
Advanced Cardinality Estimation
in the XML Query Graph Model

Andreas M. Weiner
Databases and Information Systems Group

Department of Computer Science
University of Kaiserslautern

D-67653 Kaiserslautern, Germany
weiner@cs.uni-kl.de

Abstract: Reliable cardinality estimation is one of the key prerequisite for effective
cost-based query optimization in database systems. The XML Query Graph Model
(XQGM) is a tuple-based XQuery algebra that can be used to represent XQuery ex-
pressions in native XML database management systems. This paper enhances previous
works on reliable cardinality estimation for XQuery and introduces several inference
rules that deal with the unique features of XQGM, such as native support for Structural
Joins, nesting, and multi-way merging. These rules allow to estimate the cardinalities
of XQGM operators taken at runtime. Using this approach, we can support classi-
cal join reordering with appropriate statistical information, perform cost-based query
unnesting, and help to find the best evaluation strategy for value-based joins. The ef-
fectiveness of our approach for query optimization is evaluated using the cost-based
query optimizer of XTC, which is our prototype of a native XML database manage-
ment system.

1 Introduction

Native XML database management systems (XDBMSs) can only become a respected com-
petitor for relational-based XQuery evaluation engines, if they can make the most out of
the sophisticated join operators (Structural Joins and Holistic Twig Joins) and indexes (el-
ement, content, path, and hybrid indexes) that have been proposed in recent years. A
cost-based query optimizer is one of the most important parts of modern database systems
that generates alternative query execution plans (QEPs), which can be judged based on
their expected execution costs, whereas the challenging task for the optimizer is finding
the cheapest plan.

Providing reliable cardinality estimates is key for efficient cost assignment. XQuery is the
predominant query language in native XDBMSs. Internally, query languages are repre-
sented as logical algebra expressions. The XML Query Graph Model (XQGM) [Mat09]
is a logical XQuery algebra serving as extension of the seminal Query Graph Model
[PHH92] and introduces an extended XQuery data model, supports query de-correlation,
and provides seamless support for Structural Joins (SJs) [AKJP+02] and Holistic Twig
Joins (HTJs) [BKS02].

Most surprisingly, almost all cardinality estimation frameworks for native XDBMSs deal

only with the estimation of XPath path cardinalities. Even though XPath covers an impor-
tant fragment of XQuery, restricting cardinality estimation to it is insufficient. To the best
of our knowledge, the work of Teubner et al. [TGMS08] is the only one that tackles this
important problem in the context of relational XQuery engines. Even though many parts of
their approach can be transferred to native XDBMSs, further adjustments are necessary:
Amongst others, XQGM natively supports full, semi, and outer SJs as logical algebra
building blocks.

1.1 Related Work

Cost-based query optimization in semi-structured database systems emerged in the con-
text of the Lore project [MAG+97]. In Lore, DataGuides [GW97] provide a simple means
for managing the cardinalities of unique paths in XML documents. XTC’s statistics man-
ager reuses this principle to provide the basic statistical information needed to bootstrap
our cardinality inference rules. If there are non-unique paths in an XML document, the
DataGuide is insufficient to provide the necessary information. In the course of time, many
researchers proposed concepts for estimating the path cardinalities in such situations, e. g.,
[AAN01, FHR+02, ZÖAI06, BEH+06, FM07, Agu10]. These approaches are mostly fo-
cusing on estimation accuracy and on minimal space consumption of their data structures.
Even though path expressions are important building blocks of XQuery, these approaches
do not help to optimize more complex queries (see Section 2.2).

The early work of Sartiani [Sar03] claims to discuss cardinality estimation of FLWR ex-
pressions, but focuses mostly on for expressions.

Having a look at native XML database management systems that provide cost-based query
optimizers, e. g., Natix [FHK+02] or Timber [JAKC+02], shows that their cardinality es-
timation capabilities are restricted to cardinality estimation of simple path expressions.
To the best of our knowledge, MonetDB/XQuery, and its respective XQuery compiler
Pathfinder, is the only (non-native) XML database management system that supports
XQuery cardinality estimation [TGMS08]. They use the general approach of abstract
domain identifiers to estimate the value space that is taken by tuple items at runtime. As
their cardinality inference rules are strongly tied to their logical algebra, it cannot be di-
rectly used in the context of XQGM. In contrast, our work reuses their concept of abstract
domain identifiers, but introduces a novel set of inference rules that allow to gain reliable
cardinality estimates for XQGM instances.

1.2 Contribution

The contribution of this paper can be summarized as follows:

• we will derive a set of inference rules that allow to perform XQuery cardinality
estimation on XQGM instances.

• we will discuss the optimization of value-based joins, which especially require reli-
able estimates to choose the right join operator and join order to prevent bad plans.

• we describe how reliable cardinality estimates allow for cost-based query unnesting
in XTC

• we show that our inferences rules provide reliable cardinality estimates for a wide
range of queries and support our cost-based query optimizer in providing linear
scalability for the XMark benchmark queries.

2 Preliminaries

Before we detail our inference rules, Section 2.1 briefly introduces the XML Query Graph
Model, which is our internal representation for XQuery expressions. Thereafter, Section
2.2 motivates the importance of reliable cardinality estimation for efficient query evalua-
tion in native XDBMSs.

2.1 A Brief Introduction to the XML Query Graph Model

The XML Query Graph Model (XQGM) is the logical XQuery algebra of the XML Trans-
action Coordinator (XTC) [HMB+10], which is our prototype of a native XDBMS sup-
porting, amongst others, ACID transactions and cost-based query optimization [WHdS10].

2.1.1 XQGM Data Model

Tuple

Item

Node Atomic Value Tuple Sequence

Attribute Node

Document Node

Element Node

Text Node

String

Numeric

Decimal Double Integer ...

1

0..*

1

1..*

Figure 1: The XQGM data model [Mat09]

The XQGM data model extends the XQuery Data Model (XDM) [FMM+07], which sup-
ports atomic values, items, and sequences as model primitives. The XQGM Data Model
supplements these primitives by tuples. More precisely, every XQGM Data Model object
is a tuple [Mat09]. Figure 1 depicts the UML diagram of the XQGM Data Model compo-

nents. An item can be (1) a node, (2) an atomic value, or (3) an ordered list of tuples, which
we denote as tuple sequence. Thus, tuple sequences can contain nested tuples. We refer to
a tuple sequence that contains exactly one tuple as a singleton tuple sequence and a tuple
that is formed by a single item is called a singleton tuple1. A singleton is always equal to
the unique element it contains. Moreover, a tuple sequence is an XQuery sequence, if and
only if it contains only singleton tuples or is equal to an empty sequence [Mat09]. Dur-
ing query evaluation, we postulate that only the final result must be an XQuery sequence,
whereas intermediate results must not conform to the XDM, but only to the XQGM data
model.

2.1.2 XQuery the XQGM Way

Before an XQGM instance is passed on to our cost-based query optimizer [WHdS10],
several algebraic rewrites are applied. One of the major challenges for native XML query
processing is bridging the gap between two completely different processing strategies:
node-at-a-time and set-at-a-time processing. Node-at-a-time evaluation is inherent to the
XQuery Core Language and follows a nested-loops-style evaluation approach (nested for
loops) that is similar to sub-selects in SQL [Mat07]. Even though it is not very efficient
in most cases, it can be beneficial in low-selectivity scenarios. On the other hand, set-at-
a-time query evaluation is employed by almost all SJ and HTJ algorithms and is in most
cases very efficient.

The XML Query Graph Model supports both processing strategies. After an initial trans-
lation of an XQuery expression into XQGM, query unnesting tries to iteratively replace
path expressions by cascades of (logical) SJs. During this rewriting process, further oper-
ators may be introduced, e. g., outer join operators helping to preserve the correct output
semantics for positional predicates or for the return clause in the presence of empty
sequences.

2.1.3 XQGM Example

Figure 2 illustrates an XQGM instance for the following query, which returns the author
names of book nodes whose price is larger than 1.99:

<result> {
for $b in doc("sample.xml")//book
where $b/price > "1.99"
return
<author>{ $b/author/text() }</author>

} </result>

In XQGM, there exists no direct connection between operators. Instead, every operator
contains so-called tuple variables that actually receive the tuple sequences emitted by
child operators. We distinguish between three different types of quantifiers: for (F), let

1For the rest of this work, whenever the context is unambiguous, we just refer to them as singleton.

(L), and exists (E). The first and the second quantifier have a similar semantics as the
corresponding XQuery constructs: A for-quantified tuple variable iterates over the tuple
sequence it receives from its input. In contrast, let-quantified tuple variables deliver their
connected sequences at once. Finally, exists-quantified tuple variables are used to check
whether their inputs are non-empty tuple sequences.

Figure 2: Sample XQGM instance

Query evaluation starts at the left-most subtree (Document Access operator). The SJ op-
erator evaluates the structural predicate (descendant axis) between the virtual docu-
ment root and all book elements. Actually, SJ is a semi-join operator, because only
the tuple variable that provides book elements is linked to the projection specification
(PROJ SPEC). The parent Select operator receives a tuple sequence of all book elements
and iterates over it: First, it sends the current evaluation context to the Access operator
associated with it via the exists-quantified tuple variable2. The Access operator selects
a sequence of all price element nodes that are children of the current (context) book
element and returns only those items that satisfy the predicate. Next, the Select opera-
tor passes the current context to the right-most Access operator that returns all author

2In the graphical XQGM representation, the context passing is illustrated as a dashed line from the “sending”
tuple variable to the receiving operator.

nodes that are connected to the current context node via the child axis. For each match,
the parent Select operator evaluates the fn:text() function. Now, the Select operator,
which is at the heart of the query graph, can produce an output: It creates a new XML
element <authors>seq</authors>, if the sequence bound to the exists-quantified
tuple variable is non-empty, whereas seq represents the tuple sequence received by the
let-quantified tuple variable. Finally, the top-most Select operator wraps its input in an
opening <result> and a closing </result> tag.

2.2 Problem Statement

Today, cardinality estimation frameworks for native XDBMSs are not prepared to handle
XQuery expressions sufficiently. Most of them are only focusing on estimating the output
sizes of simple XPath expressions. Let us consider a slightly simplified query from the
W3C XQuery Uses Cases query set (Use Case “R”, query Q13):

<result> {
for $uid in distinct-values(doc("bids.xml")//userid),
$u in doc("users.xml")//user_tuple[userid = $uid]
let $b := doc("bids.xml")//bid_tuple[userid = $uid]
return
<bidder name="{$u/name}" bidCount="{ count($b)}" />

} </result>

The query returns for each user who has placed a bid the corresponding user name and the
total number of bids. Figure 3 shows the graphical representation of the respective XQGM
instance.

The subtree rooted at operator 1 delivers the result for the expression distinct-
values(doc("bids.xml")//userid). The Select operator 2 provides the “heart-
beat” for the further workflow. Operator 3 evaluates the first value-based join. Operator 4
triggers the evaluation of the second expression in the for clause that is bound to $u. The
Structural Outer Join (operator 5) returns (userid, user tuple) tuples and pre-
serves user tuple nodes even if it does not find a matching join partner (necessary for
preserving the correct output semantics for empty sequences in the final return clause).
After evaluating the value-based join, the qualifying user tuple nodes are passed on to
operator 6 that provides the results for the name attribute in the query result (operator 7).

In the let clause of our sample query, there is a second value-based join (operator 10).
Operator 8 furnishes the evaluation context (dashed line) for the Access operator below
operator 9. Finally, the result is passed from operator 7 to operator 2, which in turns sends
it to operator 11.

Even for this simple XQuery expression, present cardinality estimation frameworks fail to
provide satisfying results. These frameworks are only capable of providing estimates for
the outputs of the XPath expressions bound to $uid (see Section 1.1). This situation is
really sobering, because many optimization decisions, e. g., the selection of appropriate

Figure 3: XQGM instance for the sample query

join operators for value-based joins or Structural Join reordering can only be based on
vague and coarse-grained heuristics. For example, if a value-based join could be evaluated
using a hash join operator, we could only guess which input should be hashed and which
one probed. Here, a wrong guess could lead to tremendous performance loss. Moreover,
we cannot provide cardinality estimates for the final query result. For example, this might
have an impact on the selection of an appropriate materialization strategy: If there are only
few final results, late materialization might be preferred over early materialization.

Even though the concept of abstract domain identifiers and the corresponding cardinality
inference rules introduced by Teubner et al. [TGMS08] provide an elegant means for
gaining reliable cardinality estimates, they rely on a completely different algebra and,
hence, cannot be directly used out-of-the-box for our purposes. Consequently, a similar
set of inference rules must be specified that provide support for XQGM-specific operators
such as logical Structural Joins, n-way outer joins, and unnest operators to allow for full
cardinality estimation on XQGM instances.

At the moment, XTC’s query optimizer applies query unnesting [Mat07] as a heuristics.
If we could provide reliable cardinality estimates for XQGM, we would be able to leave
the decision whether to perform query unnesting or not to the cost-based query optimizer,
which would make the query optimization process even more flexible.

3 Application Scenarios for the Inference Rules

In this section, we have a brief look at two applications of our cardinality inferences rules
that complement the classical scenario for cardinality estimation, i. e., providing reliable
statistical information for join reordering.

(a) Node-at-a-time (b) Set-at-a-time

Figure 4: Evaluation strategies for XML queries

In Section 2.1.2, we mentioned the importance of query unnesting for efficient query eval-
uation. Figure 4(a) shows how a simple XPath expression a//b/c is evaluated using
node-at-a-time and set-at-a-time processing, respectively. During node-at-a-time process-
ing, for every a node, the evaluation context for the evaluation of //b is provided (dashed
line). By iterating over all qualified b nodes, the evaluation context for /c is furnished.
Finally, every qualified c node is output. On the other hand, set-at-a-time query evaluation
works similar to relational merge joins. Figure 4(b) illustrates how the XPath expression

a//b/c is evaluated using this approach: First, the location step // is evaluated between
all a and b nodes. Afterwards, the result of the first Structural Join operator serves to-
gether with all c nodes as input for the second one that evaluates the location step b/c. In
XTC, the transition from node-at-at-a-time to set-at-a-time processing is performed during
a pattern-based algebraic rewrite process3. So far, query rewrites are applied in an eager
way, i. e., as long as query unnesting is possible, it is applied. Now, using our refined
cardinality information, the query optimizer can immediately abort query unnesting if the
estimated cardinalities indicate that this would be counterproductive.

Efficient evaluation of value-based joins is crucial for the performance of XML database
systems. In contrast to structural predicates, which can be decided using appropriate node
labeling schemes without any further accesses to the document, value-based predicates
need additional accesses to the document to fetch the actual content nodes. Let us have a
look at XQGM instance shown in Figure 3. For example, operator 3 evaluates a value-
based predicate. At the logical level, for each tuple bound to the let-quantified tuple
variable, a complete iteration over the sub-expression rooted at the for-quantified tuple
variable is performed. Choosing the right physical implementation is crucial for the query
performance. During optimization, it is especially important to know how many tuples will
be delivered via the for-quantified and let-quantified tuple variables. Hence, the evaluation
order proposed by the logical algebra is not always the most efficient one: Let us assume
that the optimizer can use a value-based hash join for evaluating the value-based join. If
we would know that the let-quantified tuple variable would deliver 1,000 tuples, but the
for-quantified tuple variable only 10, then it would be much cheaper to hash the 10 tuples
(only a single evaluation of the sub-expression) and probe the input of the let-quantified
tuple variable against it. But for a reciprocal input ratio, this decision would result in an
extremely slow QEP.

4 Cardinality Inference

In this section, we introduce the various inference rules that are used for cardinality estima-
tion in XTC. Section 4.1 introduces preliminary notions. Thereafter, Section 4.2 discusses
the inference rules.

4.1 Nomenclature

Our cardinality estimation approach is based on the idea of abstract domain identifiers
[TGMS08]. For your convenience, we repeat its definition and adjust it to our needs in
the context of XQGM. Abstract domain identifiers, which will be denoted by Greek letters
such as α,β , . . ., allow to estimate the value space of tuple items that are exposed by
XQGM expressions at runtime.

Each XQGM operator consumes or emits tuple sequences. Let s =< t1, . . . , tn > be a
tuple sequence where each t j = [i j 1, . . . , i j m] is a tuple with m items. Obviously, this tuple

3The example shown here is very simplistic and abstract. In reality, the patterns are much more complex and
may cover numerous operators. However, the rationale behind the two evaluation strategies should be obvious.

sequence has a “fixed schema” with m columns (denoted by c1, . . . ,cm), i. e., every tuple
has m (probably nested) items where each i j k shares a common domain (for an arbitrarily
but consistently chosen k). Table 1 illustrates this imaginary schema.

c1 . . . cm
t1 i11 . . . i1m
...

...
. . .

...
tn in1 . . . inm

Table 1: Imaginary schema

Let us denote the active domain of ci, i. e., the set of all values taken by tuples t1 . . . , tn in
column ci, by αi. Moreover, we refer to the domain size, i. e., the total number of distinct
values in ci, by ‖αi‖. We define dom(o) = {cα1

1 , . . . ,cαm
m } as the result domain set of the

tuple sequence produced by XQGM operator o as output4, whereas cαi
i is the i-th column

of the tuple sequence emitted by o with the corresponding active domain αi.

According to [TGMS08], for the abstract domain identifiers α and β , we define the reflex-
ive and transitive inclusion relationship β v α as follows: β v α ⇐⇒ ∀b ∈ β : b ∈ α .
Finally, we will denote the assignment of an inferred value by =! and an inferred inclusion
relationship by v!.

4.2 Inference Rules

After providing the preliminaries, we are now ready to discuss the different inferences
rules that are used to estimate the cardinalities of XQGM (sub)-expressions. The definition
of the various inference rules is mostly based on the notation introduced by [TGMS08].

4.2.1 Access Operators

Figure 5 shows the inference rules for Access operators. In XQGM, query evaluation starts
at a document’s root node. Rule CARD-DOC-ACCESS simply assigns the value 1 to the
abstract domain identifier α , because there is only a single document root in the document.

Rule CARD-ACCESS is responsible for deriving the cardinality estimates for basic Access
operators. An Access operator provides a tuple stream having an element or attribute name
e as filter and may evaluate an optional predicate p. We estimate its cardinality by the total
number of element or attribute names having the corresponding name. The selectivity of
predicate p can be determined by employing histograms or by simply using the famous
10% heuristics of System R [SAC+79].

Finally, CARD-ACCESS-WITH-CONTEXT serves for estimating the cardinality of access

4Please note, here we assume that the identifiers α1, . . . ,αm have not been used before.

operators whose output depends on an evaluation context. Such operators are employed
for XQGM sub-expressions that cannot be unnested according to the unnesting rules de-
fined by Mathis [Mat07]. Here, the abstract domain identifier β of the context-providing
operator is used as a starting point for cardinality inference. In expression σ(bθ e), b is
the current context item, θ is the corresponding XPath axis and e is the tuple stream issued
by the current access operator.

dom(DocAccess) =
{

cα ∧‖α‖=! 1} (CARD-DOC-ACCESS)

dom(Accesse p) =
{

cα ∧‖α‖=! |e| ·σ(p)
}

(CARD-ACCESS)

bβ ∈ dom(�)∧�provides evaluation context

dom(Accesseθ) =
{

aα ∧‖α‖=! |e| ·σ(bθ e)
}

(CARD-ACCESS-WITH-CONTEXT)

Figure 5: Inference rules for access operators

For example, in Figure 3, the left-most Access operator (below sub-expression 1) accesses
the sequence of all userid nodes and does not evaluate a predicate. The right-most
operator simply accesses the document root of document bids.xml. Sub-expression 9
in Figure 3 shows an Access operator (left-most access operator) that is a match for rule
CARD-ACCESS-WITH-CONTEXT. Here, The Select operator (Operator 8) provides the
evaluation context, θ is the XPath descendant axis, and e corresponds to the element
name bid tuple.

4.2.2 Cardinality Estimation for Structural Joins

In XQGM, Structural Joins are the basic building blocks for the evaluation of XPath path
expressions. Whenever possible, we use Structural Semi Joins to reduce intermediate
results. Figure 6 illustrates the inference rules for the six different Structural Join types.

For the representation of the various join types, we use the well-known symbols: np
(Structural Left Semi Join), op (Structural Right Semi Join), onp (Structural Full Join),
1p (Structural Left-outer Join), and 2p (Structural Right-outer Join). The Structural
Join evaluates a structural predicate p described as follows: ai θ b j, where ai is an item
of tuple sequence q1, b j is an item of tuple sequence q2, and θ is an XPath axis, e. g.,
descendant.

Even though the definitions of the inference rules seem to be cumbersome at first sight,
their rationale is very simple: For estimating the result size of active domains affected by
the structural predicate, we rely on two data structures. In the case of path expressions
describing linear and unique paths, we use the path synopsis, which is an extension to the
seminal DataGuide [GW97], to derive accurate cardinalities for the expression. If the path
expression is more complex or involves non-unique paths, we approximate the cardinality
using XTC’s XPath cardinality estimation framework called EXsum [Agu10].

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2)

|q1 naiθb j q2|= ‖αi‖ ·σ
(
ai[θ b j]

)
∧ dom(q1 naiθb j q2) =

{
cγ2

2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(q1)\

{aαi
i } ∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)|q1 |/‖γ1‖

]}
∪
{

cγ
∣∣γ v!

αi ∧ ‖γ‖=! |q1 naiθb j q2|
} (CARD-SJ-1)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2)

|q1 oaiθb j q2|= ‖β j‖ ·σ(ai θ b j) ∧ dom(q1 oaiθb j q2) =
{

cγ2
2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(q2)

\{bβ j
j } ∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)|q2 |/‖γ1‖

]}
∪
{

cγ
∣∣γ v!

β j ∧ ‖γ‖=! |q1 oaiθb j q2|
} (CARD-SJ-2)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2) ∧ aiθb j is location step

|q1 onaiθb j q2|= ‖β j‖ ·σ(ai θ b j) ∧dom(q1 onaiθb j q2) =
{

cγ2
2

∣∣γ2 v!
γ1∧

cγ1
1 ∈ dom(q1) ∪ dom(q2)\

{
aαi

i ,b
β j
j
}
∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)(|q1 |+|q2 |)/‖γ1‖

]}
∪{

cγ
∣∣γ v!

αi ∧ ‖γ‖=! ‖αi‖ ·σ
(
ai[θb j]

)}
∪
{

cγ
∣∣γ v!

β j ∧ ‖γ j‖=! ‖β j‖ ·σ(aiθb j)
}

(CARD-SJ-3)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2) ∧ aiθb j is predicate step

|q1 onaiθb j q2|= ‖αi‖ ·σ
(
ai[θb j]

)
∧dom(q1 onaiθb j q2) =

{
cγ2

2

∣∣γ2 v!
γ1∧

cγ1
1 ∈ dom(q1) ∪ dom(q2)\

{
aαi

i ,b
β j
j
}
∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)(|q1 |+|q2 |)/‖γ1‖

]}
∪{

cγ
∣∣γ v!

αi ∧ ‖γ‖=! ‖αi‖ ·σ
(
ai[θb j]

)}
∪
{

cγ
∣∣γ v!

β j ∧ ‖γ j‖=! ‖β j‖ ·σ(aiθb j)
}

(CARD-SJ-4)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2)

|q12aiθb j q2|= ‖β j‖ ∧dom(q12aiθb j q2) =
{

b
β j
j

}
∪
{

cγ2
2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈

dom(q1) ∪ dom(q2)\
{

aαi
i ,b

β j
j
}
∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)(|q1 |+|q2 |)/‖γ1‖

]}
∪{

cγ
∣∣γ v!

αi ∧ ‖γ‖=! ‖αi‖ ·σ
(
ai[θb j]

)}
(CARD-SJ-5)

aαi
i ∈ dom(q1) ∧ b

β j
j ∈ dom(q2)

|q11aiθb j q2|= ‖αi‖ ∧dom(q11aiθb j q2) =
{

aαi
i

}
∪
{

cγ2
2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(q1)

∪dom(q2)\
{

aαi
i ,b

β j
j
}
∧ ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)(|q1 |+|q2 |)/‖γ1‖

]}
∪{

cγ
∣∣γ v!

β j ∧ ‖γ‖=! ‖β j‖ ·σ(aiθb j)
}

(CARD-SJ-6)

Figure 6: Inference rules for Structural Joins

The expression σ
(
ai[θ b j]

)
returns the selectivity of ai items connected to b j items via

the θ axis, i. e., the percentage of ai nodes satisfying the structural predicate. On the
other hand, σ(ai θ b j) returns the selectivity of b j items. For the remaining items, we
follow the idea of Teubner et al. [TGMS08] to use a generalization of the classical 10%
rule to estimate the new cardinalities of active domains that are not directly affected (i. e.,
independent) by the structural predicate: ‖γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)|q|/‖γ1‖

]
, where |q| is

the cardinality of input operator q, γ1 is the active domain cardinality of a column contained

in the input tuple sequence of q, and ‖γ2‖ is the inferred cardinality for the corresponding
active domain in the output tuple sequence.

Rules CARD-SJ-1 and CARD-SJ-2 depict the inference rules for Structural Left Semi Joins
and Right Semi Joins, respectively. Here, the result domain set is equal to the domain set
of the left or right input operator, respectively. The cardinalities of the active domains’ join
items are calculated using the path synopsis or EXsum and all remaining cardinalities of
the active domains in the output domain set are approximated using the generalized 10%
rule.

For the cardinality estimation of Structural Full Joins, rules CARD-SJ-3 and CARD-SJ-4
show the corresponding definitions, which distinguish between the evaluation of location
steps and predicate steps. Both rules estimate the output cardinality of the join operator
and the active domains of join items ai and b j using the path synopsis. Once again, the
generalized 10% rule helps to approximate the active domains for items that are indepen-
dent of the join predicate.

In Figure 3, several Structural Outer Joins are used (e. g., operators 5, 6, and 9). Inference
rules CARD-SJ-5 and CARD-SJ-6 allow for cardinality inference of Structural Left-outer
and Structural Right-outer Joins, respectively5. The active domain of the join item whose
tuple sequence contributes to the output’s outer part remains unchanged, and the cardinal-
ity of the other join item is adjusted according to EXsum’s estimation. For all remaining
active domains, the generalized 10% rule is applied.

4.2.3 Inference Rules for Grouping, Unnesting, and Miscellaneous Operators

aαi
i ∈ dom(q)

|GroupByi(q)|= ‖αi‖ (CARD-GROUP-BY)

aαi
i ∈ dom(q)

|Unnesti(q)|= flatCard(q) (CARD-UNNEST)

� ∈ {Split,Project} ∧ dom(q′)⊆ dom(q)
dom(�(q)) =

{
aαi

i |a
αi
i ∈ dom(q′)

}
(CARD-MISC-1)

� ∈ {Sort,DDO}
|�(q)|= |q| · 2/3 (CARD-MISC-2)

Figure 7: Inference rules for grouping, unnesting, and miscellaneous operators

The GroupBy and the Unnest operator allow for nesting and unnesting of tuple sequences
w. r. t. a specific item position, respectively. Rule CARD-GROUP-BY shows the cardinality
inference for nesting. The cardinality of the result tuple sequence is primarily determined
by the cardinality of the active domain according to which the nesting is performed. The
active domain set remains unchanged.

The cardinality inference rule for the Unnest operator (CARD-UNNEST) approximates the
cardinality of the result tuple sequence using the function flatCard, which calculates the
cardinality of the Cartesian product of the values of item i and the values of the remaining
active domains.

5Please note, we do not use Structural Full-outer Joins in XQGM.

The Split operator sends its input to multiple consumers and the Project operator serves as
classical projection operator. Rule CARD-MISC-1 simply derives the result domain set by
considering those active domains that are referred to in the projection specification, where
q is the input tuple sequence and q′ is the output tuple sequence. Again, the cardinality
remains unchanged.

Conventionally, every XQGM operator returns tuple sequences sorted in document order
and tries to reduce duplicates to a minimum. If duplicates cannot be avoided, e. g., if
a full join using the descendant axis is performed, additional duplicate elimination
might become necessary. Sort and Distinct-Doc-Order (DDO) retain a certain sort order or
eliminate duplicates. Inference rule CARD-MISC-2 describes the estimation of the output
cardinality. We expect that most tuple sequences are almost duplicate free and sorted,
therefore, we assume that two thirds of their input tuples will “survive”.

4.2.4 Inference Rules for Merge and Select

Rules CARD-MERGE-1 and CARD-MERGE-2 show the inference rules for the Merge
operator. The Merge operator contains only for-quantified tuple variables and calculates
the Cartesian product on its input tuple streams. Each Merge operator contains a so-called
merge specification that describes a complex selection predicate on the Cartesian product.
The predicate selects all tuples that have equal values for given positions in the tuple
sequence. For the sake of simplicity, we also use the 10% rule to determine the output
cardinality.

|Merge(q1, . . . ,qn)|=
n

∏
i=1
|qi| · 1/10 ∧ dom(Merge(q1, . . . ,qn))⊇

{
cγ2

2

∣∣γ2 v!
γ1

∧cγ1
1 ∈ ∪

n
j=1dom(q j) ∧ ‖γ2‖=! ‖γ1‖ · [1− (1− 1/10)∑

n
i=1 |qi |/‖γ1‖]

}
(CARD-MERGE-1)

qi delivers outer sequence

|Merge(q1, . . . ,qn)|= |qi| ∧ dom(Merge(q1, . . . ,qn))⊇
{

cγ2
2

∣∣γ2 v!
γ1

∧cγ1
1 ∈ ∪

n
j=1dom(q j) ∧ ‖γ2‖=! ‖γ1‖ · [1− (1− 1/10)|qi |/‖γ1‖]

}
(CARD-MERGE-2)

|Selectp(q1, . . . ,qn)|= ∏
q∈Qfor∪Qlet

|q| · 1/10 ∧ dom(Select(q1, . . . ,qn)) = Q′for ∪ Q′let ∪ Q′exists∧

Q′for =
{

cγ2
2

∣∣γ2 v γ1 j ∧ cγ1
1 j ∈ dom(q j) ∧ q j ∈ Qfor ∧‖γ2‖=! ‖γ1 j‖ · [1− (1− 1/10)|q j/‖γ1 j‖]

}
∧

Q′let =
{

cγ2
2

∣∣γ2 v γ1 j ∧ cγ1
1 j ∈ dom(q j) ∧ q j ∈ Qlet ∧‖γ2‖=! ‖γ1 j‖ · [1− (1− 1/10)|q j/‖γ1 j‖]

}
∧

Q′exists =
{

cγ2
2

∣∣γ2 v γ1 j ∧ cγ1
1 j ∈ dom(q j) ∧ q j ∈ Qexists ∧‖γ2‖=! ‖γ1 j‖ · [1− (1− 1/2)|q j/‖γ1 j‖]

}
(CARD-SEL)

Figure 8: Inference rules for merge and select

Rule CARD-MERGE-2 handles a special case: If there exists an outer tuple variable in the
Merge operator, the outer semantics well-known from outer joins is used, i. e., for every
tuple sequence where a match does not exist, the tuple still appears in the Cartesian product
and all non-matching items are replaced by empty sequences [Mat09]. Here, the output
cardinality is simply determined by the cardinality of the tuple sequence associated with
the operator connected to the outer tuple variable.

The Select operator also calculates the Cartesian product on its input streams. In contrast to
the Merge operator, the Select operator can contain tuple variables with mixed quantifiers:
for, let, or exists. The Select operator is the most versatile operator in XQGM, as it allows
to express value-based joins and simple selection predicates as well as triggering XQuery
for-let bindings. Rule CARD-SEL describes the cardinality inference for Select operators,
where Qq (Q′q) is the set of all columns that are connected to q-quantified (output) tuple
variables. The for-quantified tuple variables “drive” the output generation process. On
the other hand, the tuple sequences bound to let-quantified tuple variables are “nested”
into the results generated by for-quantified tuple variables, whereas exists-quantified tuple
variables only serve for existence tests and do not contribute to the output.

4.2.5 Inference Rules for Set Operators

|q1|= |q2|= . . . = |qn|

|∪n
i=1 qi|=

n

∑
i=1
|qi| ∧ dom(∪n

i=1qi) = ∪|dom(q1)|
k=1

{
cγ2

2

∣∣∣γ2 v!
γ1∧

cγ1
1k ∈ dom(q1) ∧ ‖γ2‖=!

n

∑
i=1
‖γik‖

}
(CARD-UNION)

aα1
1 ∈ dom(q1) ∧ . . . ∧aαn

n ∈ dom(qn) ∧ |qk|= min{|q1|, . . . , |qn|}

|∩n
i=1 qi|= |qk| · 2/3 ∧ dom(∩n

i=1qi) =
{

cγ2
2

∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(qk)∧

‖γ2‖=! ‖γ1‖ ·
[
1− (1− 1/10)|qk |/‖γ1‖

]}
(CARD-INTERSECT)

|q1 \q2|= |q1| · 1/10 ∧ dom(q1 \q2) =
{

cγ2
2

∣∣∣γ2 v!
γ1 ∧ cγ1

1 ∈ dom(q1)∧

cγ1
1 6∈ dom(q2) ∧ |γ2‖=! ‖γ1‖ ·

[
1− (1− 1/10)|q1 |/‖γ1‖

]}
(CARD-DIFFERENCE)

Figure 9: Inference rules for set operators

Finally, XQGM provides three set operators: Union, Intersect, and Difference. In XQGM,
Union and Intersect are n-way operators and only Difference is a binary operator.

Rule CARD-UNION describes the cardinality inference for the Union operator. Here, we
assume that all input operators (q1 . . . qn) have the same output cardinality and all input
tuple sequences have the same active domains whose value range may differ. In this case,
γik denotes the active domain of operator i in column k.

The cardinality inference for the Intersect operator is described by rule CARD-INTER-
SECT. In this situation, qk denotes the first operator whose cardinality is minimal w. r. t.
the cardinality of the remaining operators. In experiments with our query optimizer, we
found out that a constant factor of 2/3 is a good heuristics for the selectivity of the n-way
Intersect operator.

Finally, rule CARD-DIFFERENCE illustrates the cardinality inference of the binary Dif-
ference operator that reuses the standard formula well-known from the relational context.

5 Empirical Evaluation

Finally, this section discusses the empirical evaluation of the inference rules. In this con-
text, we are not focussing on the cardinality inferences alone. Instead, we are interested in
their interplay with the cost-based query optimizer and its ability to derive scalable QEPs.

Figure 10: Actual vs. inferred cardinalities for the XMark benchmark queries

Our experiments were conducted on an Intel XEON quad core (3350) computer (2.66 GHz
CPUs, 4 GB of main memory, 500 GB of external memory) running Linux with kernel
version 2.6.14. Our native XDBMS server—implemented using Java version 1.6.0 07—
was configured with a page size of 16 KB and a buffer size of 256 16-KB frames. The
experimental results for the query execution times reflect the average values of five runs
on a cold database buffer.

For the empirical evaluation, we used the XMark benchmark queries—a set of simple to
complex XQuery expressions [SWK+02]—that serve very well to test the effectiveness
and the ability of an XQuery processor to provide scalable QEPs. If not mentioned oth-
erwise, we used an XMark document with scaling factor f = 1.0 that corresponds to an
approximate document size of 110 MB.

In our first experiment, we used the cardinality inference rules to estimate the final output
cardinality of each query and of each individual XQGM operator. Let us first have a

look at the results for estimated final output cardinalities. In Figure 10 a), we recorded the
deviation of the estimated value from the actual cardinality on the x-axis. If there is a filled
circle drawn at position 0, this means that there was no deviation between the estimated
and the actual cardinality at all. On the other hand, if a circle is drawn at 10 or 0.1, then the
estimated cardinality became victim of a 10-fold overestimate or a 10-fold underestimate,
respectively. All circles depicted at the left-hand side of 0.01 and on the right-hand of 10.0
summarize overestimates and underestimates beyond these limits.

For 14 out of 20 queries, the cardinality estimates are close or equal to the actual cardi-
nality. For queries Q 1–Q 3, the final cardinality estimates deviate significantly from the
actual cardinality. For query Q1, the selection predicate has a much lower selectivity than
estimated using the 10 % heuristics. This problem can be easily overcome using refined
statistics on value distribution, e. g., histograms. For queries Q 2 and Q 3, the selectiv-
ity of the positional predicates was not estimated correctly. Unfortunately, the error was
propagated up to the estimate of the final query result. Nevertheless, the cardinalities for
all performance-critical operators, such as access paths and SJs were estimated correctly.
Therefore, the ability of the query optimizer to provide scalable QEPs is not affected in
these situations—as indicated by Figure 11.

Our second experiment looked at the deviation between estimated and actual cardinalities
for individual XQGM operators (Figure 10 b). In Figure 10 a), all circles have the same
size. In contrast, in Figure 10 b), we use the same notation as in Figure 10 a), except the
fact that the circles are not filled anymore and their size is scaled logarithmically w. r. t. the
total number of operators that have the same deviation ratio. For example, for the majority
of operators in query Q 10, the inference rules estimated the correct output cardinality (in
fact, 88 % of the inferred cardinalities were correct), hence, the largest circle is drawn at
position 0. Moreover, the tiny circles between 0.1 and 0 and the medium-sized circle on
the right-hand side of position 10 indicate outliers, from which the estimation rules were
able to recover successfully. In total, for almost all queries, the inference rules provided
for the majority of operators exact cardinality estimates. Even though the inference rules
produced some outliers, they have little effect on the shape of the final QEP, because they
mostly are related to GroupBy and Unnest operators that cannot be removed and where no
alternative implementation exists.

Our third experiment shows that the inference rules are robust enough to support the query
optimizer in deriving scalable query plans. Figure 11 depicts the execution times of the
XMark benchmark queries on different document sizes (ranging from 110 KB to 1.1 GB).
Besides the selection of implementations and SJ reordering, the cost-based query opti-
mizer [WHdS10] selected indexes based on the recommendations of XTC’s auto-indexing
feature [SH10]. For these tasks, reliable cardinality information is crucial to derive suffi-
ciently efficient QEPs.

The execution times of most queries scale linearly with the document size. For small
documents (size≤ 10 MB), the average scale factor is even at most 6.85, i. e., an increase
of the document size by factor 10 results only in a 6.85 times longer execution time.
For the largest document in our experiment (1.1 GB), we still get an average scale factor
of 10.5 for all queries except of Q11 and Q12. In contrast, queries Q11 and Q12 are
very complex, include non-selective joins, and produce very large intermediate results that

scale quadratically with the document size. Therefore, the execution time of optimal plans
increases quadratically, too. Hence, this is not an error of the optimizer but simply reflects
the document and query characteristics.

1

10

10^2

10^3

10^4

10^5

10^6

10^7

Q1 Q5 Q10 Q15 Q20

A
v
er

ag
e

E
x
ec

u
ti

o
n
 T

im
e

[m
s]

Query

f=0.001 (110 KB)
f=0.01 (1.1 MB)

f=0.1 (11 MB)
f=1.0 (110 MB)
f=10.0 (1.1 GB)

Figure 11: Scalability on XMark benchmark queries

To once again emphasis the
importance of reliable cardi-
nality estimates for the eval-
uation of value-based joins,
for query Q9, using the car-
dinality inference rules, the
optimizer was able to pro-
pose a plan that was almost
18 times faster than without
refined cardinality informa-
tion. Though, it is notewor-
thy how query optimization
time (from query parsing to
the generation of the physi-
cal plan) relates to the over-
all execution time: On aver-
age, 97.62% of the time is spent for query execution and only 1.54% of the time was
consumed by query optimization. Hence, cardinality inference has only a low impact on
optimization time. As indicated by earlier experiments, non-optimized QEPs are up to two
orders of magnitude slower than their optimized counterparts. Consequently, it is worth
spending this small amount of time to get significantly better results.

6 Conclusions and Future Work

In this paper, we introduced and experimentally evaluated a set of inference rules that allow
for effective cardinality estimation in native XDBMSs. To the best of our knowledge,
this is the first approach that enables more precise cardinality estimation in such systems.
Moreover, we have discussed how we can use the inference rules to provide termination
criteria for cost-based query unnesting and to support an appropriate selection of value-
based join algorithms. In combination with a rich set of rewrite rules [WHdS10] and our
generalized access path [HMB+10], the inference rules provide the foundation for XTC’s
cost-based query optimizer and enable it to derive scalable QEPs for a wide range of
XQuery expressions. Though our experimental results are promising, there is still room
for optimization. By refining the generalized 10% heuristics and by focussing on a more
precise treatment of positional predicates, we expect further improvements in estimation
accuracy.

References

[AAN01] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Naughton. Estimating the Selectivity of
XML Path Expressions for Internet Scale Applications. In Proc. VLDB Conf., pages 591–600,
2001.

[Agu10] Jose Aguiar Moraes Filho. Summarizing XML Documents: Contributions, Empirical Studies, and
Challenges. PhD thesis, University of Kaiserslautern, Germany, 3 2010.

[AKJP+02] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, et al. Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. In Proc. ICDE Conf., pages 141–154, 2002.

[BEH+06] Andrey Balmin, Tom Eliaz, John Hornibrook, et al. Cost-Based Optimization in DB2 XML. IBM
Systems Journal, 45(2):299–320, 2006.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig Joins: Optimal XML Pattern
Matching. In Proc. SIGMOD Conf, pages 310–321, 2002.

[FHK+02] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, et al. Anatomy of a Native XML Base Man-
agement System. VLDB Journal, 11(4):292–314, 2002.

[FHR+02] Juliana Freire, Jayant R. Haritsa, Maya Ramanath, et al. StatiX: Making XML Count. In Proc.
SIGMOD Conf., pages 181–191, 2002.

[FM07] Damien K. Fisher and Sebastian Maneth. Structural Selectivity Estimation for XML Documents.
In Proc. ICDE Conf., pages 626–635, 2007.

[FMM+07] Mary Fernández, Ashok Malhotra, Jonathan Marsh, et al. XQuery 1.0 and XPath 2.0 Data
Model (XDM)—W3C Recommendation 23 January 2007. http://www.w3.org/TR/2007/
REC-xpath-datamodel-20070123/, 2007.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation and Optimization
in Semistructured Databases. In Proc. VLDB Conf., pages 436–445, 1997.

[HMB+10] Theo Härder, Christian Mathis, Sebastian Bächle, et al. Essential Performance Drivers in Native
XML DBMSs. In Proc. SOFSEM Conf., volume 5901 of LNCS, pages 29–46, 2010.

[JAKC+02] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, et al. TIMBER: A Native XML Database.
VLDB Journal, 11(4):274–291, 2002.

[MAG+97] Jason McHugh, Serge Abiteboul, Roy Goldman, et al. Lore: A Database Management System for
Semistructured Data. ACM SIGMOD Record, 26(3):54–66, 1997.

[Mat07] Christian Mathis. Integrating Structural Joins into a Tuple-Based XPath Algebra. In Proc. BTW,
volume 103 of LNI, pages 242–261, 2007.

[Mat09] Christian Mathis. Storing, Indexing, and Querying XML Documents in Native XML Database
Management Systems. PhD thesis, University of Kaiserslautern, Germany, 2009.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/Rule Based Query Rewrite
Optimization in Starburst. In Proc. SIGMOD Conf., pages 39–48, 1992.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, et al. Access Path Selection in a
Relational Database Management System. In Proc. SIGMOD Conf., pages 23—34, 1979.

[Sar03] Carlo Sartiani. A General Framework for Estimating XML Query Cardinality. In Proc. DBPL,
pages 257–277, 2003.

[SH10] Karsten Schmidt and Theo Härder. On The Use of Query-Driven XML Auto-Indexing. In Proc.
ICDE SMDB Workshop, 2010.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin L. Kersten, et al. XMark: A Benchmark for XML Data
Management. In Proc. VLDB Conf, pages 974–985, 2002.

[TGMS08] Jens Teubner, Torsten Grust, Sebastian Maneth, and Sherif Sakr. Dependable Cardinality Forecasts
for XQuery. Proc. VLDB Endowment, 1(1):463–477, 2008.

[WHdS10] Andreas M. Weiner, Theo Härder, and Renato Oliveira da Silva. Visualizing Cost-Based XQuery
Optimization. In Proc. ICDE Conf., pages 1165–1168, 2010.

[ZÖAI06] Ning Zhang, M. Tamer Özsu, Ashraf Aboulnaga, and Ihab F. Ilyas. XSEED: Accurate and Fast
Cardinality Estimation for XPath Queries. In Proc. ICDE, page 61, 2006.

A XQGM Components

Figure 12: Overview XQGM components [Mat09]

