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ABSTRACT
Presently, solid state disks (SSDs) are emerging as a dis-
ruptive storage technology and promise breakthroughs for
important application properties. They quickly enter the
enterprise domain and (partially) replace magnetic disks
(HDDs) for database servers. To identify performance and
energy use of both types of storage devices, we have built an
analysis tool and measured access times and energy needed
for them. Associating these measurements to physical IO
patterns, we checked and verified the performance claims
given by the device manufacturers. Using typical read/write
access patterns frequently observed in IO-intensive database
applications, we fathomed the performance and energy ef-
ficiency potential of a spectrum of differing storage devices
(low-end, medium, and high-end SSDs and HDDs).

Cross-comparing measurements of identical experiments,
we present indicative parameters concerning IO performance
and energy consumption. Furthermore, we reexamine an IO
rule of thumb guiding their energy-efficient use in database
servers. These findings suggest some database-related opti-
mization areas where they can improve performance while
energy is saved at the same time.

1. MOTIVATION
So far, NAND flash memory (denoted as flash disk or solid

state disk (SSD)) was primarily considered ideal for storing
permanent data in embedded devices, because it is energy
efficient, small, light-weight, noiseless, and shock resistant.
Therefore, it is used in personal digital assistants (PDAs),
pocket PCs, or digital cameras and provides the great ad-
vantage of zero-energy needs in idle or turned-off modes.

Nowadays, SSDs promise breakthroughs in energy saving,
bandwidth (IOps), reliability, and volumetric capacity [8];
therefore, they seem to be a strong candidate to become
the future store for permanent database data. While these
properties provide new and highly desired processing quali-
ties compared to magnetic disks (disk or HDD, for short)—
today, the prevailing storage technology for database appli-
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cations—, unit capacities and prices of SSDs also rapidly
enter the range where they become competitive to disks.
To evaluate their potential when mapping database data to
such devices, we briefly sketch typical read/write models of
disk and flash for database management systems (DBMSs,
DB servers).

1.1 Read/Write Models
Disks are devices enabling very fast sequential block reads

and, at the same time, equally fast writes, whereas ran-
dom block read/writes are much slower (requiring substan-
tial ”mechanical time fractions”). Blocks as units of physical
IOs can be configured to the needs of the DBMS applications
using page sizes typically ranging between 4KB and 64KB.
To hide the access gap between memory and disk, DBMSs
use a large DB cache in memory (RAM) where (in the sim-
plest case) each cache frame can keep a DB page which,
in turn, can be mapped to a disk block. In most DBMSs,
propagation of DB pages follows the update-in-place princi-
ple applying WAL [9].

Flash storage is divided into m equal blocks typically much
larger than DB pages. Flash blocks normally contain b (32
– 128) fixed-size pages where a page ranges between 512B
and 2KB. Flash pages cannot be written by arbitrary bit
patterns, only the transition from 1 to 0 is possible. To
set arbitrary pattern, a block must prior be erased, which
sets all the bits back to ones. Thus, a written page cannot
be updated in-place anymore, but only freshly written after
the entire block is erased again. Hence, the block is the
unit of erasure automatically done by the flash device when
allocating an empty block. A page is the smallest and a
block the largest unit of read, whereas the unit of write is
always a page; using chained IO, the DBMS, however, can
write 1 < i ≤ b pages into a block at a time.

A critical concern called write endurance is the limited
number of erase cycles, between 100,000 (older references)
and >1,000,000 (most recent references). When a block
reaches this erase cycle limit, it cannot be longer used and
has to be marked as corrupted. To maximize the SSD’s life-
time, a dedicated software component (using a proprietary
algorithm whose exact behavior is unknown), the so-called
flash translation layer (FTL), optimizes the propagation of
page updates thereby uniformly reusing the blocks across
the SSD. For this reason, it implements a kind of shadow
block mechanism (using DRAM memory for directory in-
formation). Whenever pages are written in-place, the SSD
device uses shadow blocks to (temporarily) store those mod-
ified pages. Finally, upon update propagation, all pages of
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Device type name seq. read seq. write random read random write idle power price
[MB/s] [MB/s] (4KB pages/s) (4KB pages/s) [Watt] $/GB

Maxtor IDE 7.2K rpm (80 GB) HDD1 52 52 ∼90 ∼90 7.1 0.65
WD SATA 10K rpm (150 GB) HDD2 91 91 ∼125 ∼125 4.53 1.03

Fujitsu SAS 15K rpm (147 GB) HDD3 179 179 ∼250 ∼250 12.8 1.20
Super*Talent (32 GB) SSD1 65 50 <10.000 no info no info 4.34

Mtron SATA 7525 (32 GB) SSD2 130 120 12,000 130 1.44 17.6
Intel X25-M MLC (160 GB) SSD3 250 70 35,000 3,300 0.06 2.93

Table 1: Device characteristics

the original SSD block (modified and old ones) are assigned
to a new SSD block and, thus, preserve DB page clusters.
This mechanism, called wear leveling, is entirely transpar-
ent to the client, i.e. the DBMS, such that all references to
displaced pages, e.g., index pointers and other links, remain
valid.

In recent years, write endurance concerns were often raised
in the literature against the general use of SSDs in DB
servers. However, we believe that this problem is solved
in a satisfactory way by such wear-leveling techniques [14]
automatically applied by the SSD device using an FTL.1

FTL implementations are optimized by the device man-
ufacturer, hide flash-specific details from the upper layers,
and aim at squeezing the best performance out of the chips.
Since hardware vendors put a lot of effort in the develop-
ment of FTLs, they do not want the implementation details
to become public. Therefore, FTLs are black boxes with in-
deterministic behavior to the user. Although common prac-
tices like page-mapping are widely implemented in SSDs, the
implementation varies from device to device, resulting in no-
ticeable differences in access characteristics. A good FTL is
crucial to the entire SSD performance [3] and newer genera-
tions dynamically accomplish maintenance tasks when idle.2

1.2 Comparison of Device Characteristics
SSDs are emerging as a disruptive storage technology [7]

that will substantially improve both performance and en-
ergy usage of data-intensive software systems. Because nei-
ther magnetic disks nor SSDs have unique characteristics
and can be described by some simple factors, we summarize
the critical parameters needed in our evaluation for a spec-
trum of (server-quality) device types (low-end, medium, and
high-end). As illustrated in Table 1, they exhibit substantial
differences in all properties listed, which has to be consid-
ered, in particular, when they are used in a “heterogeneous
storage device landscape”.

Compared to disks, SSDs exhibit key characteristics—
especially beneficial for DB servers: very low latency, high
performance of random reads (rr), and very low energy con-
sumption. While the sequential read (sr) and the sequential
write (sw) performance is comparable to disks, SSDs suf-
fer from low random write (rw) performance. Therefore, to
make the most out of this potential, SSDs can not simply
replace disks as a permanent DB store. Their effective use
will impact various system components, in particular, when
the DB server architecture is addressed. A key to such an

1A worst-case thought experiment with repetitive block
overwrites indicates that the limit is reached after 51 years,
http://www.storagesearch.com/ssdmyths-endurance.html.
2http://hothardware.com/News/OCZ-and-Indilinx-
Collaborate-On-New-SSD-Garbage-Collection-Scheme/

improvement is to make the IO-related algorithms energy-
aware. In particular, the rr/rw asymmetry has to be care-
fully approached, e.g., by methods avoiding random writes
to the extent possible or to rearrange mapping of modified
DB blocks such that they can be sequentially written (clus-
tered writes) to propagate multiple updates at a time.

In Table 1, sequential IO is comparable for both device
types, whereas our indicative numbers confirm breakthrough
behavior, in particular, for random reads and energy use.
Nevertheless, SSDs are still quite expensive. A GB of SSD
storage amounts to >∼3$ (but only <∼1$ for disk), but
technology forecast predicts rapid market growth for it and,
in turn, a dramatic decrease in the near future that it will
roughly reach the disk3 [5].

As first steps towards the proper embedding of SSDs into
DB servers, we want to identify critical parameters influ-
encing the IO behavior and the performance effects of IO-
intensive DB operations. In particular, we will measure time
and energy consumed by typical operation sequences to re-
veal the potential for improved energy efficiency of SSDs as
compared to disks. The interesting question is how much
DB applications can take advantage of the performance and
energy potential of SSDs as sketched in Table 1.

Note, the characteristic figures in Table 1 are vendor-
supplied (or, if not available, approximated (∼) by us with-
out assuming disk cache influence), i.e., they are gained
under (different) specific access models and operation en-
vironments. Hence, their actual behavior may substantially
deviate from these values in specific applications.4

1.3 Contribution
This paper is organized as follows. Section 2 defines the

term energy efficiency and outlines our measurement envi-
ronment and the measuring principles applied. To approach
the problems of measuring performance and energy use of
DB servers, Section 3 introduces the types of measurements
performed and access patterns used for them. As a major
effort, we will check and cross-compare in Section 3.4 the
figures for performance and energy use using IO-intensive
access patterns typical for DB applications. Furthermore,
we will analyze different generations of flash and disk de-
vices to reveal their differences in performance and energy
efficiency under DB-specific IO patterns.

Section 3.5 reexamines a famous IO rule of thumb derived
for disk-based query processing [10]. This experiment re-
veals that the break-even points for random read access vs

3We observed for a 64GB flash a reduction of ∼ 70% within
90 days, whereas a 750GB SATA only reached ∼ 7%.
4For example, the huge rr performance of SSD3 was
achieved by using 25 concurrent read requests—an access
model not matching typical DBMS requirements.
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Figure 1: Components of the measurement environment

file scan w.r.t. performance and energy efficiency are dra-
matically shifted to provide much more opportunities for
index-based query processing. As our arguments to stimu-
late further discussion, Section 4 suggests for these findings
database-related optimization areas where performance can
be improved while energy is saved at the same time. After a
discussion of the related work in Section 5, we wrap up our
observations in Section 6 and point to urgent future work.

2. ANALYSIS TOOL
Given the public concern about energy waste, the focus

on performance only is not sufficient for future generations
of computer systems in general and DB servers in partic-
ular. Therefore, attention must be shifted from a solely
performance-centric view to energy efficiency. For its evalu-
ation, we will use the quotient of the system’s work and its
energy consumption:

EE =
Work

EnergyConsumption

The system’s work can be measured in units of various com-
putational tasks like sorting operations, bytes processed or—
most commonly in database environments—transactions. A
lot of tools and benchmarks already exist to measure such
performance aspects of DB servers. But the energy con-
sumption is more difficult to analyze and requires a specific
measurement setup for which we first outline the system
components whose energy consumption shall be measured.

2.1 System under Test
Since we want to disclose the energy use of a commodity

hardware platform, that could be used to run a DMBS, we
chose a standard x86 consumer PC.

Hardware Components The hardware setup is a Mini-
ITX mainboard, with a 64-bit CPU having two cores and
4 GB of main memory. An IDE and a SATA disk are con-
nected to provide persistent storage. Since the measurement
tool is designed for arbitrary ATX mainboards, the compo-
nent setup can be adjusted. So far, we analyzed six drives,
three traditional hard disks and three SSDs, ranging from
low-end to high-end devices. The three hard disks are: a

Maxtor DiamondMax Plus 9 (7200 rpm, IDE), referred to
as HDD1 and a Western Digital VelociRaptor (10.000 rpm,
SATA), referred to as HDD2, and a Fujitsu MBA3147RC
(15.000 rpm, SAS) disk, referred to as HDD3. The SSDs ex-
amined are a SuperTalent FSD32GC35M (SSD1), an Mtron
MSP-SATA7525 (SSD2), and an Intel X25-M (SSD3). All
three are SATA devices.

Software As OS, we used the 32-bit server edition of
Ubuntu Linux 9.10, Kernel version 2.6.31. To minimize spu-
rious influences, we disabled all unneeded background tasks.

2.2 Measurement Setup
Unfortunately, ATX mainboards and power supplies do

not provide integrated measuring points to record the com-
ponents’ energy consumption. Therefore, we set up a mea-
surement kit for undisturbed reading voltage and current
values of relevant power lines, as shown in Figure 1(a). We
also added an interface to measure internal database param-
eters in conjunction with electrical measures. This interface
acts as a probe to be injected into an arbitrary DBMS where
it collects internal measures and makes them available over
a Java-RMI interface. By combining both measurements,
we are able to analyze the energy consumption of typical
database operations. Since we did not use DB software in
this paper, no further explanation of the internal database
parameters will be given. Instead, the measurement of the
electrical values will be explained in detail:

Custom measurement hardware, consisting of ten voltage
and current meters, connects the power supply and the sys-
tem’s hardware components. That way, it can record the
energy use on every relevant power line and the total con-
sumption of the component in real-time.

Measuring principles To evaluate the results online, we
converted the analog measurement values to digital signals
using an A/D-Converter. Having the digital representation
of the values measured, it gives us the opportunity to pro-
cess them on a PC and combine them with other data, like
performance-critical values recorded in DB server compo-
nents mentioned earlier. We developed a software that reads
data from different sources, e.g. the electrical data or the
internal database statistics, and outputs them together on
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Figure 2: Energy cost of the basic read access patterns on disk and SSD

screen or in a protocol file. The software also filters and
transforms the input values to merge different power lines
to the device’s total energy consumption. We added a re-
mote interface for integrating the measurement device into
our benchmarking suites or profiling applications.

This setup reads the energy consumption of the main-
board and the storage devices—sufficient to analyze their
energy efficiency. Recording the CPU’s and main memory’s
power separately would be highly desirable for identifying
the energy use of memory. But because their power lines are
very tiny and the processor is highly sensitive to voltage dif-
fusion, integrated measurement points must be supplied by
the manufacturer to enable such a power recording. Hence,
we have to leave this kind of analysis for future research.

Figure 1(b) shows the front of the measurement device.
The power supply that is used for the system under test
is shown in the upper right, standing on top of the mea-
surement device. On the device’s front, the green inlets and
outlets of the power lines are shown in the middle of the box
as well as the gray data bus at the front left. The power lines
are lead inside the box where the current and voltage gets
measured and led back afterwards to power to the hardware
under test. A more detailed explanation of the inner circuits
can be found below. The data bus is used to connect the
device with the A/D-Converter.

Inside the device The measurement must not tamper
the voltages at the power lines, since PC components are
sensitive to voltage drops. Therefore, the current measure-
ment is done using current transformers with inductive mea-
surement, which do not influence the current flow. At the
same time, the voltage is measured using voltage dividers
on a shunt circuit. Both measurements are transformed in
voltages ranging from 0 to 5 Volts and forwarded over the
data bus to the A-D-Converter.

Since all measurement instruments are highly precise, the
total measurement error of the setup is below 2.2% of the
measured value. This precision was validated by using com-
parative tests and should be sufficient for our needs.

3. PERFORMANCE AND ENERGY USE
The goal of our research efforts is to measure the energy

efficiency of DB servers as complex and widely used software
systems. Their architecture often adheres to a hierarchically
layered reference model, e.g. the well-known five-layer model
[9]. It is obvious that in such a complex software system the
behavior of the upper system layers is heavily influenced
by the layers it is based on. Each layer introduces further
abstractions and its internal behavior has to contribute to

optimal DB server performance. Although the design of op-
timal DB architectures still leaves questions open after more
than 30 years of active research and development [11], the
emerging awareness for energy efficiency raises novel design
and optimization aspects.

3.1 Basic Access Patterns
To approach this new energy efficiency challenge, it makes

sense to explore the layered DB server architecture in a
bottom-up manner and to start at the most influential layer
(for storage-related energy use), namely the file system.

At this interface, the DB server requests and propagates
persistent data pages containing the user records. These
pages have fixed size, typically 4 or 8 KB in case of trans-
action processing systems. From the DB server perspective,
most file requests follow one of three basic access patterns:

∙ Sequential access is mainly triggered by so-called scans
which require all pages of a file to be read.

∙ Random access of data pages occurs if only distinct
pages are requested—typically selected via adequate
index structures, e.g. B-trees [2].

∙ Random sorted (rs) access, also called skip-sequential
access, is similar to random access. This access pattern
fetches distinct pages, but is performed in ascending
or descending file order. In case of disk devices, such
patterns minimize the mechanical arm movements.

A random access pattern can frequently be transformed
into a random sorted pattern. If an arbitrary list of page
addresses is given, sorting them enables unidirectional file
accesses and, in turn, substantial speed-ups.

3.2 IO-related Measurements
In the following, we evaluate these three basic access pat-

terns towards their impact on energy efficiency at the file in-
terface. Since the DB server is running as an (unprivileged)
OS application, the OS behavior can have a significant im-
pact on the access patterns below the file interface. Beside
the file system, there exist several components designed to
harmonize the speed difference between the CPU clock cy-
cles and storage devices being six to seven orders of magni-
tude slower. In the Linux kernel, a page cache, prefetching
techniques, and adequate IO scheduling are launched to nar-
row this“access gap”. But with these activities, energy usage
is shifted towards processor and memory. We circumvented
these OS optimization measures by implementing a so-called
Direct-IO mode which helps to identify the real IO-related
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costs. The impact of OS-internal optimizations, especially
caching and prefetching, and their influence on the energy
efficiency of the access patterns is left for future work.

All read/write experiments were performed on a ∼1GB
file using a page size of 8 KB. We did not tend to a specific
file allocation, because, at least for SSDs, the FTL does not
enable mapping control (nor influence of the update status of
the selected device). For all measurements, buffers (except
device caches) were disabled.

3.3 Analyzing Energy Consumption
To illustrate the device-based energy use for all access

patterns, we refer in Figure 2 as an example to HDD2 and
SSD2. To facilitate direct comparison, we used the same
scale factor, but needed a log scale because of largely differ-
ing Joule values. Note that the X-axis denotes the percent-
age of pages read in either access mode, e.g., x% of sequential
access means that only the first x% of the file are read; a
search without index support implies a full file scan and the
energy consumption of the 100% case. As one can see, the
SSD’s energy consumption is dramatically reduced, in case
of random access to less than a hundredth of that of the
same mode on hard disk.

Note, all access patterns approximately consume the same
energy on SSDs, while rr accesses on HDDs exceed the en-
ergy needs of sr and rs accesses by far. Although this fact
is intuitive, it has great impact on the design of IO-related
algorithms of DB servers: Since rs access is considerably
faster than rr access, state-of-the-art DB servers often sort
addresses, when a set of pages is requested, to avoid random
access, e.g. by List Prefetch[16] implemented in most DB
servers.

Using SSDs, pre-sorted page access is no longer needed,
since accessing the data randomly does not downgrade per-
formance or energy efficiency. But current DB servers do
not differentiate between SSD and disk, hence they are un-
able to perform specific optimizations tailored to SSDs. By
re-engineering existing DB algorithms towards optimal SSD
utilization, we could leverage the potential of saving energy
while improving performance by exchanging hard disks with
SSDs.

3.4 Evaluation of Read and Write Patterns
We measured the performance and energy consumption of

the three access patterns on all six storage devices. Figure 3
shows the experimental results for read access on the left-
hand side and write access on the right-hand side, where all
graphs show for each of the three access patterns the results
derived for each device considered (from HDD1 to SSD3). In
all experiments, we measured electric power (in Watt) and
access performance (in pages/second). Derived from these
measurements, the bar graphs at the bottom of Figure 3
illustrate energy efficiency, denoted in pages/Joule. All
graphs contain average results gained from differing work-
loads (of the same pattern) which accessed varying amounts
of pages.

The graphs at the top of Figure 3 show the electric power
input of the devices, which is—unsurprisingly—higher for
hard disks. While the power drain is approximately constant
for reading and writing from/to hard disks, SSDs seem to
draw more power while writing.

The graphs in the middle of Figure 3 reveal—when di-
rectly compared to SSDs—the dramatically bad random-

access performance for hard disks. Using the same experi-
ment, SSDs provided a more balanced behavior, but exhib-
ited deteriorated performance for write accesses.

Eventually, the graphs at the bottom of Figure 3 show the
energy efficiency of the devices under the evaluated patterns.
SSDs outperform hard disks by far, although the newer SSDs
show greatly improved efficiency.

The read benchmarks show, that hard disk performance
scales with rotation speed and all access patterns behave
similarly on the three disks. Thus, hard disk performance is
predictable by having a look at the disks specifications. On
the other hand, the SSDs do not show steady performance,
e.g., SSD3 is best for sequential reads, while SSD2 is faster
for random reads. Because SSDs do not contain mechani-
cal parts that need to be positioned, identical figures for all
three patterns (on a given SSD) would have been expected.
The deviations of SSD3 for the three access patterns (see
readPerformance in Figure 3) are particularly eye-catching.
We cannot explain the differences for sure, but we assume
the internal structures (FTL, hardware) of the flash devices
need more time switching to farther addresses. Therefore,
the performance of SSDs seems to be definitely less pre-
dictable than for hard disks (see Section 1.1).

After having evaluated the read behavior of the patterns
on each device, it is important to check whether the results
remain the same when taking into considerations write oper-
ations as well. As can be seen in Figure 3, the SSD behavior
for the various access patterns exhibits substantial differ-
ences as compared to the read scenarios for the same access
patterns. When the read performance of the SSD is solely
considered, one can clearly see that the performance of the
SSDs is independent from the employed access pattern, ex-
cept SSD3. Focusing on the write performance, SSD1 and
SSD2 show a behavior similar to hard disk, having compa-
rable sequential write rates, but devastatingly bad random
write behavior. The rw pattern reveals that the performance
is even worse compared with hard disks. Surprisingly, SSD3
draws again a completely different picture: While the access
pattern influenced the write performance of SSD1 and SSD2,
it does not affect the performance of SSD3 where the three
patterns just slightly differ compared with their respective
read patterns.

Note that contrary to earlier findings [13] where SSDs are
generally considered slower than hard disks for random write
operations, SSD3 outpaces all hard disks. This result sounds
promising, because in this way the behavior of SSDs becomes
more predictable. Due to the low energy consumption, it
finally delivers the best energy efficiency figures of all devices
considered.

3.5 Reexamining an IO Rule of Thumb
As a first application of our measurement tool and based

on the insights gained by our experiments described in the
previous section, we reexamined the famous rule of thumb
[10] derived for disk-based accesses: If the selectivity of a
query is less than 1%–3% (depending on file and page pa-
rameters), then use index-based access (rr); otherwise scan
the whole file (sr).

To this end, we compared access times and energy con-
sumption of traditional disks to SSDs in a variety of em-
pirical test runs in a single-user environment. All results
presented here are indicative for our problem and gained
from experiments using a contiguously allocated file of one
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Figure 3: Comparing the differing aspects of read and write behavior for all devices considered

Break-even criterion HDD1 HDD2 HDD3 SSD1 SSD2 SSD3

Performance 2% 2% 2 % 93% 83% 39%
Energy Efficiency 2% 2% 2 % 90% 85% 28%

Table 2: Break-even points: random read access vs scan

GB with a page size of 8 KB. These runtime conditions fa-
vor the disk-based results, because file fragmentation and
multi-user interferences increase disk arm motions and, in
turn, access time and energy use.

To avoid an overloaded illustration, Figure 4 records only
for HDD2 and SSD2 the elapsed times for the different access
patterns over the percentage of pages fetched and identifies

their performance break-even points for rr/rs against sr.
(Please, compare only the differing access patterns per de-
vice with each other). Because of the bad time ratio (seek +
rotational delay vs data transfer) of HDD2, our experiment
confirms with 2% the rule of thumb. Access pattern rs com-
pensated this bad ratio and shifts the break-even point close
to 100%. Note, however, the undisturbed unidirectional disk

6



14
T
i
m

random HDD2

12

m
e

i
10

i
n

s
sequential HDD2

sequential SSD2

6

8s
e
c

random sorted HDD2

4

6

2 % ~ 83 %

2

~ 2 % ~ 83 %

0

0 10 20 30 40 50 60 70 80 90 100%
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arm movement is decisive for this result quality. For SSDs,
rr and rs times more or less coincide because of the miss-
ing “mechanical time”. The deviation in Figure 4 may be
due to device-related optimizations, e.g. prefetching. Hence,
without any runtime restrictions, their break-even points are
shifted to >80%, which may open substantial room for IO
optimizations and, in turn, for energy saving.

For all three HDD types (see Table 2), the break-even
points with 2% for performance confirm the classical rule of
thumb for disks, because their ratios of rr and sr (but not
the absolute access times) remained comparable. The break-
even points for energy efficiency are then a consequence of
this behavior.

In contrast, the performance break-even points of the SSD
types are clearly shifted to much higher values. While that
of SSD1 is more than 90%, that of SSD3 is lower than 40%,
which can be roughly explained by the changed operation
speeds (see Table 1). And again, the break-even points for
the energy efficiency follow the performance ratio, because
SSDs have approximately the same energy consumption for
all three read patterns. Therefore, the only variable in the
break-even calculation is the performance.

As a summarization of our experiments, Table 2 aggre-
gates indicative values for break-even points. These values
clearly confirm that the device characteristics of HDD2 can
be taken as representatives for magnetic disks. In case of
SSDs, the selection of a representative is not so clear. Using
SSD2, we also can approximate the behavior of SSD1. How-
ever, the characteristics of the high-end device SSD3 must
be clearly distinguished from the slower ones. Nevertheless,
the results of all devices considered show a strong corre-
lation between performance (in terms of time) and energy
consumption.

4. OPTIMIZATION OPPORTUNITIES
Given our measurement tool, we are now able to track

the internal behavior of a DB server in correlation with the
resulting energy consumption. This enables us to derive spe-
cific statements about the energy efficiency of software and

hardware changes in the database world. As already shown,
SSDs provide new challenges and DB servers need to be
made aware of the new hardware characteristics. Making
our vision more concrete, our future plans regarding these
new challenges and technologies will be outlined in the fol-
lowing.

Optimizing the layer mapping In order to exploit the
new SSD technology, it is not sufficient to simply replace
traditional hard disks. Instead, design decisions in all DB
server layers need to be reconsidered to make the algorithms
aware of the new IO properties. An already intensively tack-
led problem is SSD-aware DB buffer management (related
to the second layer). Of course, the read/write asymme-
try lends itself to tailor-made page replacement algorithms
where replacement decisions are clearly favoring write avoid-
ance instead of preferring pages only read to stay in the
buffer, i.e., clean pages can be cheaply reloaded in case of a
rereference. In higher layers, index structures and path pro-
cessing operators [12] have to be addressed to readjust their
IO behavior anew [21]. For example, they take advantage of
the extremely improved reading speed (> 10,000 IOps) and
their algorithmic behavior can be optimized towards speed
and energy use. Reevaluating the old “five-minute rule” [10]
also should reveal characteristics for improving performance
as well as giving the system the opportunity to pro-actively
save energy.

Trading performance for energy efficiency Current
database query optimizers try to increase the performance
of the system, i.e. speed up the query execution. Their de-
cision is based on plans which estimate the execution cost
in terms of performance. Adding energy-based metrics to
the query optimizer would enable the DB server to choose
energy-optimized plans, which could lower the energy con-
sumption of the system. By finding a (dynamic) trade-off
between performance and energy efficiency, we can select
between maximal performance and energy saving, thus cre-
ating an energy-adjustable database. [23]

Database reorganization Disk-based file performance
is very sensitive to clustering, whereas SSDs support all
clustering, fragmentation, and partitioning methods equally
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well. Hence, the urgency of reorganization runs can be fig-
ured out under the energy efficiency aspect. Established
techniques like ListPrefetch have to be reconsidered for SSDs
and may become obsolete. Furthermore, alternative stor-
age allocation techniques like SSD-aware column-based map-
pings [21] have to be taken into account, because they can
leverage SSDs which, in turn, result in higher performance
respectively lower energy consumption.

SSD as a building block towards an energy-pro-
portional system The idea of energy-proportional systems
[1] is that the energy consumption is proportional to the sys-
tem load. In a large data center environment, unused SSDs
could be switched to standby mode where they consume
even less energy (close to zero-energy needs in idle mode).
Given a smart data partitioning, the amount of needed SSDs
is proportional to the current system load, resulting in an
energy-proportional storage layer. As SSDs have no moving
parts, these devices can be switched to standby mode and
back to active mode within one second compared to up to 30
seconds (e.g. for HDD3). Similar ideas have been introduced
for hard disks [4], but, due to faster mode switches and to
the significantly lower energy footprint of a single SSD, the
proportionality can be controlled in a more fine-grained way.
We will explore this in future work.

Optimized hybrid configurations The discriminating
differences between hard disks and SSDs can be exploited by
combining both device classes in a DB server. The measure-
ment tool gives us the opportunity to identify the true en-
ergy characteristics of devices which can be used to compose
an energy-optimized DB server under cost-effective aspects.
By selectively placing DB objects on SSD (e.g. indexes)
and hard disk (rarely referenced user data or archive data)
to leverage the advantages of both device classes, we are go-
ing to improve the overall access performance while saving
energy.

Energy-aware database benchmarks Some existing
benchmarks already take energy consumption into account,
e.g. SPECpower ssj2008 and TPC-Energy. However, the
benchmark mentioned first is too coarse-grained and the
latter does address peak load situation only, i.e. periods
where the system is fully stressed. Benchmarks which eval-
uate more realistic, varying load distributions, e.g. observed
in [20], do not exist. To evaluate the energy efficiency of
a DB server, the behavior during the entire runtime—not
only under peak-load—should be considered. Nonetheless,
a more realistic benchmarking methodology, observing idle
times and marginal resource utilization, is missing, although
these load situations provide big energy saving potentials.
As more competing approaches regarding energy efficiency
are emerging, the more urgent are specific benchmarks to
enable result comparisons within the world-wide research
community and to determine progress in energy saving at
all.

5. RELATED WORK
The optimization ideas sketched in Section 4 span a wide

spectrum of DB-oriented research. Contribution [6] has de-
scribed a slightly different view, where similar optimization
opportunities are outlined at a conceptual level. Here, we
have delivered some quantitative arguments as a basis of
their realization.

So far, there are already many approaches to optimize the
mapping layer, but most of them only utilizing the speed

potential of SSDs. The read/write asymmetry mentioned is
explicitly addressed by the CFDC algorithm (Clean First,
Dirty Clustered): Clean pages are replaced first, and dirty
pages are kept in the buffer to build clusters according to
their SSD locations (i.e., the flash block, where they are
stored), if possible, and are then propagated in larger gran-
ules. At the same time, specific measures guarantee scan-
resistant replacement of buffered pages [17]. In the mean-
time, we have prepared a first broad study concerning energy
efficiency of a variety of buffer management algorithms when
different types of HDDs or SSDs are used as external storage
[18].

Some approaches addressing optimizations in higher lay-
ers explicitly focus on the dramatic speed of random reads
gained by the use of SSDs. Contribution [19] proposes the
conversion of DBMS-internal processing strictly using se-
quential IO to algorithms that use a mixture of index-based
random IO and sequential IO (only if appropriate) to pro-
cess less data in less time. Hence, scans, joins, and sorting
are reconsidered when supported by SSDs [5]. Furthermore,
several approaches focus on indexing where the data is left
on magnetic disks and the only the indexes are kept on SSDs
or the index mechanism is aware of the specific SSD behavior
[15].

Trading performance for energy efficiency is currently dis-
cussed in controversial way. An empirical study [15] claims
that there is some (limited) potential of power conservation,
if the query optimizer takes the power cost of query execu-
tion plans into consideration. Hence, such an approach will
be able to reduce the power consumption of database servers
or to explicitly control the tradeoffs between power usage
and system performance. In this way, the system could of-
fer to the user cheaper, but slower or faster and, therefore,
more expensive query execution plans. On the other hand,
a broad and detailed study appearing just recently strictly
advocates that there is no energy-performance tradeoff in
centralized server systems: The most energy-efficient con-
figuration is typically the highest performing one [22]. A
strong reason for this result is said to be the missing energy-
proportional behavior of current computer systems. Hence,
there is plenty of demand to have a deeper look to this con-
troversy and also to include distributed databases into this
consideration.

According to our knowledge, the remaining issues raised
as optimization opportunities were so far neither approached
by conceptual work nor by experimental studies.

6. CONCLUSIONS
In this paper, we have outlined our measurement environ-

ment primarily used to identify the energy needs of external
storage devices. For IO-intensive DB applications, we have
explored the performance behavior and the related energy
consumption of a wide spectrum of HDDs and SSDs under
typical access patterns.

We have shown that the SSD technology provides a new
level of performance and of energy efficiency, but it will not
pay off by simply replacing disks with SSDs. Instead their
new characteristics need to be exploited by the DB server.
Our work shows a technique to identify the characteristics
of SSDs and we outlined some important areas we will be
touching in the future to make DB servers more energy effi-
cient. Fortunately, we are able to use XTC [12], our native
XML DB server, to respond with energy-aware algorithms
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and, at the same time, to immediately measure the gained
success (in Joules).

The rule of thumb considered indicated an important area
of optimization in DB servers. In form of heuristics, several
other rules [10] are also dominating internal DB server pro-
cessing. Therefore, they should be checked as well to identify
algorithm adaptations needed to match SSD properties, es-
pecially because SSDs show wide performance diversity, not
predictable by hardware characteristics. However, the more
competing approaches are emerging, the more urgent are
specific energy efficiency benchmarks to enable world-wide
result comparisons and to determine progress in energy sav-
ing at all.
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