
SS2008 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 9 – MM/Search Extensions for
Object-Relational DBMS

Digital Libraries and Content Management

(OR-)DBMS-Support for Content-based Search

Search engine coupling
separate, external search engine for content-based retrieval

Integrated search support
tili ti f " ti l" i d t (b* t)utilization of "conventional" index support (e.g., b*-trees)

"high-level indexing"

specialized (multi-dimensional) index support

Extensible indexing support

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
2

SS2008 2

Coupling of External Search Engines

Shallow Integration
Loose coupling of DB search and content-specific search/retrieval

content search engine is not integrated into DBMS
well-defined interfaces and interactionwell defined interfaces and interaction

Index data for media objects may still reside outside the DBMS
index is accessed during query evaluation by calling out to external search engine

Location/storage of media objects is not impacted
inside the DB, or outside (e.g., as a file)

Motivation
lack of appropriate index support in the DBMS

adding new index support is complex, expensive

optimized external search engine exists

© Prof.Dr.-Ing. Stefan Deßloch

opt ed e te a sea c e g e e sts
costly migration

Potential problems
integrity
usability (in search and administration)
performance

3
Digital Libraries and Content Management

proj-no title budget description

123 ' ' 200000 'Thi j t '

Projects

Example: DB2 Text Extender

Text is stored in char column (long
varchar, CLOB, …) or anything that can
be used to "produce" character strings

structured type (SQL/MM) 123 '....' 200000 'This project ..'

456 '....' 400000 'Objects are...'

789 '....' 700000 'A database...'

SELECT proj-no, title
FROM compschema projects

structured type (SQL/MM)
external storage

Search using scalar UDFs
CONTAINS
SCORE
NUMBER_OF_MATCHES

Remember: preprocessing is expensive!
CONTAINS function always needs to

t l t t i d

© Prof.Dr.-Ing. Stefan Deßloch

FROM compschema.projects
WHERE contains (description,

' "database"
IN SAME SENTENCE AS

"object-relational" ') = 1

access an external text index
performance issues

updates, inserts on text columns become
expensive

asynchronous index updates
decoupled from column update

4
Digital Libraries and Content Management

SS2008 3

Application
contains

Text Extender System Architecture

Text index is stored outside the DB under
control of text search engine (TSE)

index scope: all documents in a text column
primary key of table used as document id

DB
Server
Engine

Text
Engine

'contains'
UDF

DB client

contains
(<column>,
<pattern>)

primary key of table used as document id

Separate TSE process for building and
incrementally updating the text index

configuration of update interval, etc.

Each index has a log table in the DB
holds information about updates that need
to be reflected in the index
populated using DB-triggers

d b h i d d t

© Prof.Dr.-Ing. Stefan Deßloch

DB

Text Index

used by asynchronous index update
process

Search UDF (implemented as a C function)
calls text engine, which returns a list of
doc-ids

may "miss" the latest updates!

trigger log
update

5
Digital Libraries and Content Management

Search – Performance Problems

Scalar UDFs (contains, etc.)
calls text search engine to retrieve search result
list
checks whether the document id is in that list

proj-no title budget description

123 ' ' 200000 'Thi j t '

Projects

checks whether the document id is in that list
or returns the score, #of matches

for each tuple in PROJECTS!

First (big) improvement:
UDF can 'buffer' the result list to reduce text
engine API calls
TSE API only needs to be invoked for the first
tuple in PROJECTS

But: the DB engine still calls the UDF for every

123 '....' 200000 'This project ..'

456 '....' 400000 'Objects are...'

789 '....' 700000 'A database...'

SELECT proj-no, title
FROM compschema projects

© Prof.Dr.-Ing. Stefan Deßloch

But: the DB engine still calls the UDF for every
row!

table scan
invocation overhead

Digital Libraries and Content Management
6

FROM compschema.projects
WHERE contains (description,

' "database"
IN SAME SENTENCE AS

"object-relational" ') = 1

SS2008 4

Search Using Table Functions

Table function (TF)
(user-defined) function that returns a table structure instead of a single scalar value
can be invoked in the FROM clause of a SELECT statement using special syntax

Text search TF interacts with TSE returns search results for specific indexText search TF interacts with TSE, returns search results for specific index
input parameters for

scope of the text search (external index name or name of indexed table, column)
text search pattern
optional parameters for limiting the result set

result table has columns holding
primary key value (document id)
score (optional), number of matches (optional)

Example

© Prof.Dr.-Ing. Stefan Deßloch

Example
SELECT p.pro-no, p.title
FROM compschema.projects p,

TABLE(containstable(‘COMPSCHEMA’, ‘PROJECTS’, ‘DESCRIPTION,
‘ “database” IN SAME SENTENCE AS “object-relational” ’)) AS restab

WHERE p.proj-no = restab.primarykey

7
Digital Libraries and Content Management

Table Functions - Evaluation

Advantages
performance!

avoids table scan

Disadvantages: usability!Disadvantages: usability!
asks end-user to make choice for the optimizer

in some situations, using the scalar function results in a better plan

lack of transparency
two different syntax alternatives for the same query

use of table functions
not "intuitive" to write
requires join of function result with document table, complicating the quers
potential lack of support by query tools, data access tools

© Prof.Dr.-Ing. Stefan Deßloch

p pp y q y

view transparency lost
view definition may access multiple tables with text columns

involves multiple indexes, based on the base table columns

user has to know view definitions

8
Digital Libraries and Content Management

SS2008 5

Query Rewrite/Optimization Support

Optimizer is made aware of additional
rewrite options

users continue to use scalar functions for
better usability
i t ll th i itt t l it

SELECT proj-no, title
FROM compschema.projects
WHERE contains (description,
' "database" IN SAME SENTENCE AS

internally, the query is rewritten to exploit
table function for better performance

Based on correspondences
scalar function to table function
parameter correspondences

search argument
document/primary key columns

meta data
table/columns names as TF parameters

either hard-wired, or through syntax

"object-relational" ') = 1

SELECT p.pro-no, p.title
FROM compschema.projects p,

TABLE(containstable(
'COMPSCHEMA', 'PROJECTS',
'DESCRIPTION',
' "database" IN SAME SENTENCE AS

© Prof.Dr.-Ing. Stefan Deßloch

, g y
extensions in "CREATE FUNCTION"

Further optimization opportunities
multiple scalar functions in the same
query mapped to the same TF
predicate/sorting "push-down"

 database IN SAME SENTENCE AS
"object-relational" ')) AS restab

WHERE p.proj-no = restab.primarykey

Digital Libraries and Content Management
9

High-Level Indexing - Motivation

Existing DB index mechanisms (e.g., b*-tree) may not support content search
predicates directly (e.g., within (shape, shape), overlaps (shape, shape) for spatial)
But it may be possible to exploit them to a certain degree
E l ti l hExample: spatial search

define a coordinate grid
b*-tree index entries for shape

grid cell coordinates
min. bound. rectangle (mbr)

for each cell touched by mbr

Search can be done in stages
compute grid cells, mbr for

h t ('CA')

© Prof.Dr.-Ing. Stefan Deßloch

search argument ('CA')
search index with cell
coordinates as arguments
filter false positives based on
mbr, eliminate duplicates
compute final result using exact shape

10
Digital Libraries and Content Management

SS2008 6

Spatial Indexing Requirements

Index type for 'reuse' in index creation
Index entries

Not useful to store complete shape object in the index
Should contain information extracted from a shape object

grid cell coordinates
minimum bounding rectangle information

Multiple index entries for a single shape object have to be supported
a shape object may 'appear' in multiple grid cells

Index exploitation (search)
flexible search method for mapping a 'query shape' to a range search on the index
multiple levels of search (result set filtering)

grid coordinate match
mbr overlap or containment
full geometric overlap or containment

© Prof.Dr.-Ing. Stefan Deßloch

full geometric overlap or containment
multiple search methods for the same index extension

overlap or containment

Index parameters
grid levels (determines granularity of the grid)
grid levels may vary for individual indexes

11
Digital Libraries and Content Management

Index Extension Support

Builds on top of existing B-Tree support
index plug-ins

DDL for creating named index extensions
d fi t t b li d t ‘ t i d ’ tidefine parameters to be supplied at ‘create index’ time
specify mapping of UDT to (multiple) index entries (Key Transformer)
define search methods that map a 'query literal' to a set of ranges over the index (Range
Producers)
provide filter functionality that further reduces answer set during index lookup (IDX Filter)

Specify how search UDFs can be mapped to search methods of the index extension
extended CREATE FUNCTION syntax to provide Predicate Specification, Index Exploitation
provide filter functionality that further reduces answer set during DMS predicate evaluation
(DMS Filt)

© Prof.Dr.-Ing. Stefan Deßloch

(DMS Filter)

Extended ‘CREATE INDEX’ to allow usage of index extensions
create index using an index extension
supply required parameters (e.g., grid scale)

12
Digital Libraries and Content Management

SS2008 7

CREATE FUNCTION within (x shape, y shape) ..
....
PREDICATES

WHEN = 1
FILTER USING mbrWithin(...)
SEARCH BY INDEX EXTENSION grid

Index Extension Architecture - DDL

CREATE INDEX EXTENSIONS grid (scale VARCHAR ...)
FROM SOURCE KEY (shapeCol shape)

GENERATE KEY USING (gridEntry (....)) ...
SEARCH METHODS

WHEN searchFirst(searchArg shape)
RANGE THROUGH gridRange(...)
FILTER USING checkDuplicates()

SEARCH BY INDEX EXTENSION grid
WHEN KEY(x) USE searchFirst(y)
...

© Prof.Dr.-Ing. Stefan Deßloch

CREATE INDEX store_loc ON stores(loc)
EXTEND USING grid('10 100 1000')

FILTER USING checkDuplicates(...)
...

13
Digital Libraries and Content Management

CREATE FUNCTION within (x shape, y shape) ..
....
PREDICATES

WHEN = 1
FILTER USING mbrWithin(...)
SEARCH BY INDEX EXTENSION grid

SELECT *
FROM stores

WHERE within (loc, circle(100,
100, 1))

Index Extension Architecture - Query

CREATE INDEX EXTENSIONS grid (scale VARCHAR ...)
FROM SOURCE KEY (shapeCol shape)

GENERATE KEY USING (gridEntry (....)) ...
SEARCH METHODS

WHEN searchFirst(searchArg shape)
RANGE THROUGH gridRange(...)
FILTER USING checkDuplicates()

SEARCH BY INDEX EXTENSION grid
WHEN KEY(x) USE searchFirst(y)
...

© Prof.Dr.-Ing. Stefan Deßloch

CREATE INDEX store_loc ON stores(loc)
EXTEND USING grid('10 100 1000')

FILTER USING checkDuplicates(...)
...

14
Digital Libraries and Content Management

SS2008 8

Specialized Index Support

Most interesting queries over media objects are
range queries, or
nearest-neighbor queries (top-k) involving similarity/distance measure
involving multiple dimensionsinvolving multiple dimensions

"Classic" index structures in DBMS (e.g., B-tree)
limited to a single dimension
can be leveraged only in a restricted manned, not suitable for high-dimensional space

Multi-dimensional index methods
large number of methods proposed over the last years
no clear winner

complexity (hard to understand/compare)

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
15

numerous criteria for optimality, performance
strong dependency on data/query

commercial systems
optimized, highly tuned implementation of a simple and robust index method
most popular: R-tree

More details: course on realization of database systems

Multi-dimensional Access Methods - History

Gaede, V., Günther, O.:
Multidimensional Access Methods
ACM Computing Survey 30:2, 1998

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
16

SS2008 9

Extensibility – User-defined Access Methods

ORDBMS provides support for user-defined access methods
primary access methods

relational table interface for direct read/write access
data may be stored outside the DBdata may be stored outside the DB

secondary access methods
index structure to support key-based retrieval of rows in a table
index entries may reside outside the DB

Based on generic interfaces
developers can supply their own implementation of access method APIs
implementation may utilize storage services of the DBMS (e.g., BLOB storage)

Example: IBM Informix Dynamic Server virtual tables/indexes
pioneered in POSTGRES DBMS

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
17

pioneered in POSTGRES DBMS
Oracle (Data Options) offers similar capabilities

Virtual Indexes in Informix Dynamic Server

Virtual Index Interface
purpose functions

functionality to build, connect to, populate, query, and update the index
includes cost information for the optimizerp

called by DBMS server to pass SQL statement specifications to the access method
example: CREATE INDEX …
to be implemented by the access method developer

descriptors
predefined data types used to exchange information

e.g., qualification descriptor contains a data structure describing the content of the WHERE-clause

parameters for API calls

accessor functions
obtain specific information from the descriptors

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
18

obtain specific information from the descriptors
supplied by the DBMS

Programmer is responsible for implementing
index functionality (see above)
concurrency control on index
logging/recovery, unless index data resides in DB BLOBs

SS2008 10

Important Purpose Functions - Overview

Invoking Statement Purpose Function

all am_open(MI_AM_TABLE_DESC *) am_close(MI_AM_TABLE_DESC *)

CREATE INDEX am_create(MI_AM_TABLE_DESC *) am_insert(MI_AM_TABLE_DESC *,
MI ROW * MI AM ROWID DESC *)MI_ROW *, MI_AM_ROWID_DESC *)

DROP INDEX am_drop(MI_AM_TABLE_DESC *)

INSERT am_insert(MI_AM_TABLE_DESC *, MI_ROW *, MI_AM_ROWID_DESC *)

DELETE am_delete(MI_AM_TABLE_DESC *, MI_ROW *, MI_AM_ROWID_DESC *)

SELECT
INSERT, UPDATE, DELETE
WHERE...

am_scancost(MI_AM_TABLE_DESC *, MI_AM_QUAL_DESC *)
am_beginscan(MI_AM_SCAN_DESC *)
am_getnext(MI_AM_SCAN_DESC *, MI_ROW **, MI_AM_ROWID_DESC *)
am_endscan(MI_AM_SCAN_DESC *)

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
19

SELECT with join am_rescan(MI_AM_SCAN_DESC *)

UPDATE am_update(MI_AM_TABLE_DESC *, MI_ROW *, MI_AM_ROWID_DESC *,
MI_ROW *,MI_AM_ROWID_DESC *)

UPDATE STATISTICS am_stats(MI_AM_TABLE_DESC *,MI_AM_ISTATS_DESC *)

Operator Classes

Operator class connects SQL operators, predicates, data types to an access method
which data types can be indexed using a specific secondary access method?
what predicates can be supported by the index?
how can the optimizer be provided with statistics?how can the optimizer be provided with statistics?

Two types of functions
strategy functions

needed for optimizer to decide whether an index can be used for a specific operation on a data
type
lists operators that appear in SQL (e.g., "=", "contains", …) and are supported by the index

support functions
called by the access method, e.g., to traverse the index and obtain the results
example: "compare keys" for a B-tree index

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
20

Similar to high-level indexing for B-trees, but supports user-defined access methods
as well!

SS2008 11

Extensibility – Generalized Search Trees

Generalized Search Tree (GiST)
generalization of tree-based index structures

e.g., B*-tree, R-tree can be seen as special cases

frameworkframework
provides implementation of common, generic index functionality
adapted by providing/registering a key class implementation with six methods

Common GiST properties
balanced tree, high fanout
internal nodes are used as a directory

series of keys, pointers

leaf nodes point to the actual data
linked list storage

may be an arbitrary 'predicate'
that holds for each datum
below the key, e.g., an integer
range, or a bounding box

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
21

linked list storage

search for tuples that match a query predicate:
starting at the root, for each pointer on the node,
if the associated key is consistent with the query predicate,
then traverse the subtree
requirement: key must match every data item (transitively) stored "below" it

GiST Key Methods and Tree Methods

Key Methods (to be provided as an
extension)

consistent (entry, predicate)
false, if conjunction of key and query

d f bl

Tree methods (provided by
framework)

search
uses "consistent()"predicate is unsatisfiable

may return false positives
union (set of entries)

return predicate that holds for the
union of all tuples stored 'below' all of
the entries

penalty (entry1, entry2)
domain-specific cost (penalty) for
inserting entry2 into entry 1 subtree
aids split and insert algorithms

uses consistent()

search in linear ordered domains
(findMin, Next)

uses "consistent()"
requires further ordering guarantees,
"compare" method implementation

insert (insert, chooseSubtree, split,
adjustKeys)

uses "penalty", "pickSplit", "union"
maintains tree balance

© Prof.Dr.-Ing. Stefan Deßloch

picksplit (set of entries)
splits set of entries into two sets of
entries

compress
decompress

maintains tree balance

delete
uses "union"

Digital Libraries and Content Management
22

SS2008 12

Commercial Systems

Database Extenders (IBM DB2)
data types and functions

Text Search, Net Search Extender
Image, Audio, Video Extender
Spatial Extender (ESRI)

utilize search engine coupling, high-level indexing approaches
Data Blades (Illustra, IBM Informix Universal Server)

collection of data types and associated functions
Text, Spatial, Geodetic, Image Foundation, Video Foundation, Visual Information Retrieval (Virage)

utilize virtual indexes, operator classes, R-tree specialized index structure
largely provided by business partners, certified by IBM/Informix

Data Options (Oracle)
interMedia (text image audio video) Spatial Visual Information Retrieval

© Prof.Dr.-Ing. Stefan Deßloch

interMedia (text, image, audio, video), Spatial, Visual Information Retrieval
utilize virtual index approach

Status
similar functionality, but only partial standardization

Digital Libraries and Content Management
23

DB2 Extender – Application View
Non-MM-Daten Integration of MM-Daten

TitleArtist

Lizzi Decisions

Sold

165 52

On-
Hand

1

Rating

Complex data types
New functions

Info

Cover
Video

Music

Dwayne
Miller

Nitecry

Earthkids

Run for
Cover

76

65

100

30

3

7

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
24

Integrated search
Open architecture

Bilder
Video

Audio
Text

SS2008 13

Extended Data Model (Example: Image Extender)

Handle1
Handle Format Width... Thumbnail

Image Attribute Table

Handle1

Stock_no Title
Covers
(DB2Image)

hidden
through UDFs

Image Attribute TableBusiness Table

Handle1
Handle Importer... Content

Image Base Metadata Table

--
--

Filename DB2
BLOB

File
Server

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
25

Image Administration Tables (ExtenderInfo, ImportLogs, Triggers, DeleteLog)

MMDB Administration Tables (ExtenderInfo, MetaTableNames)

Image Extender: Overview

Attributes stored in side tables, accessible through UDFs
format, thumbnail, length, width, ...

Support for common image formats
(BMP EPS EP2 GIF IMG IPS JPG PCX PGM PS PSC PS2 TIF YUG)(BMP, EPS, EP2, GIF, IMG, IPS, JPG, PCX, PGM, PS, PSC, PS2, TIF, YUG, ...)

Format conversion routines
Support for internal and external storage of media objects
Utilizes the Query by Image Content (QBIC) search engine

average color, color histogram, positional color, texture
features are extracted in an explicit catalog run, then available for search

Ranking (scoring) of search results

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
26

SS2008 14

Video Extender: Overview

Supported (searchable) attributes:
format, duration, number of frames, ...

Support for AVI, MPEG1, MPEG2, QT
DB t f t d f d l b kDB-storage for store-and-forward playback
External media-server storage for realtime playback
Import, export and update of videos
Support for Video Shot Change Detection

shot detection, management of a shot catalog in the DB, extraction of frames

In combination with QBIC:
"Find the sunset shot in the video most similar to a given image and start playback at that
shot"

© Prof.Dr.-Ing. Stefan Deßloch

shot

Digital Libraries and Content Management
27

Summary

ORDBMS architectures and support for MM-search
cannot be limited to provision of data types and functions
requires additional infrastructure for efficient content-based search

Search engine coupling
separate external search engine for content based retrievalseparate, external search engine for content-based retrieval

cost, utilization and protection of competitive, optimized search engines
table functions, query rewrite approaches for performance/usability improvements

Integrated search support
utilization of "conventional" index support (e.g., b*-trees)

"high-level indexing" that provides mapping of UDTs and predicated to index capabilities
multi-level search

specialized (multi-dimensional) index support
Extensible indexing support

virtual indexes/access methods
need to implement "purpose functions" for index operations, index maintenance

© Prof.Dr.-Ing. Stefan Deßloch

need to implement purpose functions for index operations, index maintenance
rather complex undertaking (locking, recovery, …)

most powerful and flexible approach
generalized search trees (GiST)

reduced programming effort through search tree framework, class library
Commercial ORDBM support

IBM DB2 Extenders, IBM Informix Data Blades, Oracle Data Options

Digital Libraries and Content Management
28

