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Abstract. With flash disks being an important alternative to conven-
tional magnetic disks, various design aspects of DBMSs, whose I/O
behavior is performance-critical, and especially their I/O architecture
should be reconsidered. Taking the distinguished characteristics of flash
disks into account, several flash-aware buffer algorithms have been pro-
posed with focus on flash-specific performance optimizations. We intro-
duce several basic principles of flash-aware buffer management and eval-
uate performance and energy consumption of related algorithms in a
DBMS environment using both flash disks and magnetic disks. Our ex-
periments reveal the importance of those principles and the potential of
flash disks both in performance improvement and in energy saving.

1 Introduction

In recent years, green computing gained a lot of attention and visibility by
public discussion concerning energy waste and, in turn, global warming. As a
consequence, thermal management is seriously addressed in IT to reduce power
usage, heat transmission, and, in turn, cooling needs. Here, we consider the role
DBMSs can play for green IT.

So far, flash disks were primarily considered ideal for storing permanent data
in embedded devices such as personal digital assistants (PDAs) or digital cam-
eras, because they have no mechanical parts and are energy efficient, small,
light-weight, noiseless, and shock resistant. Furthermore, they provide the great
advantage of zero-energy needs in idle or turned-off modes. Because of break-
throughs in bandwidth (IOps), energy saving, reliability, and volumetric capacity
[1], flash disks will also play an increasingly important role in DB servers. How-
ever, to optimize their performance and, at the same time, energy efficiency,
especially their I/O architecture must be reconsidered.

The most important building blocks of flash disks are flash memory and
flash translation layer (FTL). Logical block addresses are mapped by the FTL
to varying locations on the physical medium. This mapping is required due to the
intrinsic limitations of flash memory [2]. The implementation of FTL is device-
related and supplied by the disk manufacturer. Several efforts were recently made
to systematically benchmark the performance of flash disks [1, 3, 4]. The most
important conclusions of these benchmarks are:



– For sequential read-or-write workloads, flash disks often achieve a perfor-
mance comparable to high-end magnetic disks.

– For random workloads, the performance asymmetry of flash disks and their
difference to magnetic disks is significant: random reads are typically two
orders of magnitude faster than those on magnetic disks, while random writes
on flash disks are often even slower than those on magnetic disks.

As an example, one of our middle-class flash disk achieves 12,000 IOPS for
random reads and only 130 IOPS for random writes of 4 KB blocks, while high-
end magnetic disks typically have more than 200 IOPS for random I/O [1].
Interestingly, due to the employment of device caches and other optimizations
in the FTL, page-level writes with strong spatial locality can be served by flash
disks more efficiently than write requests without locality. In particular, many
benchmarks show that flash disks can handle random writes with larger request
sizes more efficiently. For example, the bandwidth of random writes using units
of 128 KB can be more than an order of magnitude higher than writing at units
of 8 KB. In fact, a write request of, say 128 KB, is internally mapped to 64
sequential writes of 2-KB flash pages inside a flash block. Note that sequential
access is an extreme case of high spatial locality.

1.1 Basic Principles

In DBMS buffer management, the fact “whether a page is read only or mod-
ified” is an important criterion for the replacement decision [5]. To guarantee
data consistency, a modified buffer page has to be written back to disk (called
physical write or page flush), before the memory area can be reused. Hence,
if the replacement victim is dirty, the process or thread requesting an empty
buffer frame must wait until page flush completion—potentially a performance
bottleneck.

This criterion is now much more important in our context, because, for flash
disks, the average cost of a page write (including block erasure) may be two
orders of magnitude higher than that of a page read. At a point in time running
a given workload, if a clean page p is to be re-read n times and a dirty page q to
be re-modified m times (n ∼ m), the buffer manager should replace p in favor
of q, because the benefit of serving m write requests directly from the buffer is
much higher than the cost of n repeated flash reads.

Yet the total cost of page flushing is not linear to the number of page flushes.
As introduced above, write patterns strongly impact the efficiency of flash writ-
ing; hence, they have to be addressed as well. An intuitive idea is to increase the
DB page size so that we can write more efficiently. In most systems, the page size
is the unit of data transfer between the buffer layer and the file system (or the
raw device directly). It would be an attractive solution if the overall performance
could be improved this way, because only a simple adjustment of a single pa-
rameter would be required. However, a naive increase of the page size generally
leads to more unnecessary I/O (using the same buffer size), especially for OLTP



workloads, where random accesses dominate. Furthermore, in multi-user envi-
ronments, large page sizes favor thread contentions. Hence, a more sophisticated
solution is needed.

Even with flash disks, maintaining a high hit ratio—the primary goal of con-
ventional buffer algorithms—is still important, because the bandwidth of main
memory is at least an order of magnitude higher than the interface bandwidth of
storage devices. Based on the flash disk characteristics and our discussion so far,
we summarize the basic principles of flash-aware buffer management as follows:

P1 Minimize the number of physical writes.
P2 Address write patterns to improve the write efficiency.
P3 Keep a relatively high hit ratio.

1.2 Contributions

Previous research on flash-aware buffer management focused on flash-specific
performance optimizations. However, an important question remains open: how
well do the flash-aware algorithms perform on conventional magnetic disks? This
question is important because, due to the lower $/GB cost, magnetic disks will
certainly remain dominant in the near future, therefore enterprises have to deal
with the situations where both kinds of devices co-exist. Another interesting
aspect ignored in all previous works is the energy consumption of related algo-
rithms, which calls more and more attention in server environments and is often
critical in environments where flash devices are deployed in the first place, e.g.,
mobile data management. The major contributions of this paper are:

– We accomplish an extensive performance study of related algorithms in a
DBMS-based environment using a variety of flash disks and magnetic disks.
This device-sensitivity study is missing in all previous works, where evalu-
ation was often performed on a single simulated flash device. Furthermore,
the performance study emphasizes the basic principles introduced in Sect. 1.

– We examine the energy consumption of the system running these algorithms
using a tailor-made energy measurement device. Our experiments reveal a
strong correlation between system performance and energy consumption and
demonstrated the great energy-saving potential of flash disks.

The remainder of the paper is organized as follows. Sect. 2 sketches related
work. Sect. 3 discusses one of the flash-aware buffer algorithms in detail. Our
experiments are presented in Sect. 4. The concluding remarks are given in Sect. 5.

2 Related Work

LRU and CLOCK [6] are among the most widely-used replacement policies. The
latter is functionally identical to Second Chance [7]: both of them often achieve
hit ratios close to those of LRU.



CFLRU [8] is a flash-aware replacement policy for operating systems based
on LRU. It addresses the asymmetry of flash I/O by allowing dirty pages to
stay in the buffer longer than clean pages. The LRU list of CFLRU is divided
into two regions: the working region at the MRU (most recently used) end of
the list, and the clean-first region at the LRU end, where clean pages are always
selected as victims over dirty pages. In this way, the buffer area for dirty pages
is effectively increased—thus, the number of flash writes can be reduced.

LRU-WSR [9] is a flash-aware algorithm based on LRU and Second Chance,
using only a single list as auxiliary data structure. The idea is to evict clean and
cold-dirty pages and keep the hot-dirty pages in buffer as long as possible.

REF [10] is also a flash-aware replacement policy based on LRU. It maintains
an LRU list and has a victim window at the MRU end of the list, similar to the
clean-first region of CFLRU. Victim pages are only selected from the victim
blocks, which are blocks with the largest numbers of pages in the victim window.

CFLRU and LRU-WSR do not address the problem of write patterns, while
REF does not distinguish between the clean and dirty states of pages. To the best
of our knowledge, CFDC [11] is the only flash-aware algorithm that applied all
the three basic principles P1 to P3 introduced in Sect. 1. The study of the energy
behavior of related buffer management algorithms distinguishes our work from
that of [4], where the impact of the device type (flash disk or magnetic disk) on
the energy efficiency of a complete database system is examined and discussed.

3 The CFDC Algorithm

For comprehension, we repeat the essential properties of the CFDC (Clean-First
Dirty-Clustered) algorithm.

3.1 The Two-Region Scheme

CFDC manages the buffer in two regions: the working region W for keeping
hot pages that are frequently and recently revisited, and the priority region P
responsible for optimizing replacement costs by assigning varying priorities to
page clusters. A parameter �, called priority window, determines the size ratio
of P relative to the total buffer. Therefore, if the buffer has B pages, then P
contains � pages and the remaining (1−�) ⋅B pages are managed in W . Note, W
does not have to be bound to a specific replacement policy. Various conventional
replacement policies can be used to maintain high hit ratios in W and, therefore,
prevent hot pages from entering P .

The parameter � of CFDC is similar to the parameter window size (w) of
CFLRU. The algorithm REF has a similar configurable victim window as well.
For simplicity, we refer to them uniformly with the name “window size”. If a
page in P is hit, the page is moved (promoted) to W . If the page hit is in W ,
the base algorithm of W should adjust its data and structures accordingly. For
example, if LRU is the base algorithm, it should move the page that was hit to
the MRU end of its list structure. In case of a buffer fault, the victim is always



first selected from P . Only when all pages in P are fixed1, we select the victim
from W . Considering recency, the newly fetched page is first promoted to W .

3.2 Priority Region

Priority region P maintains three structures: an LRU list of clean pages, a pri-
ority queue of clusters where dirty pages are accommodated, and a hash table
with cluster numbers as keys for efficient cluster lookup. The cluster number is
derived by dividing page numbers by a constant cluster size.

In our context, spatial locality refers to the property of contiguously accessed
DB pages being physically stored close to each other. A cluster is a set of pages
located in proximity, i.e., whose page numbers are close to each other. Though
page numbers are logical addresses, because of the space allocation in most
DBMSs and file systems, the pages in the same cluster have a high probability
of being physically neighbored, too. The size of a cluster should correspond, but
does not have to be strictly equal to the size of a flash block, thus information
about exact flash block boundaries are not required.

CDFC’s principles of victim selection are:

– Inside P , clean pages are always selected over dirty pages. If there is no clean
page available, a victim cluster having the lowest priority is selected from
the priority queue.

– The oldest page in the victim cluster will be evicted first, if it is not re-
referenced there. Otherwise, it would have been already promoted to W .

– The priority of the victim cluster is set to minimum and will not be updated
anymore, so that the next victim pages will still be evicted from this cluster,
resulting in strong spatial locality of page evictions.

For a cluster c with n (in-memory) pages, its priority P (c) is computed
according to Formula 1:

P (c) =

n−1∑
i=1

∣pi − pi−1∣

n2 × (globaltime− timestamp(c))
(1)

where p0, ..., pn−1 are the page numbers ordered by their time of entering the
cluster. The algorithm tends to assign large clusters a lower priority for two
reasons: 1. Flash disks are efficient in writing such clustered pages. 2. The pages
in a large cluster have a higher probability of being sequentially accessed.

The sum in the dividend in Formula 1, called inter-page distance (IPD), is
used to distinguish between randomly accessed clusters and sequentially accessed
clusters (clusters with only one page are set to 1). We prefer to keep a randomly
accessed cluster in the buffer for a longer time than a sequentially accessed
cluster. For example, a cluster with pages {0, 1, 2, 3} has an IPD of 3, while a
cluster with pages {7, 5, 4, 6} has an IPD of 5.

1 The classical pin-use-unpin (or fix-use-unfix) protocol [12] is used for page requests.



The purpose of the time component in Formula 1 is to prevent randomly,
but rarely accessed small clusters from staying in the buffer forever. The cluster
timestamp timestamp(c) is the value of globaltime at the time of its creation.
Each time a dirty page is inserted into the priority queue (min(W ) is dirty),
globaltime is incremented by 1.

If a page in P is hit, it will be promoted to W . A newly fetched page in P
will also be promoted to W . In both cases, page min(W ) is determined by W ’s
victim selection policy and demoted to P . It does not have to be unfixed, because
it is just moved inside the buffer. If min(W ) is clean, it is simply appended to
the LRU list of clean pages. If it is dirty, the globaltime is incremented and we
derive its cluster number and perform a hash lookup using this cluster number.
If the cluster does not exist, a new cluster containing this page is created with
the current globaltime and inserted to the priority queue. Furthermore, it is
registered in the hash table. Otherwise, the page is added to the existing cluster
tail and the cluster position in the priority queue is adjusted.

After demoting min(W ), the page to be promoted, say p, will be removed
from P and inserted to W . If p is dirty and its containing cluster c is not a victim
cluster, we know that p is promoted due to a buffer hit. We update the cluster
IPD including the timestamp. This will generally increase the cluster priority
according to Formula 1 and cause c to stay in the buffer for a longer time. This
effect is desirable, because the remaining pages in the cluster will probably be
revisited soon due to locality. In contrast, the cluster timestamp is not updated,
when pages are added to a cluster, because they are demoted from W .

The time complexity of CFDC depends on the complexity of the base algo-
rithm in W and the complexity of the priority queue. The latter is O(logm),
where m is the number of clusters. This should be acceptable due to m≪ � ⋅B,
where � ⋅ B is the number of pages in P . Furthermore, with the priority queue
and its priority function, both temporal and spatial locality of the dirty pages
are taken into account, thus potentially high hit ratios and improved runtime
performance can be expected.

The CFDC approach implies the NoForce and Steal strategies for the log-
ging&recovery component [13], which, however, is the standard solution in most
DBMSs. In practice, page flushes are normally not coupled with the victim
replacement process—most of them are performed by background threads. Ob-
viously, these threads can benefit from CFDC’s dirty queue, where the dirty
pages are already collected and ordered. The two-region scheme makes it easy
to integrate CFDC with conventional replacement policies in existing systems.

4 Experiments

4.1 Hardware Environment

The system under test (SUT) has an Intel Core2 Duo processor and 2 GB of
main memory. Both the OS (Ubuntu Linux with kernel version 2.6.31) and the
DB engine are installed on an IDE magnetic disk (system disk). The test data



Table 1: Disk drives used in the test

name device type idle (W) peak (W) interface

HDD1 WD WD800AAJS 7200 RPM 5.3 6.3 SATA
HDD2 WD WD1500HLFS 10000 RPM 4.5 5.7 SATA
HDD3 Fujitsu MBA3147RC 15000 RPM 8.4 10.0 SAS
SSD1 SuperTalent FSD32GC35M 1.3 2.1 SATA
SSD2 MTRON MSP-SATA-7525-032 1.2 2.0 SATA
SSD3 Intel SSDSA2MH160G1GN 0.1 1.2 SATA

(as a DB file) resides on a separate magnetic/flash disk (data disk). The data
disks, listed in Tab. 1, are connected to the system one at a time.

A tailor-made power measurement device, consisting of ten voltage and cur-
rent meters, connects the power supply and the system’s hardware components,
as depicted in Fig. 1. The device does not tamper the voltages at the power lines,
because the hardware components are sensitive to voltage variations. Instead, it
measures the current using current transformers with inductive measurement,
and the voltage using voltage dividers on a shunt circuit. Both measurements
are forwarded over a data bus to the A/D-Converter, which allows the signals
being processed by a monitoring PC in real-time.

Fig. 1: Power measurement setup

Using this setup, we are able to precisely measure the energy consumption
of the SUT’s major parts of interest: the data disk (denoted as SATA, although
HDD3 is measured over the SAS power lines), the system disk (denoted as IDE),
and the remaining components on the mainboard (denoted as ATX) including
CPU and RAM. For a time period T , the average power P̄ is given by Formula 2:

P̄ =
1

T

∫ T

0

(v(t) ⋅ i(t))dt (2)

where v(t) and i(t) are the voltage and current as functions of time, and∫ T

0
(v(t) ⋅ i(t))dt is the work, which is equal to the energy consumption E.
Tab. 2 lists the power profile of the major components of SUT. The idle

column refers to the power values when the components are idle (0% utilization)
but ready for serving requests, i.e., not in a service-unavailable state such as
stand-by or hibernate, while the peak column refers to the power values when



Table 2: Power profile of SUT

power line components idle (W) peak (W)

SATA/SAS data disk (see Tab. 1)
IDE system disk (Maxtor 6Y080P0) 6.3 12.2
ATX CPU, RAM, and mainboard chips 19.6 33.5

the components are under 100% utilization. An interesting observation can be
made from this profile: ignoring the data disk, the idle power of the system is
57% of the peak power (25.9 W / 45.7 W). In other words, a lion’s share of
the power is consumed only to keep the system in a ready-to-service state. Note
this “idle share” is even larger in practice, because the peak power can only
be reached in some extreme conditions, where all the hardware components are
fully-stressed at the same time. With the data disk, this observation still holds,
because similar ratios exist between the idle and peak power of HDDs, while
SSDs had too low power values to have a large impact on the idle/peak power
ratio of the overall system. Furthermore, this observation is not specific to the
test machine discussed here, because most state-of-the-art servers and desktop
computers have similar idle/peak power ratios.

4.2 Software Settings

In all experiments, we use a native XML DBMS designed according to the clas-
sical five-layer reference architecture. For clarity and simplicity, we only focus
on its bottom-most two layers, i.e., the file manager supporting page-oriented
access to the data files, and the buffer manager serving page requests. Although
designed for XML data management, the processing behavior of these layers is
very close to that of a relational DBMS.

We deactivated the file-system prefetching and used direct I/O to access
the DB file, so that the influences of file system and OS were minimized. The
logging&recovery component is deactivated so that no extra I/Os for logging
will influence our measurements. Our experiments are driven by two real-life
OLTP page reference traces and only the two layers introduced were involved
in the processing, thus the workload is I/O intensive. All experiments started
with a cold DB buffer. Except for the native code responsible for direct I/O, the
DB engine and the algorithms are completely implemented in Java. CFDC and
competitor algorithms are fully integrated into the XML DBMS and work with
other components of the DB engine.

We cross-compared five buffer algorithms, including the flash-aware algo-
rithms CFLRU, LRU-WSR, REF, CFDC and the classical algorithms repre-
sented by LRU. The block size parameter of REF, which should correspond to
the size of a flash block, was set to 16 pages (DB page size = 8 KB, flash block
size = 128 KB). To be comparable, the cluster size of CFDC was set to 16 as
well. The ∣V B∣ parameter of REF (the number of allowed victim blocks) was



set to 4, based on the empirical studies of its authors. Furthermore, we used
an improved version of CFLRU which is is much more efficient at runtime yet
functionally identical to the original algorithm.

4.3 Measuring Spatial Locality

Both CFDC and REF improves the spatial locality of page flushes. We define
the metric cluster-switch count (CSC) to quantify the spatial locality of page
flushes. Let S := {q0, q1, . . . , qm−1} be the sequence of page flushes, the metric
CSC(S) reflects the spatial locality of S:

CSC(S) =

m−1∑
i=0

{
0, if qi−1 exists and in the same cluster as qi
1, otherwise

(3)

The clustered writes of CFDC are write patterns with high spatial locality
and thus minimized cluster-switch counts. Sequential writes are a special case of
clustered writes, where pages are updated in a forward or reverse order according
to their locations on the storage device. If d(S) is the set of distinct clusters
addressed by S and S is a sequential access pattern, we have CSC(S) = ∣d(S)∣.
In the context of magnetic disks, if we set the cluster size equal to the track size,
then CSC(S) approximates the number of disk seeks necessary to serve S.

Compared to CFDC, the sequence of dirty pages evicted by the algorithm
REF generally has a much higher CSC, because it selects victim pages from a set
of victim blocks and the victim blocks can be addressed in any order. However,
this kind of write requests can also be efficiently handled by flash disks, if the
parameter V B is properly set. Because the sequence of dirty pages evicted can
be viewed as multiple sequences of clustered writes that are interleaved with one
another, we call the approach of REF semi-clustered writes.

Let R := {p0, p1, . . . , pn−1} be the sequence of page requests fed to the buffer
manager, we further define the metric cluster-switch factor (CSF ) as:

CSF (R,S) = CSC(S)/CSC(R) (4)

CSF reflects the efficiency to perform clustering for the given input R. To com-
pare identical input sequences, it is sufficient to consider the CSC metric alone.

4.4 The TPC-C Trace

The first OLTP trace was obtained using the PostgreSQL DBMS. Our code
integrated into its buffer manager recorded the buffer reference string of a 20-
minutes TPC-C workload with a scaling factor of 50 warehouses.

We ran the trace for each of the five algorithms and repeat this on each of the
devices listed in Tab. 1. The recorded execution times and energy consumptions
are shown in Fig. 2. Since our workload is I/O-intensive, the device performance
has a strong impact on the overall system performance, e.g., SSD3 reduced the
average runtime (average over the algorithms) by a factor of 21 compared with



(a) execution times (ms) (b) energy consumption (J)

Fig. 2: Performance and energy consumption running the TPC-C trace

HDD1 and by a factor of 19 compared with SSD1, while the corresponding
energy-saving factors are 25 and 19 respectively. The CFDC algorithm had the
best performance on all of the devices, with a maximum performance gain of
22% over CFLRU on SSD1. Interestingly, even on the magnetic disks, CFDC
and CFLRU had a better performance than LRU, which, in turn, outperformed
LRU-WSR even on the flash disks. In most configurations, REF had the longest
execution times due to its lower hit ratio and higher number of page flushes,
with the exception on SSD2, where its semi-clustered writes seems to be best
accommodated by that specific device.

Similar to magnetic disks, it is common for flash disks to be equipped with
a device cache. Very often, it can not be deactivated or re-sized by the user or
the OS, and its size is often undocumented. Obviously, the DB buffer in our
experiment should be larger than the device caches. Otherwise, the effect of
the DB buffer would be hidden by them. On the other hand, if the DB buffer
is too large, the difference between our algorithms would be hidden as well,
since with a large-enough buffer, there would be hardly any I/O. Based on these
considerations, we used a buffer size of 8000 pages (64 MB) for this experiment,
because the largest known device cache size is 16 MB of HDD3. The difference
between the execution times of the algorithms becomes smaller on SSD3 (see
Fig. 2) due to two reasons: 1. The I/O cost on SSD3 is much smaller than
on other devices, yielding the buffer layer optimization less significant; 2. This
device has supposedly the largest device cache, since it is the newest product
among the devices tested.

Fig 3 shows the performance metrics that were constant across all the devices
(device-independent): number of buffer faults (physical reads), number of page
flushes (physical writes), and cluster-switch count (CSC). As shown in Fig. 3a
and Fig. 3b, the clean-first algorithms (CFLRU and LRU-WSR) traded some of



(a) buffer faults (b) page flushes (c) CSC

Fig. 3: Device-independent performance metrics

their hit ratios for a reduced page flush count, while REF suffered both from
a higher number of buffer faults and a higher number of page flushes. Among
all algorithms compared, the page flushes generated by CFDC had the highest
spatial locality (Fig. 3c).

Comparing Fig. 2a with Fig. 2b, we can see a strong correlation between the
execution times and the energy consumption. In particular, the best-performing
algorithm was also the most energy-saving algorithm. For example, CFDC re-
duced energy consumption by 32% on HDD1 and by 71% on SSD3 compared
with REF. This effect is further explained by Fig. 4, which contains a break-
down of the average working power of major hardware components of interest,
compared with their idle power values. The figures shown for the configurations
HDD1 and SSD1 are indicative2. Ideally, the power consumption of a component
(and the system) should be determined by its utilization. But for both config-
urations, there is no significant power variation when the system state changes
from idle to working. Furthermore, no clear difference can be observed between
the various algorithms, although they have different complexities and, in fact,
also generate different I/O patterns. This is due to the fact that, independent of
the workload, the processor and the other units of the mainboard consume most
of the power (the ATX part in the figure) and these components are not energy-
proportional, i.e., their power is not proportional to the system utilization caused
by the workload. However, due to the missing energy-proportional behavior of
most system components, the elapsed time T of the workload (algorithm) almost
completely determines its energy consumption E (note, E = P̄ ⋅ T ).

4.5 The Bank Trace

The second trace used here is a one-hour page reference trace of the production
OLTP system of a Bank. It was also used in the experiments of [14] and [15].
This trace contains 607,390 references to 8-KB pages in a DB having a size of

2 They are similar for the other device types (IDE and ATX remain constant). For
this reason, we have omitted the other configurations due to space limitations.



(a) HDD1 (b) SSD1

Fig. 4: Break-down of average power (W)

22 GB, addressing 51,870 distinct page numbers. About 23% of the references
update the page requested, i.e., the workload is read-intensive. Even for the
update references, the pages must be first present in the buffer, thus more reads
are required. Moreover, this trace exhibits an extremely high access skew, e.g.,
40% of the references access only 3% of the DB pages that were accessed in
the trace [14]. We use this trace to examine the impact of buffer size on the
performance and energy consumption of our algorithms. Hence, the buffer size
varied from 500 to 16000 pages (factor 32).

(a) execution times (ms) on HDD2 (b) execution times (ms) on SSD2

Fig. 5: Impact of window size



In the experiments discussed in Sect. 4.4, the parameter “window size” was
not tuned—it was set to 0.5 for all related algorithms. To examine its impact, for
each of the algorithms CFDC, CFLRU, and REF, we always ran the trace three
times with the window size parameter set to 0.25, 0.50, and 0.75 respectively,
denoted as REF-25, REF-50, REF-75, etc. As an indicative example, the execu-
tion times measured on the middle-class devices HDD2 and SSD2 are shown in
Fig. 5. We found that the optimal window size depends on both the buffer size
and the device characteristics, for all the three related algorithms.

Due to the space limitation, we only discuss the performance and power
figures measured on SSD2 in more detail. For the same reason, we choose one
best-performing window-size configuration for each of the related algorithms and
compare them with LRU and LRU-WSR in Fig. 6. For CFDC and CFLRU it
was 0.75, and for REF it was 0.25. The performance figures shown in Fig. 6a
are explained by the device-independent metrics shown in Fig. 6b to Fig. 6d.
For example, CFDC and CFLRU had comparable numbers of buffer faults and
page flushes, but the latter suffered from a lower spatial locality of page flushes
(Fig. 6d). The access skew is reflected in Fig. 6b: the difference in number of
page faults becomes insignificant beyond 4000 pages.

The linear complexity of REF resulted in a higher CPU load compared with
other algorithms having constant complexity. This is captured by Fig. 6f, where
the working power of the system is illustrated. The power value of REF goes
up with an increasing buffer size, while the power values caused by the other
algorithms slightly decrease, because the larger the buffer sizes the more physical
I/Os were saved. Note, handling a logical I/O from the buffer is more energy-
efficient than doing a physical I/O, because fewer CPU cycles are required and
device operations are not involved.

The algorithms’ complexity did have an impact on the power of the system,
but the time factor had a stronger impact on the overall system energy consump-
tion. For example, enlarging the buffer from 500 to 16000 pages augmented the
power value of REF by 2.1% (from 28.04 W to 28.63 W), while the corresponding
execution time (Fig. 6a) decreased by 46.3%. In fact, the effect of the increased
CPU load was hidden by the “idle share” of the working power (27.08 W, not
shown in the figure). Therefore, the energy consumption curves in Fig. 6e largely
mirror the performance curves of Fig. 6a. In particular, at a buffer size of 16000
pages, the relative performance gain of CFDC over CFLRU is 54%, while the
corresponding energy saving is 55%.

5 Conclusions

Our experiments reveal a great performance potential of flash disks. The use
of flash-aware buffer algorithms can further significantly improve system perfor-
mance on these devices. The CFDC algorithm clearly outperformed the other
algorithms in most settings. According to our device sensitivity study, its flash-
specific optimizations do not exclude its application in systems based on mag-
netic disks.



(a) execution times (ms) (b) page faults

(c) page flushes (d) CSC

(e) energy (J) (f) power (W)

Fig. 6: Performance and power running the bank trace on SSD2



The performance gain can be translated into a significant energy-saving po-
tential due to the strong correlation between performance and system energy
consumption. Furthermore, faster I/O reduces the overall system runtime and
leaves more opportunities for the system to go into deeper energy-saving states,
e.g., stand-by or even off-line.

As an important future task of hardware designers and device manufactur-
ers, all system components other than flash disks should be developed towards
stronger energy-proportional behavior. Then, the speed or runtime reduction
gained by flash use for I/O-intensive applications could be directly translated
into further substantial energy saving. As a consequence, energy efficiency due
to flash disk use would be greatly enhanced as compared to magnetic disks.
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