
SS208 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 10 - XML

Digital Libraries and Content Management

Forces Driving XML

Document Processing
Goal: use document in various, evolving systems
structure – content – layout
grammar: markup vocabulary for mixed contentgrammar: markup vocabulary for mixed content

Data Bases and Data Exchange
Goal: data independence
structured, typed data – schema-driven – integrity constraints

Semi-structured Data and Information Integration
Goal: integrate autonomous data sources
data source schema not known in detail – schemata are dynamic
schema might be revealed through analysis only after data processing

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

SS208 2

XML and CM/DL

XML can be used to represent documents and data
content and structure

XML is a text-oriented language
t ll it bl f lti di t tnot really suitable for multimedia content

Multi-media content can be referenced in XML documents
URI, XLink, XPointer, XPath
Synchronized Multimedia Integration Language (SMIL)

Multi-media content can be encoded in a text-based format
Scalable Vector Graphics (SVG)

XML processing standards support flexible generation of different layout
XML Style Sheets Transformations

© Prof.Dr.-Ing. Stefan Deßloch

Sty e S eets a s o at o s

XML for meta-data representation
RDF
Meta-data standards (e.g., Dublin Core)

Representation in XML

Digital Libraries and Content
Management

XML Language Specifications (W3C)

XML Link XML Pointer XPath XQuery

XSL

XSLT XSL-FO

covered in foundation courses, see appendix!

Unified Modeling Language

XML Metadata Interchange

eXtensible Markup Language

XML Schema XML Namespace
XHTML

Cascading Style Sheets

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Meta Object Facility Unicode
Standardized Generalized Markup Language

Document Type Definition

SS208 3

XLink - XML Linking Language

Hyperlinks, references in XML documents
separate specification
based on Uniform Resource Identifiers (URIs), XPath, XPointer as referencing
mechanismsmechanisms
more powerful than HTML hyperlinks (see chapter 7)

bi-directional, more than two resources (n-ary links)
powerful addressing of resources

direct reference to object components

link attributes provide metadata
storage of links independent of resources

but also provides support for "simple" links (comp. to HTML) through special
abbreviated syntax

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

XLink Elements and Attributes

XLink Element
has special attributes defined in XLink namespace

type (simple, extended, ...)
href (URI-reference or XPointer)href (URI reference or XPointer)
title, role (describes link semantics)
show (new, replace, embed, undefined) (activation behavior)
actuate (onLoad, onRequest, undefined) (link traversal)
from, to (definition of directed edges in link graph)

Link types
outbound: local start resource, remote end resource
inbound: remote start resource, local end resource
third-party: remote start resource, remote end resource

© Prof.Dr.-Ing. Stefan Deßloch

p y

Digital Libraries and Content
Management

SS208 4

XLink - Example

in DTD:
<!ELEMENT Player ANY>
<!ATTLIST Player

xlink:type (simple) #FIXED "simple"
li k h f CDATA #REQUIREDxlink:href CDATA #REQUIRED

xlink:role NMTOKEN #FIXED "http://www.fck.com/links/spieler"
xlink:title CDATA #IMPLIED
xlink:show (new|embed|replace) "replace"
xlink:actuate (onLoad|onRequest) "onRequest"

>

in document instance:
< Player xlink:href="http://www.fck.de/Spielerliste.xml"

xlink:title="List of all FCK players"
xlink:show="new">
H ' li t f ll FCK l

© Prof.Dr.-Ing. Stefan Deßloch

Here's a list of all FCK players.
</Player>

Digital Libraries and Content
Management

XSL – Transformation and Layout

XSL: Extensible Stylesheet Language
formatting engine for XML
XML markup is presentation/layout-independent

XSLT: XSL Transformation LanguageXSLT: XSL Transformation Language
stylesheet
transformation rules

consisting of a pattern and a template
usage of XPath

input tree
output tree

XSL-FO: XSL Formatting Objects
b l f h ifi i f f i l

© Prof.Dr.-Ing. Stefan Deßloch

vocabulary for the specification of formatting rules
reuse of complex formatting definitions

transformation into arbitrary formats (PDF, RTF, PostScript, …)

Digital Libraries and Content
Management

SS208 5

Principles of XSLT

XSL processor
element-by-element processing of input tree, starting with the root
looks for applicable XSLT rule

XSLT rule definesXSLT rule defines
template: for which element, in which relationship context does the rule apply
action:

what should be generated as output
reference to document content using 'select'-expressions

what elements should be processed next by the processor
<xsl:apply-templates/> - continue with child elements
extended syntax supports selection of specific elements, order restrictions, etc.

Default rules (if no other rule is matched)

© Prof.Dr.-Ing. Stefan Deßloch

for all elements (incl. root), process the children
for all text nodes and attributes, use their value as output

Digital Libraries and Content
Management

XSL - Example

a fragment of an XML document:
<Content>
<Paragraph>XSLT <foreignTerm> (XSL Transformation Language) </foreignTerm >
is a <Emphasis> phantastic</Emphasis> language to transform XML documents into
XHTML <foreignTerm> (Extensible HTML) </foreignTerm>.
</Paragraph>
</Content>
result document:
<html>
<head>

<title>An XSLT example</title>
</head>
<body>

XSLT <i>(XSL T f ti L)</i>

© Prof.Dr.-Ing. Stefan Deßloch

XSLT <i>(XSL Transformation Language)</i>
is a phantastic language to
transform XML documents into XHTML
<i> (Extensible HTML) </i>.
</body>

</html>

Digital Libraries and Content
Management

SS208 6

XSL - Example

XSLT-Stylesheet:
<xsl:stylesheet xmlns:xsl=http://w3.org/XSL/Transform/1.0

xmlns=http://w3.org/TR/xhtml1
indent-rules="yes">

<!– Rule 1 --> <xsl:template match="/">p /
<html>
<head>

<title>An XSLT example</title>
</head>
<body>

<xsl:apply-templates/>
</body>
</html>
</xsl:template>

<!-- Rule 2 --> <xsl:template match="Paragraph">
<xsl:apply-templates/>

</xsl:template>

© Prof.Dr.-Ing. Stefan Deßloch

/ p
<!-- Rule 3 --> <xsl:template match="Emphasis">

<xsl:apply-templates/>
</xsl:template>

<!-- Rule 4 --> <xsl:template match="foreignTerm">
<i><xsl:apply-templates/></i>

</xsl:template>

Digital Libraries and Content
Management

XML Storage

Requirements
effective storage
efficient access of XML documents and fragments/elements
recreation of original document (or information from the document)recreation of original document (or information from the document)

Possible approaches
complete document storage, indexing (text-based native approach)

text index
text index + structure index

decomposition and generic storage (model-based native approach)
document graph storage
storage of DOM or XDM (XQuery Data Model) information

structured mapping to DB schema

© Prof.Dr.-Ing. Stefan Deßloch

structured mapping to DB schema
relational DBMS
object-oriented and object-relational DBMS
support for user-defined mapping
mapping may be incomplete

Approaches are often used in combination!

Digital Libraries and Content
Management

SS208 7

Complete XML Document Storage

Term Reference
Hotel <hotel>

<hotelname>Hotel Blechhammer</hotelname>
<address>

text index

Kaiserslautern

Hammerweiher

Saarbrücken

address

XML document is stored "as is" (e.g., in its textual form)
content (including whitespace) is completely preserved

<address>
<zip>67659</zip>
<city>Kaiserslautern</city>
<street>Am Hammerweiher 1</street>

</address>
<directions>

Autobahn A6 coming from Saarbrücken or …
</directions>

</hotel>

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

content (including whitespace) is completely preserved

in addition: text index (e.g., inverted word list)
text retrieval cannot differentiate markup (e.g., element names) from text content
no structural information

search for "hotel" AND "Saarbrücken" will return the above document!
result is always the full document

<hotel>
<hotelname>Hotel Blechhammer</hotelname>
<address>

Document Storage With Structural Index

Term Reference Element
Kaiserslautern

text index

<address>
<zip>67659</zip>
<city>Kaiserslautern</city>
<street>Am Hammerweiher 1</street>

</address>
<directions>

Autobahn A6 coming from Saarbrücken or …
</directions>

</hotel>

Kaiserslautern

Hammerweiher

Saarbrücken

Element Reference Parent

XML structural index

addtl. structural information

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

hotel

address

city

street

directions

addt st uctu a o at o

SS208 8

Properties

schema definition not required

document reconstruction not needed (original document is preserved)(g p)

queries information retrieval
exploitation of markup (structure) possible
XML queries supported

additional comments fulltext functionality (SQL-MM)

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

usage document-centric or semi-structured

Complete Decomposed Structure Mapping

Complete Document Storage

DB2 Text Extender

Complete
Document

Decomposed
Generic Storage

Structure Mapping
to Database

Text and XML
Structure IndexText Index

Information Retrieval

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

DB2 Text Extender
Oracle Text
Informix Verity Text

Search Data Blade
XML Search Engines

Search Engines
OR-Text

- Oracle Text
- DB2 Text Extender
- Informix Text Data Blades

SS208 9

Decomposition and Generic Storage

Storage of document graph structure
nodes: elements and attributes
edges: child/attribute relationship
RDBMS can be used as infrastructure based on generic schemaRDBMS can be used as infrastructure, based on generic schema

table ELEMENTS with columns DOCID, ELEMENTNAME, ID, PARENT, POSITION, VALUE
table ATTRIBUTE with columns DOCID, ATTRIBUTNAME, ELEMENTID, VALUE

docID Elementname ID Parent Position Value

H0001 hotel 001 1

H0001 hotelname 002 001 1 Hotel Blechhammer

H0001 address 003 001 1

Elemente

© Prof.Dr.-Ing. Stefan Deßloch

Storage of Document Object Model (DOM) or XQuery Data Model (XDM)
information

generic storage schema follows node types
Document, Element, Attribute,

RDBMS can be used as infrastructure as well

Digital Libraries and Content
Management

DOM

DOM structure is a tree structure with different node types

Node type Containsyp

Document Element (maximum of one), ProcessingInstruction, Comment, DocumentType

DocumentFragment Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

DocumentType no children

EntityReference Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

Element Element, Text, Comment, ProcessingInstruction, CDATASection, EntityReference

Attr Text, EntityReference

ProcessingInstruction no children

Comment no children

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Text no children

CDATASection no children

Entity Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference

Notation no children

SS208 10

Properties
schema definition not required

document reconstruction possible ("equivalent" document), but expensive

queries XML queries
DB-queries (need to be adjusted to the storage schema
used)

additional comments queries over many elements/attributes become expensive
DOM, XDM: standardised and accepted models

usage data document centric or semi structured

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

usage data-, document-centric, or semi-structured

Generic Storage

Complete Decomposed Structure Mapping

Neil Bradley

(simple)
representation of
graph structure

storage of
DOM, XDM
information

Richard Edwards
infonyte

Complete
Document

Decomposed
Generic Storage

Structure Mapping
to Database

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Florescu/Kossmann
Shimura/Yoshikawa/Uemura

infonyte
eXcelon XIS
(POET)

SS208 11

Systems

Infonyte-DB
uses a persistent Document Object Model (PDOM) for XML storage
doesn't use existing DBMS, but provides its own components for physical storage,
optimized for XML documentsoptimized for XML documents
query language: XQuery

Tamino
model-based storage of XML documents
query language: XPath/XQuery

eXcelon
uses Document Object Model as a basis for generic storage
all information supported for DOM nodes is stored in the OODBMS ObjectStore
query language: OQL

© Prof.Dr.-Ing. Stefan Deßloch

query language: OQL

Digital Libraries and Content
Management

Structured Storage Mapping to Databases

XML document structure is reflected at the schema level
prerequisite: explicit XML schema exists

Mapping to DB schema
d f lt i b tdefault mapping by system
user-defined (application-specific) mapping

Mapping definition for
transformation of query results
DB schema generation

Example (for object-relational DBMS):

id hotelname address

Hotel

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

id hotelname address …

zip city street

0001 Hotel Blechhammer 67659 Kaiserslautern Am …

SS208 12

Pros and Cons

Advantages: when storing structured data
Queries, data types, aggregate functions, views, …
Integration into/with existing databases

Disadvantages: when storing semi- and unstructured data
large schema, sparsely populated, many null values
no/restricted data type flexibility, problems with storing alternatives
no/weakly integrated information/text retrieval support

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Properties

schema definition required

document reconstruction usually not possible (unless mapping is
complete and complete mapping
process is "logged")

queries - data base queries
- XML queries possible (translation)

additional comments - supports integration with existing
data sources
- XML documents and DB "independent
from each other" (keeping the original

© Prof.Dr.-Ing. Stefan Deßloch

from each other" (keeping the original
document)

usage data-centric applications

Digital Libraries and Content
Management

SS208 13

Structural Mapping to Databases

Complete
Document

Decomposed
Generic Storage

Structural Mapping
to Database

Deutsch/Fernandez/
Suciu : Stored

R ld B t

Complete
(automatic)

Mapping

User-defined
Mapping

Shanmugasundaram et al.
(Ronald Bourret)
(Deutsch/Fernandez/

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Ronald Bourret
DB2 XML Extender

(Deutsch/Fernandez/
Suciu : Stored)
Klettke/Meyer
POET

Systems: System-defined Mapping

POET
for each element of DTD/XML-Schema specification, a corresponding Java
class is generated
t d i th t b ti di DB l tistored in the system by generating a corresponding DB-relation

for a document collection that has no schema, a fixed DB-schema is used,
which is based on the DOM information model

Oracle
starting with Oracle 8i, tools for XML storage are offered
part of Oracle XML Developer's Kit (XDK)
support for XML Parser and XSL Transformator

© Prof.Dr.-Ing. Stefan Deßloch

support for XML-Parser and XSL-Transformator

Digital Libraries and Content
Management

SS208 14

Systems: User-defined Mapping

IBM DB2 XML-Extender
storage of XML documents in DB2 DBMS
based on user-defined mapping definition file (DAD - Data Access Definition)

Oracle
object-relational storage of XMLType
storage mapping using XMLSchema annotations
XML document access using XPath or SQL

Microsoft SQL-Server

© Prof.Dr.-Ing. Stefan Deßloch

annotated XDR Schema for user-defined mapping
sql:relation, sql:field, …

Digital Libraries and Content
Management

SQL and XML

Use existing (object-)relational technology?
Large Objects: granularity understood by DBMS may be too coarse!

search/retrieval of subsets, update of documents

Decompose into tables: often complex inefficientDecompose into tables: often complex, inefficient
mapping complexity, especially for highly "denormalized" documents

Useful, but not sufficient
should be standardized as part of SQL
but needs further enhancement to support "native" XML support in SQL

Enable "hybrid" XML/relational data management
supports both relational and XML data

storage, access
query language

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

q y g g
programming interfaces

ability to view/access relational as XML, and XML as relational
all major relational DBMS vendors are moving into this direction

SS208 15

SQL/XML Big Picture

XML,
XQuery client

enhanced
SQL client SQL client

<?xml version = "1.0"?>
<order>
<item> … </item>
<item> … </item>

…
</order>

<?xml version = "1.0"?>
<order>
<item> … </item>
<item> … </item>

…
</order>

client
view

SQL/XML

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

<?xml version = "1.0"?>
<order>
<item> … </item>
<item> … </item>

…
</order>

<?xml version = "1.0"?>
<order>
<item> … </item>
<item> … </item>

…
</order>

storage

SQL:2003 Parts and Packages

3: CLI 4: PSM 9: MED 10: OLB 13: JRT 14: XML

•Two major goals:
•"Publish" SQL query results as XML documents
•Ability to store and retrieve XML documents

•Rules for mapping SQL types, SQL identifiers and

2: Foundation 11: Schemata

(2) Enhanced (7) Enhanced

(4) PSM
SQL data values to and from corresponding
XML concepts

•A new built-in type XML
•A number of built-in operators that produce
values of type XML

recent additions for SQL200n:
•Integration of the XQuery Data Model
•Additional XML Constructor Functions
Q e ing XML al es

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Core SQL

(2) Enhanced
Integrity Mgmnt.

(1) Enhanced
Date/Time Fac.

(8) Active
Databases

(7) Enhanced
Objects

(6) Basic
Objects (10) OLAPoptional

features

mandatory
features

•Querying XML values

SS208 16

XML Publishing Functions- Example

CREATE VIEW XMLDept (DeptDoc XML) AS (
SELECT XMLELEMENT (NAME "Department",

XMLATTRIBUTES (e.dept AS "name"),
XMLATTRIBUTES (COUNT(*) AS "count",
XMLAGG (XMLELEMENT (NAME " "XMLAGG (XMLELEMENT (NAME "emp",

XMLELEMENT(NAME "name", e.lname)
XMLELEMENT(NAME "hire", e.hire))

) AS "dept_doc"
FROM employees e GROUP BY dept) ;

==>

dept_doc

<Department name="Accounting" count="2">
<emp><name>Yates</name><hire>2005-11-01</hire></emp>
<emp><name>Smith</name><hire>2005-01-01</hire></emp>

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

<emp><name>Smith</name><hire>2005 01 01</hire></emp>
</Department>

<Department name="Shipping" count="2">
<emp><name>Oppenheimer</name><hire>2002-10-01</hire></emp>
<emp><name>Martin</name><hire>2005-05-01</hire></emp>

</Department>

Product Support

The "big three" support XML in SQL databases
IBM, Oracle implement (almost) complete support of SQL/XML
Microsoft supports similar capabilities using proprietary syntax
all three support XQuery inside SQLall three support XQuery inside SQL
differences in implementation of XML storage

IBM DB2 upcoming release (SIGMOD2005, VLDB2005)
CLOB-based as well as native storage for XML values

efficient storage, indexing, processing techniques

allows to include SQL requests in XQuery expressions, too

Oracle 10g (Oracle XML-DB technical whitepaper, VLDB2004)
storage based on CLOBs or object-relational tables

© Prof.Dr.-Ing. Stefan Deßloch

additional indexing capabilities, XML query rewrite

protocols (ftp, WebDAV, …) for supporting file-oriented XML storage/access

Microsoft SQL Server 2005 (MSDN whitepaper, VLDB2005)
stored as BLOB in an internal format

primary (B+ tree) and secondary indexes, query processing based on mapping to RDM

Digital Libraries and Content
Management

SS208 17

Hybrid SQL/XML Databases

Increasing importance of XML in combination with data management
flexible exchange of relational data using XML
managing XML data and documents
trend towards "hybrid" approaches for relational DBMSy pp

SQL/XML standard attempts to support the following
"Publish" SQL query results as XML documents
Ability to store and retrieve (parts of) XML documents with SQL databases
Rules and functionality for mapping SQL constructs to and from corresponding XML
concepts

Relies partly on XQuery standard
XML data model
queries over XML data

B d b j SQL DBMS d

© Prof.Dr.-Ing. Stefan Deßloch

Broad support by major SQL DBMS vendors
Additional standards to further extend and complete the "big picture"!

XQJ: XML queries in Java
Grid Data Access Services (GGF): web/grid services to access DBs using SQL,
XQuery

Digital Libraries and Content
Management

Resource Description Framework (RDF)

Language for representing information
(e.g., meta data) about resources on
the web

identify something on the web using
Uniform Resource Identifier (URI)
describe it using simple property/value
pairs

RDF statement can be represented
using a graph

Example (from the RDF spec):
"there is a Person identified by
http://www.w3.org/People/EM/contact#
me, whose name is Eric Miller, whose
email address is em@w3.org, and

© Prof.Dr.-Ing. Stefan Deßloch

g,
whose title is Dr."

RDF heritage: knowledge
representation

semantic networks

Digital Libraries and Content
Management

SS208 18

RDF/XML

XML-based syntax for encoding and
exchanging RDF statements

Example
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf= ><rdf:RDF xmlns:rdf=…>
<contact:Person

rdf:about=
"http://www.w3.org/People/EM/contact#me">
<contact:fullName>

Eric Miller
</contact:fullName>
<contact:mailbox

rdf:resource="mailto:em@w3.org"/>
<contact:personalTitle>

Dr.
</contact:personalTitle>

</contact:Person>

© Prof.Dr.-Ing. Stefan Deßloch

</rdf:RDF>

Could be used to provide semantic markup for
XHTML documents

extension of the HTML META tag

Digital Libraries and Content
Management

Dublin Core

Meta-data standard for describing networked resources
established by international, cross-disciplinary group of professionals from
librarianship, computer science, text encoding, the museum community, and other
related fields
major goal: help improve resource discovery
also used in closed environments, for other purposes(e.g., meta-data exchange)

Meta-data description
uses a set of common meta data elements (nouns) and qualifiers (adjectives)

can be embedded in the resource (e.g., as HTML meta tags)
can be contained in a separate record/description of a resource (e.g., in a meta-data
catalog file or database)

Dublin Core defines

© Prof.Dr.-Ing. Stefan Deßloch

a vocabulary for meta data
simple to use, based on commonly used semantics, international, extensible,

best practices of how to use the language in various formats
HTML, XML, RDF

Digital Libraries and Content
Management

SS208 19

Dublin Core Elements

Elements can be broadly grouped into three categories
Content

Title: A name given to the resource.
Subject: The topic of the content of the resource.Subject: The topic of the content of the resource.
Description: An account of the content of the resource.
Type: The nature or genre of the content of the resource.
Source: A reference to a resource from which the present resource is derived.
Relation: A reference to a related resource.
Coverage: The extent or scope of the content of the resource.

Intellectual Property
Creator: An entity primarily responsible for making the content of the resource.
Contributor: An entity responsible for making contributions to the resource content.
Publisher: An entity responsible for making the resource available

© Prof.Dr.-Ing. Stefan Deßloch

Publisher: An entity responsible for making the resource available
Rights: Information about rights held in and over the resource.

Instantiation
Date: A date associated with an event in the life cycle of the resource.
Format: The physical or digital manifestation of the resource.
Identifier: An unambiguous reference to the resource within a given context.
Language: A language of the intellectual content of the resource.

Digital Libraries and Content
Management

Qualifiers

Each element is optional and
repeatable
There is no defined order of
elements

Example: Element Date
Refinements

Created, Valid, Available, Issued,
Modified, Date Copyrighted, Date elements

Definition of controlled vocabularies
possible (i.e., permitted values for
elements)

uses concept of qualifiers

Two broad classes
Element Refinement: make the
meaning of an element narrower or
more specific

, py g ,
Submitted

Encoding Schemes
DCMI Period, W3C-DTF

Example: Element Relation
Refinements

Is Version Of, Has Version, Is
Replaced By, Replaces, Is Required
By, Requires, Is Part Of, Has Part,
Is Referenced By, References, Is

© Prof.Dr.-Ing. Stefan Deßloch

more specific
Encoding Scheme: identify schemes
that aid in the interpretation of an
element value

y, ,
Format Of, Has Format, Conforms
To

Encoding Scheme
URI

Digital Libraries and Content
Management

SS208 20

DC XML Implementation Guidelines

Each DC element is represented as a separate XML element
refinements become elements of their own
encoding schemes are represented using xsi:type

ExampleExample
<metadata xmlns=…>

<dc:title> UKOLN </dc:title>
<dc:subject> national centre, network information support</ dc:subject>
<dc:identifier xsi:type="dcterms:URI"> http://www.ukoln.ac.uk/ </dc:identifier>
<dcterms:modified xsi:type="dcterms:W3CDTF">

2001-07-18
</dcterms:modified>
…

</metadata>

© Prof.Dr.-Ing. Stefan Deßloch

</metadata>

Digital Libraries and Content
Management

DC RDF Implementation Guidelines

Each resource is described in an RDF description element
most appropriate URI to be used for rdf:about attribute

Example
df RDF l df "htt // 3 /1999/02/22 df t #"<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc ="http://purl.org/dc/elements/1.1/">
<rdf:Description rdf:about="http://dublincore.org/">

<dc:title>Dublin Core Metadata Initiative - Home Page</dc:title>
<dc:description>

The Dublin Core Metadata Initiative Web site.
</dc:description>
<dc:date>2001-01-16</dc:date>
<dc:format>text/html</dc:format>
<dc:language>en</dc:language>

© Prof.Dr.-Ing. Stefan Deßloch

<dc:language>en</dc:language>
<dc:contributor>The Dublin Core Metadata Initiative</dc:contributor>

</rdf:Description>
</rdf:RDF>

Digital Libraries and Content
Management

SS208 21

Appendix

XML Documents
Schema support in XML
Path Expressions
XQuery
XML APIs

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

XML Documents

XML documents are text (unicode)
markup (always starts with '<' or '&')

start/end tags
references (e.g., <, &, …)
declarations, comments, processing instructions, …

data (character data)
characters '<' and '&' need to be indicated using references (e.g., <) or using the
character code
alternative syntax: <![CDATA[(a<b)&(c<d)]]>

XML documents are well-formed
logical structure:
[<declaration>] [<dtd>] [<comment-or-PI>] <element> [<comment-or-PI>]

(optional) XML declaration (XML version, encoding, …)
(optional) schema (DTD)

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

(optional) schema (DTD)
single root element (possibly nested)
comments
processing instructions

example: reference to a stylesheet, used by a browser

additional requirements on the structure and content of <element>

SS208 22

XML Documents: Elements

Tag: label for a section of data
Element:

start tag <tagname>
content: text and/or nested element(s)/ ()

may be empty, alternative syntax: <tagname/>

end tag </tagname>

Elements must be properly nested for the document to be well-formed
Formally: every start tag must have a unique matching end tag, that is in the context of the
same parent element.

Mixture of text with sub-elements (mixed content) is legal in XML
Example:
<account>

This account is seldom used any more.
b 02 / b

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

<account-number> A-102</account-number>
<branch-name> Perryridge</branch-name>
<balance>400 </balance>

</account>
Useful for document markup, but discouraged for data representation

Element content (i.e., text and nested elements) is ordered!

XML Documents: Attributes

Attributes: can be used to further describe elements
attributes are specified by name="value" pairs inside the starting tag of
an element
value is a text stringvalue is a text string

no further structuring of attribute values

attributes are not ordered

Example:
<account acct-type = "checking" >

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>

Well formed documents:

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Well-formed documents:
attribute names must be unique within the element
attribute values are enclosed in single or double quotation marks

SS208 23

Namespaces

A single XML document may contain elements and attributes defined by
different vocabularies

Motivated by modularization considerations, for example

Name collisions have to be avoidedName collisions have to be avoided
Example:

A Book vocabulary contains a Title element for the title of a book
A Person vocabulary contains a Title element for an honorary title of a person
A BookOrder vocabulary uses both vocabularies

Namespaces specifies how to construct universally unique names

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Namespaces (cont.)

Namespace is a collection of names identified by a URI
Namespaces are declared via a set of special attributes

These attributes are prefixed by xmlns - Example:
<BookOrder xmlns:Customer "http://mySite com/Person"<BookOrder xmlns:Customer="http://mySite.com/Person"

xmlns:Item="http://yourSite.com/Book">

Namespace applies to the element where it is declared, and all elements within its
content

unless overridden

Elements/attributes from a particular namespace are prefixed by the name
assigned to the namespace in the corresponding declaration of the using XML
document

...Customer:Title='Dr'...

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

...Customer:Title Dr ...

...Item:Title='Introduction to XML'...

Default namespace declaration for fixing the namespace of unqualified names
Example:

<BookOrder xmlns="http://mySite.com/Person"
xmlns:Item="http://yourSite.com/Book">

SS208 24

XML Document Schema

XML documents may optionally have a schema
standardized data exchange, …

Schema restricts the structures and data types allowed in a document
d t i lid if it f ll th t i ti d fi d b th hdocument is valid, if it follows the restrictions defined by the schema

Two important mechanisms for specifying an XML schema
Document Type Definition (DTD)
XML Schema

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Document Type Definition - DTD

Original mechanism to specify type and structure of an XML document
What elements can occur
What attributes can/must an element have
What subelements can/must occur inside each element and how many timesWhat subelements can/must occur inside each element, and how many times.

DTD does not constrain data types
All values represented as strings in XML

Special DTD syntax
<!ELEMENT element (subelements-specification) >
<!ATTLIST element (attributes) >

DTD is
contained in the document, or

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

stored separately, referenced in the document

DTD clause in XML document specifies the root element type, supplies or
references the DTD

<!DOCTYPE bank […]>

SS208 25

Schema Definition with XML Schema

XML Schema is closer to the general understanding of a (database) schema
XML Schema (unlike DTD) supports

Typing of values
E g integer string etcE.g. integer, string, etc

Constraints on min/max values
Typed references
User defined types
Schema specification in XML syntax

schema is a well-formed and valid XML document

Integration with namespaces
Many more features

List types uniqueness and foreign key constraints inheritance

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

List types, uniqueness and foreign key constraints, inheritance ..

BUT: significantly more complicated than DTDs

XQuery

XQuery is a general purpose query language for XML data
Standard developed by the World Wide Web Consortium (W3C)

W3C Recommendation since January 23rd, 2007

XQ i d i d fXQuery is derived from
the Quilt (“Quilt” refers both to the origin of the language and to its use in “knitting ” together heterogeneous
data sources) query language, which itself borrows from
XPath: a concise language for navigating in trees
XML-QL: a powerful language for generating new structures
SQL: a database language based on a series of keyword-clauses: SELECT - FROM
– WHERE
OQL: a functional language in which many kinds of expressions can be nested
with full generality

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

with full generality

SS208 26

Tree Model of XML Data

Query and transformation languages are based on a tree model of XML data
An XML document is modeled as a tree, with nodes corresponding to elements,
attributes, text, etc.
Example:Example:

<?xml version = "1.0"?>
<!-- Requires one trained person -->
<procedure title = "Removing a light bulb">
<time unit = "sec">15</time>
<step>Grip bulb.</step>
<step>

Rotate it
<warning>slowly</warning>
counterclockwise

D

E AC

E EE A

procedure

title="Removing a light bulb"

time
unit="sec"

step step

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

counterclockwise.
</step>

</procedure>
T ET T T

T

warning

counterclockwise.Rotate it

slowly

Grip bulb.15

XQuery Data Model (XDM)

Builds on a tree-based model, but extends it to support sequences of items
represent collections of documents and complex values
reflect (intermediate) results of query evaluation
closure propertyclosure property

XQuery queries and expressions operate on/produce instances of the XDM

Based on XML Schema for precise type information
XDM instance

ordered sequence of zero or more items
can contain heterogenous values
cannot be nested – all operations on sequences automatically "flatten" sequences

no distinction between an item and a sequence of length 1

i d li d (b l)

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

may contain duplicate nodes (see below)

An item is a node or an atomic value
Atomic values are typed values

XML Schema simple types
important for representing results of intermediate expressions in the data model

SS208 27

XQuery – Main Constituents

Path expressions
Inherited from XPath
An XPath expression maps a node (the context node) into a set of nodes

Element constructorsElement constructors
To construct an element with a known name and content, use XML-like syntax:

<book isbn = "12345">
<title>Huckleberry Finn</title>

</book>

If the content of an element or attribute must be computed, use a nested
expression enclosed in { }

<book isbn = "{$x}">
{$b/title }

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

</book>

FLWOR - Expressions

Path Expressions in XQuery

An XPath expression maps a node (the context node) into a sequence of
nodes

consists of one or more steps separated by “/”
e g : return the names of all customers in banke.g.: return the names of all customers in bank
/child::bank/child::customer/child::name

Evaluation of path expression
step by step, from left to right
starting from an externally provided context node, or from document root
each step works on a sequence of nodes

for each node in the sequence, look up other nodes based on step expression
eliminate duplicates from result sequence
sort nodes in document order

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

sort nodes in document order

empty result sequence does not result in an error

D bank

customer

customer customer-name
Joe

customer-name
Mary

SS208 28

RETURN_clauseFOR_clause

LET_clause WHERE_clause

XQuery: The General Syntax Expression FLWOR

ORDER_BY_clause

FOR clause, LET clause generate list of tuples of bound variables (order preserving) by
iterating over a set of nodes (possibly specified by a path expression), or
binding a variable to the result of an expression

WHERE clause applies a predicate to filter the tuples produced by FOR/LET
ORDER BY clause imposes order on the surviving tuples
RETURN clause is executed for each surviving tuple, generates ordered list of outputs
Associations to SQL query expressions

for SQL from

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

for SQL from
where SQL where
order by SQL order by
return SQL select
let allows temporary variables, and has no equivalent in SQL

FLWOR - Examples

Simple FLWR expression in XQuery
Find all accounts with balance > 400, with each result enclosed in an <account-
number> .. </account-number> tag

for $x in /bank-2/accountfor $x in /bank 2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> {$acctno} </account-number>

Let and Where clause not really needed in this query, and selection can be
done in XPath.

Query can be written as:
for $x in /bank-2/account[balance>400]
return <account-number> {$x/@account-number}

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

</account-number>

SS208 29

Evaluating FLWOR Expressions

…

$x $y $z

input sequence tuple stream

$x $y $z

ok!

… … …

… … …

ok!

X

FOR $X,$Y ..
LET $Z .. WHERE ..

ORDER
BY ..

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

$x $y $z

… … …

…

ouput sequence

RETURN ..

Application Programming with XML

Application needs to work with XML data/document
Parsing XML to extract relevant information
Produce XML

Write character data
Build internal XML document representation and Serialize it

Generic XML Parsing
Simple API for XML (SAX)

“Push” parsing (event-based parsing)
Parser sends notifications to application about the type of document pieces it encounters
Notifications are sent in “reading order” as they appear in the document

Preferred for large documents (high memory efficiency)
Document Object Model (DOM) – w3c recommendation

“One-step” parsing
Generates in memory representation of the document (parse tree)

© Prof.Dr.-Ing. Stefan Deßloch
Digital Libraries and Content

Management

Generates in-memory representation of the document (parse tree)
DOM specifies the types of parse tree objects, their properties and operations

Independent of programming language (uses IDL)
Bindings available to specific programming languages (e.g., Java)

Parsing includes
checking for well-formedness
optionally checking for validity (often used for debugging only)

