influences are eliminated. 

The clustering technique improves the spatial locality of page flushes, which can be 
quantified by the metric cluster-switch count (CSC), defined as follows. Let 

 be the sequence of page flushes, the metric  reflects the 
spatial locality of :  
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The clustered writes of CFDC and SAWC are write patterns with high spatial locality 

and thus minimized cluster-switch counts. Sequential writes are a special case of 
clustered writes, where pages are updated in a forward or reverse order according to their 
locations on the storage device. If  is the set of distinct clusters addressed by  
and  is a sequential access pattern, we have . For flash devices, a 
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higher  indicates a higher number of expensive flash block erasures required to 
serve . 
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Compared to clustered writes, the sequence of dirty pages evicted by the algorithm 
REF generally has a much higher , because it selects victim pages from a set of 
victim blocks, which can be addressed in any order. Because the sequence of dirty pages 
evicted can be viewed as multiple sequences of clustered writes that are interleaved with 
one another, we call the approach of REF semi-clustered writes. 

CSC

Let  be the sequence of logical page requests fed to the buffer 
manager, we further define the metric cluster-switch factor (CS ) to reflect its efficiency 
in performing clustering:  
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Following the typical layered architecture for database systems (Härder & Reuter, 

1983; Härder, 2005), we implemented a database storage engine consisting of two layers: 
the file manager supporting page-oriented access to the data files, and the buffer manager 
serving page requests. The examined algorithms are used by the buffer manager via a 
common interface. A test program communicates with the buffer manager by sending the 
logical page requests delivered by the test input: the buffer traces. 

We run a trace by sending its page requests one by one to the buffer manager and 
record the execution time elapsed between two points in time: the start of the first and the 
end of the last logical request. We also record the number of physical writes 
(corresponding to the number of flash writes), the CSC (correlated to the number of flash 
erases), and the hit ratio, for the elapsed period of time. 

4.2 TPC-C Workload 

Figure 3 shows the results of running the TPC-C trace with buffer size scaled from 500 to 
16000 pages logarithmically. To examine the impact of the parameter λ , we did the 
experiments for CFDC with 0.25λ = , 0.50λ = , and 0.75λ = , denoted as CFDC-25, 
CFDC-50, and CFDC-75. Compared with CASA, SAWC required a moderately higher 
number of physical writes (Figure 3b). However, as shown in Figure 3c, it has a much 
lower CSC, which indicates a much stronger spatial locality of the physical write requests 
generated by SAWC. The clustered write greatly improved the performance of CASA: 
with a reduction of execution time up to 25% (for the 16000-page setting in Figure 3a). In 
terms of hit ratio, CASA and SAWC are very close (Figure 3d). 

Both CASA and SAWC had a higher hit ratio than CFDC. However, CFDC required 
a smaller number of physical writes due to its priority-based optimization, and 
consequently, a lower number of cluster switches. Generally speaking, SAWC achieved a 
performance comparable to CFDC (Figure 3a): the former is faster for smaller buffer 
sizes, while the latter is faster for larger buffer pools. The workload contains a substantial 
percentage of update requests (18.7%). Therefore, among the three parameter settings of 
CFDC, the 0.75λ =  setting achieved the best performance, due to the greediest write 
optimization.  



 
Figure 3 Performance figures of the TPC-C trace 

 

4.3 Read-Intensive Workloads 

In contrast to the TPC-C trace, the workload represented by the TPC-E trace is highly 
read-intensive: it has only 17 k logical writes out of 2.6 million page requests (update 
percentage is less than one percent). As a consequence, the performance impact of the 
physical-write count and CSC is ignorable, and the hit ratio (Figure 4b) dominates the 
execution time (Figure 4a). As opposed to the TPC-C case, where 0.75λ = is the 
best-performing setting of CFDC, for the TPC-E trace, the setting of 0.25λ =  had 
achieved the best performance. However, 0.25λ =  is still suboptimal for this 
read-intensive workload, because, for such workloads, the optimal window size should be 
close to zero. The advantage of the adaptivity of CASA and SAWC is clear here: they 
achieve a higher hit ratio than CFDC, without any parameter tuning.  

As an extreme case, we show the results of running a TPC-H trace in Figure 4c 
and Figure 4d. The TPC-H trace is read-only, therefore, all the tested algorithms behaves 
like LRU and have the same hit ratio. 



 
Figure 4 Performance under read-intensive and read-only workloads 

 

4.4 Real-Life Trace 

Figure 5 compares various related algorithms running the real-life OLTP trace with a 
buffer of 1000 pages. All figures are normalized and relative to LRU. The experiment 
demonstrates the advantages of CFDC: with the clean-first strategy and the optimization 
in the priority region, it minimizes the number of physical writes (Figure 5b). It 
efficiently writes on flash disks by exploiting spatial locality and performing clustered 
writes, i. e., it evicts the sequence of writes that can be most efficiently served by flash 
disks (Figure 5c). Compared with CASA, the SAWC algorithm has a higher number of 
physical writes, and a slightly lower hit ratio, but better runtime performance due to the 
clustered writes.  

As a final note, the performance study does not focus on the MTRON flash disk. We 
also ran all the experiments on a low-end flash disk (SuperTalent, 2008) with similar 
observations.  



 
Figure 5 Performance figures relative to LRU under the real-life workload 

 

5 CONCLUSIONS AND OUTLOOK 

Due to the increasing popularity of flash-based storage devices, the problem of buffer 
management for database systems based on flash devices deserve adequate attention. We 
introduced the basic principles of approaching this problem and presented two 
flash-aware buffer algorithms, proven to be efficient in our performance study covering a 
variety of workload types. 

The CFDC algorithm is suitable for environments where the workload is relatively 
write intensive and its characteristics do not change frequently. In such cases, the 
administrator can better optimize the buffer performance by tuning the parameter λ . For 
environments with frequently changing workloads, the self-adaptive algorithm SAWC is 
a better choice. The two-region scheme makes it easy to integrate CFDC with 
conventional replacement policies in existing systems. Modern replacement policies such 
as ARC (Megiddo & Modha, 2003) and LIRS (Jiang & Zhang, 2002) can be easily 
integrated into CFDC without modification.  

In this paper, we explored flash disks as an exclusive alternative to magnetic disks. 
However, database systems may employ hybrid storage systems, i. e., flash disks and 
magnetic disks co-exist in a single system. As another option in DBMS I/O architectures, 



flash memory could serve as a non-volatile caching layer for magnetic disks. Both I/O 
architectures posing challenging performance problems deserve a thorough consideration 
in future research work. 
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