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Abstract Effective I/O buffering is a performance-critical
task in database management systems. Accordingly, systems
usually employ various special-purpose buffers to align,
e.g., device speed, page size, and replacement policies with
the actual data and workload. However, such partitioning
of available buffer memory results in complex optimiza-
tion problems for database administrators and also in fragile
configurations which quickly deteriorate on workload shifts.
Reliable forecasts of I/O costs enable a system to evaluate al-
ternative configurations to continuously optimize its buffer
memory allocation at runtime. So far, all techniques pro-
posed for the prediction of buffer performance focus solely
on hit ratio gains for increased buffer sizes to identify buffers
which promise the greatest benefit. These approaches, how-
ever, assume that their forecast allows to extrapolate the ef-
fect for buffer downsizing, too. As we will show, this comes
along with a severe risk of wrong tuning decisions, which
may heavily impact system performance. Thus, we empha-
size the importance of reliably forecasting the penalty to
expect for shrinking buffers in favor of others. We explore
the use of lightweight extensions for widely used buffer
algorithms to perform on-the-fly simulation of buffer per-
formance of smaller and larger buffer sizes simultaneously.
Furthermore, we present a simple cost model and demon-
strate how to compose these concepts into a self-tuning com-
ponent for dynamic buffer reallocation.

This is an extended version of the paper “Lightweight Performance
Forecasts for Buffer Algorithms” selected for the special CSRD issue
Best papers BTW 2011 [1].
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1 Introduction

Dynamic database management gained a lot of attention and
visibility during recent years and led to various self-tuning
approaches. As I/O reduction is one of the most important
aspects, automatized buffer memory management has al-
ways been one of the building blocks for (self-)tuning of
database systems. Data placement decisions but also varia-
tions in access patterns, page sizes, access speed, read/write
characteristics, or prices of storage devices suggest the sup-
port of multiple buffers to optimally exploit existing I/O
bandwidth. Memory partitioning, however, frequently en-
tails memory waste, because some buffers may be underused
while others are overused. Here, only continuous monitoring
of system performance may assure adequate usage of the to-
tal memory budget and regular adjustment of buffer alloca-
tions at runtime, thereby enabling minimization of waste.

The decision when and which buffers have to be resized
requires a cost-based model together with buffer techniques
(i.e., page mapping, propagation algorithm) that are self-
tunable at runtime. The quality of a decision depends on
the cost model itself and the accuracy of forecasts. How-
ever, database buffers typically scale non-uniformly (i.e., in
a non-linear fashion) and simple extrapolations of current
performance figures can easily lead to wrong assumptions.
In the worst case, the redistribution of buffer memory re-
sults in unintended buffer sweeps followed by excessive I/O
thrashing, which again increases the time to pour oil on trou-
bled waters. In our opinion, self-tuning components should
therefore follow a strict “Don’t be evil” policy.

Most tuning approaches aim at maximum speedup, i.e.,
they focus on the identification of the greatest profiteer when

mailto:kschmidt@cs.uni-kl.de


K. Schmidt, S. Bächle

more buffer memory can be assigned. Accordingly, they
usually shift memory from buffers having low I/O traffic
and/or low potential for performance gains to more promis-
ing ones. We believe that a sole focus on buffer growth
is dangerous, because the risk of wrong decisions comes
mainly from the inaccuracy of forecasts concerning smaller
buffers. Once a buffer is shrunk too much, it may cause a lot
of I/O and, in this way, also affect the throughput of all re-
maining buffers. Thus, reliable estimations for buffer down-
sizing are obviously as important as estimations for buffer
upsizing. Good forecast quality is further urgently needed
in dynamic environments which have to cope with many or
intense workload shifts. Here, too cautious, i.e., too tiny ad-
justments, even when they are incrementally done, are not
good enough to keep the system in a well performing state.
Reliable forecasts help to justify more drastic reconfigura-
tions which may be necessary to keep up with workload
shifts.

1.1 Forecast of buffer behavior

Proposed forecast models for the performance of a resized
buffer can be divided into two groups: The first group uses
heuristics-based or statistical indicators to forecast buffer
hit ratios, whereas the second group is based on simula-
tion. Using heuristics-based approaches, the forecast qual-
ity is hard to determine. As a consequence, their use comes
with the risk of wrong tuning decisions which may heavily
impact system performance. Simulation-based approaches
allow trustworthy estimations, but usually limited to the
simulated buffer size. Outside already known or simulated
ranges, hit ratios may change abruptly. For this reason, we
need forecasts for growing and shrinking buffers.

The performance of a buffer does not scale linearly with
its pool size, because mixed workloads containing scans and
random I/O can cause abrupt jumps in the hit-ratio trend line
as illustrated in Fig. 1. These jumps may also lead to dif-
fering speed-ups for varying buffer sizes, which again may
cause wrong assumptions and decisions.

Performance prediction is always based on information
gathered by monitoring, taking samples or (user) hints into
account. Hit/miss ratios are the standard quality metrics for
buffers, because they are cheap and express the actual goal
of buffer use: I/O reduction. Unfortunately, they are useless
for performance forecasts, i.e., they even do not allow to
make simple extrapolations for growing or shrinking buffer
sizes. To illustrate this fact, let us assume the following sce-
nario for a given buffer size of 5 and LRU-based replace-
ment. At the end of a monitoring period, we observed 5 hits
and 10 misses. At least two different access patterns may
have led to these statistics:

Scenario 1: 1,2,3,4,5,1,1,1,1,1,6,7,8,9,10, . . . .
Scenario 2: 1,2,3,4,5,1,2,3,4,5,6,1,2,3,4, . . . .

In the first scenario, 5 hits are attributed to repeated ac-
cesses of page 1, whereas, in the second scenario, the hits
are attributed to 5 different pages (1, 2, 3, 4, 5). For the same
scenarios and a buffer of size 2, we get completely different
hit (h) and miss (m) statistics:

Scenario 1: m,m,m,m,m,m,h,h,h,h,m,m,m,m,

m, . . . .
Scenario 2: m,m,m,m,m,m,m,m,m,m,m,m,m,m,

m, . . . .

Obviously scenario 1 obtains a better hit rate with 4 hits
to 11 misses than scenario 2 without any hit. If we increase
the buffer instead to hold 6 pages in total, the picture turns
again:

Scenario 1: m,m,m,m,m,h,h,h,h,h,m,m,m,m,

m, . . . .
Scenario 2: m,m,m,m,m,h,h,h,h,h,m,h,h,h,h, . . . .

Now we observe 5 hits to 10 misses for scenario 1 and
9 hits to 6 misses for scenario 2. This example shows that
hit/miss numbers or page/benefit metrics do not allow for
correct extrapolations, because the order of page requests
and the hit frequency distribution are important. Thus, self-
tuning relies on monitoring and sampling of data where cur-
rent buffer use is taken as an indicator for the future. Infor-
mation relevant for resizing forecasts such as re-use frequen-
cies, working set size, or noise generated by scans cannot be
expressed in single numbers.

Instead, the ideal starting point for buffer forecasts is the
replacement algorithm used for a buffer. Its statistics in-
corporate a lot more information about these relevant as-
pects than any other performance marker. Today, substan-
tial research has already been performed to develop adap-
tive replacement algorithms, hence, it is safe to assume that
such algorithms are operating “optimally” for the available
memory. The question is now how to leverage this implicit

Fig. 1 Buffer speed-up trend for different access patterns
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knowledge for performance forecasts. As we will demon-
strate in the remainder of this paper, it is difficult but not
impossible to get reliable estimates for buffer downsizing.
In combination with already known simulation methods
for the estimation of buffer upsizing, we can then build a
lightweight framework for dynamic buffer management.

1.2 Related work

Optimal buffer management has been a key aspect in
database system research since the very early days. Thus,
various aspects such as the underlying disk model, search
strategies within a buffer, replacement algorithms, concur-
rency issues and the implications of the page layout have
been intensely studied [6]. Nevertheless, the complexity of
buffer management did not allow to distill an optimal con-
figuration for all different kinds of workloads and system en-
vironments. Instead, self-tuning mechanisms were explored
to resolve performance bottlenecks at runtime.

One early self-tuning approach hints at specific access
patterns like scans or index traversals to the buffer to opti-
mize victim selection [7]. This allows to outperform stan-
dard LRU-based algorithms but addresses only a single as-
pect of dynamic buffer management. In [11], the authors
give a theoretical base for the combined analysis of buffer
sizing decisions and the influence of access patterns. Refer-
ence [4] models buffer load balancing as a constrained opti-
mization problem and investigates the application of control
theory and optimization theory.

In [14], control theory, runtime simulation, and cost-
benefit analysis are integrated into a self-tuning framework.
The presented forecast technique SBPX serves also as our
baseline and is introduced in detail in Sect. 2. Some heuris-
tic forecast techniques are presented in [3, 9]. The analytical
work in [15] derives an equation to relate miss probability
to buffer allocation. Finally, [5] proposes a brute-force step-
by-step approach to determine the optimal configuration for
an entire DBMS.

1.3 Contribution

In this work, we study two major prerequisites for self-
tuning buffer memory allocation: cost determination and de-
cision making. As the main objective of buffer tuning is I/O
reduction and main memory management, decisions based
on I/O costs are required to efficiently distribute available
memory among all buffer pools. In particular, we look at
overhead and quality for buffer undersizing and oversizing
forecasts to estimate I/O costs for alternative configurations.

We present ideas to integrate low-overhead forecast ca-
pabilities for several common buffer algorithms and assess
their feasibility in experiments. Furthermore, we show how

these forecasts can be used for nearly riskless self-tuning de-
cisions. Eventually, a short evaluation is revealing prospects
of simulation-based buffer tuning as well as its limitations.

The remainder of this paper is organized as follows:
Sects. 2 and 3 discuss forecast techniques for buffer upsizing
and downsizing, respectively. In Sect. 4, we present a deci-
sion model for a self-tuning component. The results of our
experiments are shown in Sect. 5. Finally, Sect. 6 concludes
the paper.

2 Forecast of buffer upsizing

The obvious way of accounting I/O costs for alternative
buffer sizes is to fully simulate each of them for the same
page reference string, i.e., page request sequence. Of course,
a simulation of the propagation behavior for page num-
bers is sufficient; the actual payload data need not be kept
in memory. Nevertheless, this approach requires additional
data structures, such as hash maps for lookup, lists for the
replacement algorithm, and virtual pages. Moreover, each
buffer request has to be processed multiple times, i.e., page
lookup and replacement maintenance for each simulated
configuration. Obviously, the overhead of such a solution
is prohibitive. In contrast, cheaper solutions may be less ac-
curate, but still achieve meaningful results for resizing deci-
sions.

Our buffer self-tuning refinements are inspired by the
SBPX framework [14], which approximates the benefit of
a larger buffer through “buffer extension”. This extension
is simply an overflow buffer for the page identifiers of the
most recently evicted pages. The overflow buffer must, of
course, have its own strategy for victimization. The authors
of SBPX recommend here a strategy “similar to that of the
actual buffer pool” [14].

When a page miss in the actual buffer occurs, the exten-
sion checks if the page identifier is found in the overflow
buffer, i.e., if the page would have been present in a larger
buffer. In that case, we can account a “savings” potential
for upsizing. Further, we must now maintain the overflow
buffer. The page identifier of the actual evicted page is pro-
moted to the overflow buffer, which in general requires to
evict another page identifier from the overflow buffer. This
replacement is not exactly the same as a real miss in the
simulated larger buffer. The identifier of the requested page
causing the miss could have been present in the larger buffer.
In the course of continuous requests, however, also a larger
buffer must evict pages. Thus, a replacement in the overflow
buffer can be regarded as a “delayed” replacement effect. In
the case of a page hit in the actual buffer, no further book-
keeping is required, because the locality principle suggests
that the replacement strategy in a larger buffer holds a su-
perset of the pages present in a smaller one. Listing 1 shows
a sketch of the modified page fix routine.
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Listing 1 Modified page fix algorithm for upsize simulation
1Frame fix( l ong pageNo) {
2 Frame f = mapping.lookup(pageNo);
3 i f (f != n u l l) {
4 strategy.refer(f); // update replacement strategy
5 ... // and statistics
6 } e l s e {
7 Frame of = overflowMapping.lookup(pageNo);
8 i f (of != n u l l) {
9 overflowMapping.remove(of.pageNo);

10 ... // update overflow hit statistics
11 } e l s e {
12 of = overflowStrategy.victim();
13 overflowBuffer.remove(of.pageNo);
14 ... // update overflow miss statistics
15 }
16

17 Frame v = strategy.chooseVictim();
18 strategy.copyStateTo(overflowStrategy);
19

20 v.copyStateTo(of);
21 // transfer page identifier to overflow
22 overflowMapping.put(of.pageNo, of);
23

24 mapping.remove(v.pageNo);
25 ... // replace page in frame v
26 strategy.referAsNew(v);
27 // update replacement strategy
28 ... // and statistics
29 mapping.put(pageNo, v);
30 }
31 r e t u r n f;
32}

The problem of this approach is that replacement deci-
sions for two separate buffers in combination are not neces-
sarily the same as for a single large buffer. Thus, the fore-
cast quality of upsizing simulations depends on one aspect:
When a page is evicted from the actual buffer and promoted
to the overflow area, we must be able to transfer “state” in-
formation (e.g., hit counters, chain position, etc.) from the
actual replacement strategy into the overflow strategy (lines
17 and 20). Otherwise, the overflow strategy behaves differ-
ently.

3 Forecast of buffer downsizing

As shown above, knowledge about the performance gain
through a larger buffer is useful to determine the great-
est profiteer of more memory among several buffers. How-
ever, the question for the buffer(s), which may be safely
shrunk without suffering from severe penalties, remains
unanswered. The authors of SBPX extrapolated downsizing
costs as the inverse of savings potential gained through up-
sizing [14]. For buffer sizes close to the unknown (!) borders
of working set sizes, however, this bears the risk of wrong
decisions. Therefore, we developed a simple mechanism to
find out if page hits would have been also page hits in a
smaller buffer. In combination, the SBPX technique allows
us now to determine which buffer profits the most from ad-

Listing 2 Modified page fix algorithm for downsize simulation
1Frame fix( l ong pageNo) {
2 Frame f = mapping.lookup(pageNo);
3 i f (f != n u l l) {
4 i f (!f.hotSet) {
5 Frame v = strategy.chooseHotSetVictim();
6 f.hotset = t r u e; // swap frame to hotset
7 v.hotset = f a l s e ;
8 strategy.swapHotset(f, v);
9 ... // update simulated statistics

10 }
11 strategy.refer(f); // update replacement strategy
12 ... // and statistics
13 } e l s e {
14 Frame v = strategy.chooseVictim();
15 mapping.remove(v.pageNo);
16 ... // replace page in frame v
17 i f (!v.hotset) {
18 Frame hv = strategy.chooseHotSetVictim();
19 hv.hotSet = f a l s e ; // swap frame to hotset
20 v.hotSet = t r u e;
21 strategy.swapHotset(f, v);
22 }
23 strategy.referAsNew(v);
24 // update replacement strategy
25 ... // and statistics
26 mapping.put(pageNo, v);
27 }
28 r e t u r n f;
29}

ditional memory, while our approach helps us to determine
which buffer suffers least from downsizing.

The goal of buffer replacement algorithms is the opti-
mized utilization of data access locality, i.e., to keep the set
of the currently hottest pages that fits into memory. Accord-
ingly, a small buffer is assumed to keep an “even hotter sub-
set” of the pages that would be present in the actual buffer.
Based on this assumption, we denote a subset of the pages in
a buffer of size n as hotsetk , if it would be kept in a smaller
buffer of size k. The key idea of our approach is to keep
track of this hotset during normal processing. When a page
is found in the buffer and belongs to the hotset, it would have
been a hit in the smaller buffer, too. However, if a requested
page is in the current buffer but not in the hotset, the smaller
buffer would need to evict another page, which must be, of
course, part of the current hotset and load the requested page
from disk. Here, we only have to maintain the hotset. The
page that would have been evicted from the smaller buffer
is removed from the hotset and the requested page is added
to the hotset. Each swap is accounted as a page miss for the
simulated smaller buffer.

Of course, a page miss in the current buffer would also
be a page miss in a smaller buffer. Accordingly, we have to
select a replacement victim for both the current buffer and
the (simulated) smaller buffer. The real victim page is now
replaced with the new page and swapped with the virtual
victim of the smaller buffer into the hotset. The modified
page fix algorithm is shown in Listing 2.

Note that a real replacement victim is generally not ex-
pected to be part of the current hotset, because this would
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Fig. 2 LRU-based buffer
simulation with overflow
extension

imply that the replacement strategy evicts a page more re-
cently accessed. In some algorithms, however, such counter-
intuitive decisions might be desired, e.g., to explicitly rule
out buffer sweeps through large scans. Then, we must not
maintain the hotset at all.

Obviously, the overhead of this approach is very small.
We only need a single bit per buffer frame to flag the hot-
set membership and must determine a swap partner, when
a new page enters the hotset. Furthermore, the simulation
does not influence the quality of the current buffer, i.e., the
strength of the replacement strategy is fully preserved. As
said, the choice of the hotset victim is dependent on the used
replacement strategy to reflect the behavior of the strategy in
a smaller buffer correctly. In the following, we will investi-
gate hotset victim determination for five popular families of
replacement algorithms. In particular, we want to know if
it is possible to predict replacement decisions for a smaller
buffer based on the implicit knowledge present.

3.1 LRU

The LRU algorithm embodies a very simple, yet effective
replacement strategy. It evicts always the least recently used
page from a buffer. Typically, it is implemented as a doubly-
linked list as shown in Fig. 2.

On request, a page is simply put to the head, i.e., MRU
position of the chain. Thus, LRU finds its replacement can-
didate always at the tail, i.e., LRU position. Accordingly, the
first k pages of the LRU chain in a larger buffer of size n are
identical with the k pages in the simulated smaller buffer of
size k and the hotset victim page is found at the k-th position
from the head. The overhead of pointer dereferencing to po-
sition k can be avoided with a marker pointer (called hotset
LRU), which is cheap to maintain. Hence, the hotset victim
is guaranteed to be identical to the victim as in the smaller
buffer and the simulation is fully precise. Evidently, the sim-
plicity of LRU even allows to easily simulate at the same
time the effects when the current buffer would be reduced to
different smaller sizes, which is especially useful for precise
step-wise tuning decisions. It is sufficient to place a marker
at each desired position.

3.2 LRU-K

The LRU-K algorithm [13] follows a more general idea of
LRU and takes the last K references of a page into ac-

Listing 3 LRU-K hotset victim selection
1Frame chooseHotSetVictim() {
2 l ong min = t;
3 l ong minLast = Long.MAX_VALUE;
4 Frame v = n u l l;
5 f o r ( i n t i = 0; i < pages.length; i++) {
6 Frame p = pages[i];
7 History h = p.history;
8 i f ((p.hotSet) && (t - last > CIP)) {
9 l ong last = h.last;

10 l ong dist = h.vector[k - 1];
11 i f ((dist < min)
12 || ((dist == min) && (last < minLast))) {
13 victim = p;
14 min = hist.vector[k -1];
15 }
16 }
17 }
18 r e t u r n v;
19}

count. By doing so, it is “scan-resistant” and less vulnera-
ble to workloads where frequently re-used pages mix with
those having hardly any rereference. For each page, LRU-
K maintains a history vector with the last K references and
the timestamp of its last reference. Furthermore, history vec-
tors of already evicted pages are retained for re-use if an
evicted page is requested again within the so-called retained
information period (RIP). The replacement victim is only
searched among those pages that have been buffered for at
least a predefined correlated reference period (CIP). The ra-
tionale behind this idea is to prevent a drop of pages imme-
diately after their first reference. For further details on CIP,
history maintenance, etc., we refer to the original paper.

The victim page is determined by the maximum back-
ward K-distance, i.e., the page with the earliest reference in
the history vector. Thus, although implemented differently,
LRU-K behaves for K = 1 the same as LRU. The hotset vic-
tim is chosen accordingly as shown in Listing 3. Note that
implementations of LRU-K usually maintain a search tree
for that. For simplicity, we present here the modification of
the unoptimized variant as in the original paper.

Due to the history update algorithm described in [13],
more than one victim candidate can exist. This could be-
come a problem for our simulation, because a real buffer
might choose a different victim than simulated. Therefore,
we simply evict the candidate with the least recent refer-
ence (line 12). As the timestamp of the last access is unique,
our simulation will be accurate here. Instead, the choice of
RIP turns out to become a problem. If the garbage collec-
tion for history entries is not aligned, pages that re-enter the
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Listing 4 GCLOCK hotset victim selection
1Frame chooseHotSetVictim() {
2 Frame v = n u l l;
3 i n t h = clockHand;
4 f o r ( i n t i = 0; i < size; i++) {
5 Page p = circle[(++h % size)];
6 i f (p.hotSet) {
7 i f (p.count == 0) {
8 r e t u r n v;
9 } e l s e i f ((v == n u l l) || (p.count < v.count)) {

10 v = p;
11 }
12 }
13 }
14 r e t u r n v;
15}

smaller buffer will be initialized differently than in simula-
tion, which may affect future replacement decisions.

3.3 GCLOCK

The third strategy is GCLOCK [12], which stands for gen-
eralized clock algorithm. Like LRU-K, it takes the refer-
ence history of a page into account. In contrast to LRU-K,
however, it is likely to degrade through scans but can be
implemented with less computational and space overhead.
The buffer itself is modeled as a circle of buffer frames,
i.e., the clock. Each frame also maintains a simple refer-
ence counter, which is incremented for each reference to
that specific page. For victim selection, the “clock hand” cir-
cles over all frames and decrements the reference counters.
The clock hand stops at the first frame where the reference
counter drops below zero. So, frequently referenced pages
remain longer in the buffer, because they have higher refer-
ence counts.

The determination of a hotset victim is straightforward:
We simply have to circle over the frames and look for the
first hotset page whose reference counter would first drop
below zero. Obviously, this is the page with the minimum
reference counter. The algorithm is sketched in Listing 4.

Again, this only approximates the behavior of a smaller
buffer with GCLOCK. There are two reasons: First, the an-
gular velocity of the clock hand in a smaller buffer is higher
because there are less frames. Second, the circular arrange-
ment of buffer frames makes the algorithm inherently de-
pendent on the initial order. Thus, victim selection is not
only a matter of the page utilization, but also a matter of
clock-hand position and neighborship of frames. Using a
second clock hand (i.e., pointer) walking solely over the
hotset frames is necessary to address differing round trips.
However, swapping of frame positions when the hotset is
maintained would impact behavior of GCLOCK in the ac-
tual buffer—a circumstance, we want to avoid. To improve
forecast quality, we implemented the smaller circle, i.e., the
hotset, with forward pointers for hotset pages that point to
the logical next one. In case of swapping (see lines 8 an 21

in Listing 2), only the forward pointer and a hotset counter
for that page need to be maintained. In Sect. 5, we will show
that these minor efforts can lead to almost perfect estima-
tions.

3.4 2Q

The 2Q algorithm [8] is a simplified way of imitating LRU-
2, which is noted for delivering good hit ratios but often poor
performance due to its complex algorithm. In essence, 2Q
is a combination of FIFO and LRU. On the first reference,
2Q places a page in a FIFO queue (denoted a1). The first
re-reference of a page in the a1 queue promotes it to the
LRU chain (denoted am). The effect of these two “stages”
is that only hot pages are promoted to the LRU chain, which
tends to keep cold pages longer than necessary. These cold
pages, i.e., pages that are accessed only once within a longer
time period are now dropped earlier by the FIFO queue. An
extended version of 2Q splits the FIFO queue to keep track
of rereferences to pages evicted from the FIFO queue [8].
The effect is similar to the history caching of LRU-K and
comes with queue sizing problems for forecasts, too.

Sizing problems also arise for the FIFO queue and the
LRU chain in the standard algorithm. Therefore, we used
a simplified variation of 2Q where all buffer frames are as-
signed to the LRU chain and the FIFO queue only stores ref-
erences to the pages in the LRU chain. So, it serves like an
index for the LRU chain to identify pages referenced only
once so far. Victims are primarily selected from the FIFO
queue to replace those pages earlier. A subtlety of 2Q is
here that the FIFO queue must not be drained to give new
pages a chance for rereference and promotion to the LRU
chain. The minimum fill degree of the FIFO queue is a con-
figurable threshold. For simulation, we must therefore count
the number of hotset entries in the queue, to be able to de-
cide when a smaller buffer would pick a victim from the
FIFO queue and not from the LRU chain. Also, the thresh-
old must be the same for both sizes. Although this results in
uniform retention times within the FIFO queue for differing
LRU chain sizes, it is acceptable to some degree, because
the threshold models the granted window for references of
new pages. The hotset victim selection is sketched in List-
ing 5. Depending on the number of hotset entries in the a1
list (line 4), the victim is chosen either from the a1 list (lines
4–15) or from the am list (lines 17–22). Note that both LRU
hotset pointers may refer to the same buffer page, which re-
quires maintenance (i.e., moving the pointer) also for the
unaffected queue (lines 5, 6 and lines 18, 19, respectively).

3.5 ARC and CAR

The ARC algorithm (Adaptive Replacement Algorithm)
[10] employs a two-staged model like 2Q to achieve scan
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Listing 5 2Q hotset victim selection
1Frame chooseHotSetVictim() {
2 Frame v;
3 i f ((a1.numberOfHotsetEntries() > threshold)) {
4 v = a1.hotsetLRU(); // victim from FIFO
5 i f (v == am.hotsetLRU()) {
6 am.hotsetLRU() = am.hotsetLRU().amNext;
7 // if both list’s hotset LRU pointers are equal
8 // move the am’s too
9 }

10 a1.hotsetLRU() = a1.hotsetLRU().a1Next;
11 w h i l e (!a1.hotsetLRU().hotSet) {
12 a1.hotsetLRU() = a1.hotsetLRU().a1Next;
13 // skip non-hotset page to reposition
14 // a1’s hotset LRU pointer
15 }
16 } e l s e { // inverse logic for LRU list:
17 v = am.hotsetLRU(); // victim from LRU
18 i f (v == a1.hotsetLRU())
19 a1.hotsetLRU() = a1.hotsetLRU().a1Next;
20 am.hotsetLRU() = am.hotsetLRU().amNext;
21 w h i l e (!am.hotsetLRU().hotSet)
22 am.hotsetLRU() = am.hotsetLRU().amNext;
23 }
24 r e t u r n v;

Listing 6 ARC page fix
1Frame fix( l ong pageNo() {
2 Page p = buffer.get(pageNo);
3 i f (p != n u l l) {
4 i f (p.getList() == B1) {
5 i f (!p.overflow())
6 overflowMissCnt++;
7 e l s e
8 overflowHitCnt++;
9 } e l s e i f (p.getList() == B2) {

10 i f (!p.overflow())
11 overflowMissCnt++;
12 e l s e
13 overflowHitCnt++;
14 } e l s e {
15 overflowHitCnt++;
16 i f (!p.hotSet())
17 hotsetMissCnt++;
18 e l s e
19 hotsetHitCnt++;
20 }
21 p.refer();
22 } e l s e {
23 p = strategy.victim(buffer);
24 buffer.remove(p.pageNo);
25 ... // load page
26 buffer.put(pageNo, p);
27 overflowMissCnt++;
28 hotsetMissCnt++;
29 }
30 r e t u r n p;
31}

resitency. Its improved variant CAR (Clock with Adaptive
Replacement) [2] provides similar performance in terms of
hit ratios, but has the advantage that it “removes the cache
hit serialization problem of LRU in ARC” [2]. While this is
especially important for main memory caches, it is not in the
center of interest for our discussion of disk-based DBMSs.
Therefore, we focus here on ARC only.

ARC uses two LRU chains L1 and L2 to filter out scans
and to retain hot pages for re-reference, respectively. The

Listing 7 ARC simulation functions for a Page
1 b o o l e a n hotSet(Page y, List lst) {
2 i n t steps = (lst == T1) ? T1.length : T2.length;
3 steps = steps - (steps * underSize / size);
4 i n t i = 0;
5 w h i l e (i < steps && y.next != n u l l) {
6 i++;
7 y = y.next;
8 }
9 r e t u r n (i >= steps);

10}
11

12// same as hotSet() but for B* lists
13 b o o l e a n overflow(Page y, List lst) {
14 i n t steps = (lst == B1) ? B1.length : B2.length;
15 steps = steps * overSize / size;
16 i n t i = 0;
17 w h i l e (i < steps && y.prev != n u l l) {
18 i++;
19 y = y.prev;
20 }
21 r e t u r n (i >= steps);
22}

chain sizes are adapted at runtime through a parameter p.
For that, the two chains are divided into top T1 and bottom
B1 and T2, B2, respectively. The idea is similar to the SBPX
approach. Pages referenced within T1 and T2 are in the cache
while B1 and B2 only hold page identifiers of evicted pages.
A page selected as victim from T1 or T2 is put into B1 or B2,
respectively. T1 and T2 are allowed to grow and shrink as
long as their total amount of pages is below or equal to the
buffer size, while parameter p yields the target size of T1.
A hit in B1 suggests a larger T1 as “window“ for a second
reference to a page and, thus, increases p while a hit in B2

suggests a growth of B1 and decreases p. Victims are se-
lected from the tail of T1 as long as |T1| ≥ p and from T2’s
tail otherwise.

The overhead for a separate SBPX-based oversize simu-
lation can be avoided, when the history LRU chains B1 and
B2 are taken into account. Therefore, the page fix routine is
slightly adapted towards ARC-awareness. In Listing 6, the
fix() algorithm is aware that pages found in the buffer (line
2–3) are either from a history LRU chain (line 4–13) or a
T∗ chain (line 14–20). We also added overflow and hotset
counters for simulated misses and hits to illustrate the sim-
ple adaptation. Note, the refer() and victim() routines in line
21 and 23 are equal to the algorithms presented in [10].

Simulation of different buffer sizes in ARC does not use
flags to indicate hotset or overflow membership of a page.
Instead, two functions calculate these properties on-demand
as shown in Listing 7. For hotset membership, we first es-
timate a valid hotset size depending on the current sizes of
T1 and T2 (line 2 + 3), which determines the upper bound of
page links to follow (called steps, line 5–8) towards the end
of the T∗ list. If the end can be reached within this bound, a
page is not within the hotset range, otherwise it is.

The estimation of overflow membership looks similar.
Only the chain traverse order is different because the steps
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calculated to find the beginning of a B∗ list set the upper
bound. Usually, the hotset size is close to the actual size as
well as the SBPX size. Therefore, following next and previ-
ous pointers into the direction of the real buffer size is favor-
able. Note, this way of simulation works for SBPX sizes is
smaller than the history chains B1 + B2, i.e., SPBX size has
to be less or equal to the cache size, which allows to forecast
increasements of up to 100% of the current size.

4 Buffer tuning

The crucial point in database tuning is the difficulty to pre-
cisely predict how a tuning decision will affect system per-
formance. Even experienced database administrators with a
deep knowledge of the workload and the database product it-
self regularly face this challenge. They rely on the assistance
of sophisticated monitoring tools to prevent negative effects
of their tuning decisions on the production system. Often
they also run several observe-analyze-adjust cycles with ref-
erence workloads beforehand on dedicated test systems. Of
course, this is time-consuming and expensive. Built-in self-
monitoring and tuning components can ease this dilemma
and reduce the risk of wrong decisions through rather small
but continuous and incremental adjustments. In dynamic en-
vironments, however, those mechanisms may react too slow
to keep up with the rate of workload shifts or short-term re-
source allocation for higher-level tuning decisions like auto-
indexing. Therefore, we aim towards a re-formulation of the
central question of automatic tuning from “Which adjust-
ment certainly will give the greatest performance benefit?”
to “Which adjustment most likely will give a performance
benefit but certainly not result in a performance penalty?”.
In other words, when we know that our reconfigurations will
not harm, we get the freedom to react quicker and to apply
more aggressive tuning.

In general, the total amount of buffer memory is lim-
ited and so the decision to assign more memory to a cer-
tain buffer is directly coupled with the decision of taking
this memory from one or several others. Fortunately, the
performance optimization heuristics for I/O-saving buffers
(e.g. data pages, sorting) is straightforward: The more main
memory can be used the better. Even an oversized buffer,
i.e., a buffer larger than the actual data to be buffered, is less
likely to become a performance bottleneck due to bookkeep-
ing overhead. It is just a waste of main memory. The down-
sizing of a buffer, however, comes along with severe risks:
the buffer’s locality may drastically decrease and even turn
into thrashing causing excessive I/O, which also influences
throughput of other buffers. Accordingly, we concentrate on
the forecast of the negative effects of memory reallocations
and base our tuning decisions not only, as common, on the
estimated benefits, but also on vindicable forecasts of addi-
tional costs.

4.1 Cost model

Automatic tuning needs to derive costs from system state
or from system behavior to quantify the quality of the cur-
rent configuration. Additionally, it also needs to estimate
the costs of alternative configurations to allow for compari-
son. Ideally, these costs comprise all performance-relevant
aspects including complex dependencies between system
components and future workload demands in a single num-
ber to allow for perfect decisions. Clearly, such a perfect
cost model does not exist in practice. Instead, costs are typ-
ically derived from a mixture of cheaply accounted runtime
indicators and heuristics-based or experience-based weight
factors. The hope is to reflect at least the correct relationship
between alternative setups w.r.t. to performance. The more
precise this much weaker requirement can be met, the eas-
ier we can identify hazardous tuning decisions before they
boomerang on the system.

In contrast to computational costs of a specific algorithm,
costs expressing the quality of a buffer are inherently depen-
dent on the current workload. Buffering 5% of the underly-
ing data, for example, can be an optimal use of main mem-
ory at one moment, but become completely useless a few
moments later. Therefore, each cost value is a snapshot over
a window at a certain point in time with limited expressive-
ness for at most few periods ahead in the future. We define
the general goal function for our tuning component as fol-
lows: At a given point in time t with a configuration c, find
a configuration c′ that has less accumulated I/O costs over
the next n periods. The optimal window size and the num-
ber of forecast periods again depend on the actual workload;
slowly changing workloads enable more precise cost estima-
tions for longer periods, while rapidly changing workloads
also decrease accuracy of future costs.

For simplicity, our cost model only considers buffer ser-
vice time, i.e., the time needed to handle a page fix request.
Of course, costs assigned to a specific buffer are dominantly
determined by the number of I/Os performed. On a buffer
miss (denoted m), a victim page has to be selected for re-
placement and flushed, if necessary, before the requested
page is fetched from disk. Accordingly, a buffer miss causes
at least one read operation, but may also cause several writes
for flushing write-ahead log and victim page. The ratio be-
tween reads and synchronous writes is reflected by a weight
factor fdirty , which may vary over time and from buffer to
buffer.

Depending on the characteristics of the underlying de-
vices or blocking times under concurrent access, I/O times
can also vary between various buffers. Hence, the costs of
all buffers must be normalized to a common base to become
comparable. We use here a second weight factor wbuff er for
each buffer. As the time needed for a single I/O operation is
easy to measure, these factors can be derived and adjusted at



Low-overhead decision support for dynamic buffer reallocation

runtime causing low overhead. Finally, the cost of a buffer
at the end of time period t is expressed as:

cbuff er (t) = wbuff er (t)· (1 + fdirty(t))·m(t)

Note, we assume that CPU costs can be safely ignored, ei-
ther because they are independent of whether an operation
can be performed on buffered data or requires additional
I/O, or because additional CPU cycles for search routines in
larger buffers are negligible compared to an I/O operation.
In the remainder of this paper, we also assume that read and
write operations have symmetric costs and a low variance.
However, it should be evident that the presented basic model
can be easily extended to take asymmetric read/write costs
(e.g. for solid state drives), different costs for random and
sequential I/O, and also the apportionment of preparatory,
asynchronous flushes of dirty pages into account.

4.2 Decision model

Our buffer balancing is based on the cost model of Sect. 4.1.
In certain intervals, the buffer configuration is analyzed and
reorganized if main memory reallocation promises reduced
I/O costs for the entire system. Listing 8 shows the major
algorithm for buffer balancing.

At the end of a monitoring period, we calculate a save
and a rise ranking for all buffer pools based on their cost
estimations. The higher a buffer pool is ranked in the save
list, the more costs can be saved (i.e., this equals to provid-
ing a higher benefit) when its size is increased according to
the simulated oversize. Similarly, the rise list ranks buffers
by the cost estimations for undersize figures, where the min-
imum cost increase is ranked top (cf. Listing 8 lines 2–30).

With a greedy algorithm, buffer pool pairs are now picked
from the top of both lists as long as the cost reduction on the
save list is higher than the increase on the rise list (lines
32–45). A buffer may end up in both lists indicating a crit-
ical “jump” size which is easily recognized this way (line
38). A resize mechanism performs then the actual memory
“shift”: The selected buffer from the save list is allowed to
keep more page frames and references in the cache (line 50),
while the buffer from the rise list is shrunken (line 51). For
this, we repeatedly choose a victim page, flush it to disk if
necessary and deallocate the page frame. Finally, the resized
buffers are removed from both ranking lists (line 52–53) to
avoid thrasing. Note, that we could compute an optimal so-
lution for the resizing, but the greedy pair-wise resizing is
much cheaper and delivers good results.

Of course, the simulated undersize and oversize areas of
a buffer have to be adjusted as well. This is similar to the
“regular” buffer resize. For instance, the number of hotset
pages is reduced by selecting victims out of this subset and
by switching their flags. Obviously, oversize areas can be

Listing 8 Balance algorithm
1 p u b l i c vo id balance() {
2 RankList<Buffer> save = new RankList<Buffer>();
3 RankList<Buffer> rise = new RankList<Buffer>();
4 f o r (Buffer b : buffers) {
5 i n t saveIO = b.missCnt - b.overflowMissCnt;
6 i n t riseIO = b.hotsetMissCnt - b.missCnt;
7 b o o l e a n added = f a l s e ;
8 f o r (Buffer sb : save) {
9 i n t cmp = sb.missCnt - sb.overflowMissCnt;

10 i f (!added && saveIO > cmp) {
11 // insert into rank at current position:
12 sb.insertIntoRank(b);
13 added= t r u e;
14 }
15 }
16 i f (!added)
17 save.add(b); // buffer is added at the end
18

19 added = f a l s e ;
20 f o r (Buffer rb : save) {
21 i n t cmp = rb.hotsetMissCnt - rb.missCnt;
22 i f (!added && riseIO < cmp) {
23 // insert into rank at current position:
24 rb.insertIntoRank(b);
25 added = t r u e;
26 }
27 }
28 i f (!added)
29 rise.add(b); // buffer is added at the end
30 }
31

32 Buffer i = n u l l; // buffer to (i)ncrease
33 Buffer d = n u l l; // buffer to (d)ecrease
34 w h i l e ( t r u e) {
35 i = n u l l; d = n u l l;
36 f o r (Buffer b : save) {
37 f o r (Buffer b2 : rise) {
38 i f (d == n u l l && b != b2) {
39 i = buf; d = buf2;
40 i f ((d.hotsetMissCnt - d.missCnt) >
41 (i.missCnt() - i.overflowMissCnt))
42 red = n u l l;
43 }
44 }
45 }
46 i f (d == n u l l)
47 b r e a k;
48

49 // amount depends on i’s and d’s simulation ranges
50 i.increase(amount);
51 d.decrease(amount);
52 save.remove(i); rise.remove(i);
53 save.remove(d); rise.remove(d);
54 }
55}

kept or resized as desired. As oversize and undersize sim-
ulations for several buffer pools must not necessarily have
the same size in bytes, gradual reallocations may be become
necessary. For that, we must extrapolate the buffer scaling
behaviour between the real size and the simulated sizes (not
shown).

Obviously, buffer resizing is a potentially expensive op-
eration because it may require a forced flush of dirty pages
when one buffer is shrunken in favor of another. However,
the expected benefits justify this temporal overhead in gen-
eral. If desired, the resize penalty for dirty pages could also
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be included in the cost model to fully avoid this temporal
negative effects.

4.3 Runtime aspects

Accounting hit/miss numbers for multiple simulated and
real buffer sizes over a certain period of time induces estima-
tions errors. For instance, a buffer smaller than the current
buffer will usually have less hits and, in turn, requires more
time to process the same sequence of buffer requests. Simi-
larly, a buffer larger than the current one, will have a better
hit ratio and potentially needs less time to process the same
request sequence.

Therefore, simulation-based cost accounting needs to
reuse the cost model’s I/O weights for read and write op-
erations to adjust the I/O cost in a (simulation) period to the
different buffer sizes. That means, undersize simulation has
to limit I/O accounting as soon as the maximum I/O budget
for that period is reached and vice-versa for the SBPX part.

Adjusting memory assignments for buffer pools is also
limited to the scalability prospects of a specific buffer al-
gorithm. However, different buffer algorithms may perform
differently and exchange of an algorithm would be an al-
ternative tuning option without actually shifting memory.
But different algorithms tend to use manifold figures such
as access counters, timestamps, or history queues. The ma-
jor problem is to carry over the current information when
switching to a new algorithm. A poor alternative is to re-
set the entire propagation strategy. However, a practical way

is to initialize the new algorithm by evicting all the “old”
pages into the new algorithm and continue to use the new
algorithm. The decision to switch the algorithm can only
be based on a full simulation of an alternative propagation
algorithm relying on a similar cost model as presented in
Sect. 4.1.

5 Evaluation

We asses the forecast accuracy of our extensions as well as
the decision quality for buffer balancing with a generated set
of benchmark workloads. As buffers do not scale uniformly,
we generated page reference strings for various (common)
patterns including random and sequential accesses of vary-
ing sizes.

5.1 Workload

In Figs. 3(a)–(d), we analyze the critical buffer size ranges
for various access patterns whose characteristics are sum-
marized in Table 1. Note, the total number of DB pages in
a scenario is equal to the object size in the first column of
the table. The only uniformly scaling buffer is measured for
workloads dominated by random I/O (see Fig. 3(a)), where
the overall hit ratio is—as expected—quite low. In this case,
re-sizing extrapolations will work properly, but such an ac-
cess behavior is unusual in databases. Dominating scans
mixed with random access are modeled and measured in

Fig. 3 Buffer scalability for
various workloads and
replacement algorithms



Low-overhead decision support for dynamic buffer reallocation

Table 1 Workload characteristics

Workload Figure 3(a) (random) Figure 3(b) (scan) Figure 3(c) (jumps)

Request share in % 50 50 25 75 10 65 25
∑

object size (pages) 150k 22k 150k 7k 150k 7k 13k

Access type rnd rnd rnd seq rnd seq seq

Workload Figure 3(d) (real)

Request share in % 10 10 10 20 10 20 10 10
∑

object size (pages) 250k 5k 10k 10k 500 500 1k 2k

Access type rnd rnd seq seq seq seq seq seq

Fig. 4 Estimation accuracy for workload random (buffer calls ×100.000 on x-axis)

Fig. 3(b). Although some of the replacement algorithms are
“scan-resistant”, a dominant sequential access pattern eas-
ily provokes a “jump” in the buffer performance. In such
cases, the buffer hit rate dramatically increases as soon as a
frequent scan fits entirely into the buffer. Such “jumps” re-
main undetected if monitoring happens only at one side of
the “jump”. The third workload shown in Fig. 3(c) is a mix-
ture of multiple scans and random accesses in a single buffer.
This scenario may represent a more typical buffer usage pat-
tern which exhibits a realistic buffer scaling. In Fig. 3(c),
several areas can be identified having different slopes, where
each area boundary may cause uncertainty for extrapola-
tions. In the last sample workload shown in Fig. 3(d), we
have a mixture of high-locality scans and some noise gen-
erated by random accesses. This typical workload scenario
causes several (small) jumps resulting in a stair-case pattern.
In this case, fine-grained extrapolations necessary for buffer
tuning may quickly fail, although the slope in the average is
quite similar.

In the following sections, we investigate if our algorithms
are capable of identifying and handling all of these (more or
less) typical workload scenarios.

5.2 Accuracy

The quality of buffer balancing is based on the estimation
quality of our extended buffer algorithms. Therefore, we

need to evaluate the estimation accuracy for the differing
workloads. For the following experiments, the gray-shaded
areas in Figs. 3(a)–(d) specify the simulated ranges centered
around the actual buffer sizes indicated by the black lines.
For simplicity, we always use a fixed range of ±2 % of the
total DB size. For each workload, we measure the accumu-
lated undersize and oversize estimation accuracy. Each of
the Figs. 4–7 contains the results of six algorithms using
the same workload and up to 1.2 Mio buffer calls. The lines
marked with an asterisk (*) illustrate the simulation-based
hit ratios and, to enable comparison, the others show those
of real buffers having the same sizes.

The first graphs are always showing the standard LRU
behavior, which is always delivering perfect estimation ac-
curacy; however, its hit ratio performance is not the best.
But its lightweight simulation is definitely a plus. In con-
trast, the LRU-K results (second graphs) constantly indicate
top hit ratios but show weaknesses in forecast quality. Es-
pecially, the downsize simulation of the scan workload fails
with a dramatic overestimation.

The results for GCLOCK in Figs. 5 and 7 (third graphs)
reveal its sensitivity to page order and clock-hand position
for hotset simulations. By adding a second clock hand and
forward pointers to simulate a separate clock for the hot-
set pages, we achieve considerably better accuracy (fourth



K. Schmidt, S. Bächle

Fig. 5 Estimation accuracy for workload scan (buffer calls ×100.000 on x-axis)

Fig. 6 Estimation accuracy for workload jumps (buffer calls ×100.000 on x-axis)

Fig. 7 Estimation accuracy for workload real (buffer calls ×100.000 on x-axis)

graph), but its performance is always behind all other strate-
gies.

On the second from right, we measure the forecast qual-
ity provided by the simplified 2Q algorithm. In all scenar-
ios, it delivers top results while only requiring low mainte-
nance overhead. However, forecast quality is disappointing
in some scenarios. Similar to LRU-K, it fails for workload
scan, but in the opposite direction with underestimation.
Further, we observe a suddenly degrading forecast quality
for the workloads jumps and real. Even worse, oversize esti-
mations as well as undersize estimations are affected. Even

the use of a separate policy for the oversize buffer does not
lead to better results.

The performance of ARC and its forecast accuracy is
shown on the right-hand side. Besides always good hit ra-
tios, ARC’s forecast for downsizing underestimated the ac-
tual performance except for random workloads. Although
the visual distance between estimation and actual hit ra-
tio seems to be huge sometimes, this forecast error solely
evolves from the algorithm’s warm up. In Sect. 5.3, we are
going to show that the permanent error is quite low, as the
trend of the cumulative hit ratio forecast already indicates.
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The experiments reveal that our simulations based on
the locality principle lead to trustworthy estimations in
many cases. On one side, simple algorithms like LRU and
GCLOCK fit well into our framework. On the other side,
more advanced algorithms such as LRU-K, ARC, and 2Q
also allow lightweight estimations, but suffer from unpre-
dictable estimation errors in some scenarios. The reasons
are built-in mechanisms to achieve scan-resistancy, which
are hard to model in simulations. Further, these algorithms
do not allow logical composition of individual buffers.

5.3 Drift analysis

Some of the results shown in Sect. 5.2 reveal severe drifts
leading to an apparent bad estimation quality. The simula-
tions of ARC for example, show dramatic drifts for oversize
and hotset estimation in Figs. 4 and 7, respectively. But the
results show cumulated hit ratios, which means that even
small but constant estimation errors sum up. Therefore, we
analyzed the estimation error for the hit ratios of simulated
buffer sizes for both extreme drift situations in Fig. 8. After
a short warmup period, the error ratio settles between 5%
for the overflow estimation of workload random and 10%
for the hotset estimation of workload real.

Fig. 8 Simulation error analysis explaining hit ratio drift

Obviously, a good choice for the simulation interval helps
to reduce the estimation error rate. However, this is another
tuning parameter which may also be adjusted during run-
time.

5.4 Shifting workloads

Based on our accuracy and drift analysis we examined work-
load shifts. To guarantee that we hit “interesting” buffer
(simulation) sizes for these shifts, we extended our pre-
defined workloads from Sect. 5.1. Each result in Fig. 9
shows for 5 workload shifts the cumulative hit ratios for hot-
set and overflow simulations as well as their estimation er-
rors. The vertical lines in the upper illustrations indicate the
workload shifts, which (as aspected) come along with kinks
in the graphs. We omitted LRU simulations here because
they always deliver fully accurate results.

On the one hand, we have the results for LRU-K and
2Q, which disclose serious problems for certain workloads,
while hit ratio estimations for others are nearly perfect. For
example, scan-dominated corner-cases such as the third and
fifth workload shift cause hotset errors of up to 25% and
40% until the next shift. On the other hand, estimations for
GCLOCK improved and ARC seem to be more reliable.
Some workload shifts cause short peaks, where the simu-
lation needs to adapt itself. However, most of the time, only
marginal estimation errors below 2% are observered.

The workload shift analysis shows that for many cases
estimation errors are quite low. Certain corner cases, i.e.,
extreme workloads causing a kind of thrashing for the sim-
ulation ranges, are hard to estimate and may lead to weak
estimations. Because those corner cases are rather excep-
tional, we believe that they do not affect the benefit of our
algorithmic extensions for resize simulations in general.

5.5 Buffer balance

In Fig. 10, the self-tuning mechanism presented in Sect. 4.2
automatically tunes two buffers, where buffer 0 was fed with

Fig. 9 Shifting workload analysis (buffer calls ×100.000 on x-axis); LRU omitted due to zero error
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random workload from Fig. 3(a) and buffer 1 with scans
shown in Fig. 3(b). Buffer sizes (i.e., simulation and real)
are chosen as described in Sect. 5.2. Due to space limita-
tions, we present the results only exemplified for the im-
proved GCLOCK and a fixed memory shift granularity of
2% of the DB size. After the buffers were warmed up (i.e.,
after 1.2 Mio buffer calls), the cost model triggers all mem-
ory shifts. The random workload buffer was shrunken ac-
cording to its hotset simulation, whereas buffer 1 was in-

Fig. 10 Buffer balancing random vs. scan

Fig. 11 Buffer balancing jump vs. real

creased. Although the hit ratio of buffer 0 slightly descends,
the overall I/O performance improves, because the hit ratio
of buffer 1 increases considerably.

Because the self-tuning decisions are based on a cost
model, they are applicable for arbitrary scenarios. In our sec-
ond example, we again use two buffers, one that is fed from
the workload jumps and the other from the workload real as
shown in Figs. 3(c) and 3(d). In this setting, SBPX fails be-
cause it does not recognize that the size of buffer 0 is close
to a “jump” boundary. However, as indicated by Fig. 11, our
downsizing simulation detects the pitfall and prevents buffer
performance penalties.

As explained above, resizing two buffers is fairly simple.
Therefore, we combine both experiments in a single setup
shown in Fig. 12. The cut-out shows two memory shifts
leading to minor descends of the hit ratio on the one side but
clear improvements on the other side resulting in a steadily
improved buffer performance.

In summary, we could experimentally prove that buffer
balancing can be achieved at low cost, but it heavily depends
on accurate and lightweight forecasts for both directions –
upsize and downsize.

6 Conclusions

Even after decades of research on buffer management and
optimization, the problem of a reliable, dynamic adapta-
tion of buffer memory allocation is not fully solved. In this
work, we studied opportunities to forecast buffer resizing
effects to support harm-free self-tuning decisions. As down-
sizing a buffer is accompanied with severe risks of thrash-
ing, we argued that reliable prediction of downsizing effects
is a key point for self-tuning decisions. Furthermore, we ar-
gued that additional overhead for these forecasts must not
add noticeable overhead to normal processing. Therefore,
we focused on lightweight techniques to exploit knowledge
from the buffer replacement strategies for forecasts and pre-
sented possible solutions for five families of replacement al-
gorithms.

Fig. 12 Balancing of four
buffers under different
workloads
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In our experiments, we could show that forecast quality
is heavily dependent on the actual strategy. It seems that so-
phisticated strategies like LRU-K and 2Q make it hard or
even impossible to get reliable forecasts for either upsizing,
downsizing, or both. We found that there are two reasons
for this: First, such algorithms use history-recording tech-
niques, which are very costly to emulate for varying sizes.
Second, they are extremely sensible to configuration param-
eters, which cannot be easily negotiated between differing
buffer sizes. However, simpler, yet widely-used strategies
like LRU and GCLOCK turned out to allow for cheap and
highly accurate or even perfect forecasts. Especially our re-
sults gained for ARC presented a fairly good accuracy paired
with an extreme low overhead. Our accuracy results for a
mix of critical workloads and abrupt workload shifts have
demonstrated the strength and weaknesses of all algorithms
under test. In conjunction with a simple cost model and a
greedy algorithm, we demonstrated the use of forecasts to
improve buffer hit ratios without the risk of severe perfor-
mance penalties. Following the idea of differing “stages” in
2Q to improve buffer behavior, our findings suggest to think
about further partitioning of buffers with complex replace-
ment strategies into several distinct buffers with simpler but
more predictable strategies. This way, forecasts would gen-
erally become reliable and fragmentation issues were auto-
matically resolved by the self-tuning capabilities.
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