2-PHASE COMMIT PROTOCOL

Jens Lechtenbdrger, University of Miinster, Germany

SYNONYMS
XA standard, distributed commit protocol

DEFINITION

The 2-phase commit (2PC) protocol is a distributed algorithm to ensure the consistent termination of a transaction
in a distributed environment. Thus, via 2PC an unanimous decision is reached and enforced among multiple
participating servers whether to commit or abort a given transaction, thereby guaranteeing atomicity. The
protocol proceeds in two phases, namely the prepare (or voting) and the commit (or decision) phase, which
explains the protocol’s name.

The protocol is executed by a coordinator process, while the participating servers are called participants. When
the transaction’s initiator issues a request to commit the transaction, the coordinator starts the first phase of the
2PC protocol by querying—via prepare messages—all participants whether to abort or to commit the transaction.
If all participants vote to commit then in the second phase the coordinator informs all participants to commit
their share of the transaction by sending a commit message. Otherwise, the coordinator instructs all participants
to abort their share of the transaction by sending an abort message. Appropriate log entries are written by
coordinator as well as participants to enable restart procedures in case of failures.

HISTORICAL BACKGROUND

Essentially, the 2PC protocol is modeled after general contract law, where a contract among two or more parties
is only established if all parties agree; hence, the underlying idea is well-established in everyday life. According
to [3] the first known implementation in a distributed system was performed by Nico Garzado for the Italian
social security system in the early 1970s, while the protocol’s name arose in the mid 1970s. Early scientific
presentations are given by Gray [2] and by Lampson and Sturgis [4]. Since then an API for the 2PC protocol has
been standardized under the name XA within the X/Open Distributed Transaction Processing (DTP) model [8],
and this API has been incorporated into several middleware specifications and implemented in numerous software
components.

SCIENTIFIC FUNDAMENTALS

The 2PC protocol as described and analyzed in detail in [7] assumes that parts of a single (distributed) transaction
involve resources hosted by multiple resource managers (e.g., database systems, file systems, messaging systems,
persistent programming environments), which reside on possibly different nodes of a network and are called
participants of the protocol. For every transaction one coordinator process, typically running on the node of
that participant where the transaction was initiated, assumes responsibility for executing the 2PC protocol;
alternative strategies for selecting (and transferring) the coordinator are discussed in [7]. The states through
which coordinator and participants move in the course of the protocol are illustrated in Fig. 1 and Fig. 2, resp.,
and explained in the following. Such statecharts represent finite state automata, where ovals denote states,
labeled arcs denote state transactions, and arc labels of the form “precondition/action” indicate that (a) the state
transition is only enabled if the precondition is satisfied and (b) the given action is executed when the state is
changed.

d

/Preparel; ...; PrepareN

Yesland ... and YesN
/Commitl; ...; CommitN

Nolor ...or NoN
/Abort1; ...; AbortN

Aborted

Ackland ... and AckN Ackland ... and AckN

Forgotten

Figure 1: Statechart for coordinator (given N participants)

¢

Preparel/Y es| Preparel/Nol

Prepared

Commitl/Ackl Abortl/Ackl

(Jom>

Commitl/Ackl Abortl/Ackl

Figure 2: Statechart for participant I

Coordinator

Force begin

I
Force commit !
|
|

Commit

Write end !

Figure 3: Actions for transaction commit in the basic protocol

Basic protocol As long as a transaction is still executing ordinary operations, coordinator as well as all
participants operate in the Initial state. When the coordinator is requested to commit the transaction, it initiates
the first phase of the 2PC protocol: To capture the state of the protocol’s execution (which needs to be available
in case of protocol restarts as explained below), the coordinator first forces a begin log entry, which includes a
transaction identifier as well as a list of the transaction’s participants, to a stable log. Afterwards, the coordinator
sends a prepare message to every participant, enters the Collecting state and waits for replies.

Upon receiving a prepare message, a participant decides whether it is able to commit its share of the transaction.
In either case, suitable log entries for later recovery operations as well as a prepared log entry indicating the vote
(“Yes” or “No”) are forced to a stable log, before a response message containing the vote is sent back to the
coordinator. In case of a No-vote, the participant switches into the Aborted state and immediately aborts the
transaction locally. In case of a Yes-vote, the participant moves into the Prepared state. In the latter case the
participant is said to be in doubt or blocked as it has now given up its local autonomy and must await the final
decision from the coordinator in the second phase (in particular, locks cannot be released yet).

Once the coordinator has received all participants’ response messages it starts the second phase of the 2PC
protocol and decides how to complete the global transaction: The result is “Commit” if all participants voted
to commit and “Abort” otherwise. The coordinator then forces a commit or abort log entry to the stable log,
sends a message containing the final decision to all participants, and enters the corresponding state (Committed
or Aborted).

Upon receipt of the decision message, a participant commits or aborts the local changes of the transaction
depending on the coordinator’s decision and forces suitable log entries for later recovery as well as a commit or
abort log entry to a stable log. Afterwards, it sends an acknowledgment message to the coordinator and enters
the corresponding final state (Committed or Aborted).

Once the coordinator has received all acknowledgment messages it ends the protocol by writing an end log entry
to a stable log to enable later log truncation and enters the final state, Forgotten. The actions described for the
overall process are summarized in Fig. 3 for the case of a transaction commit. (For multiple participants, the
actions simply have to be duplicated; in case of abort, at least one of the participants votes “No”, which implies
that all occurrences of “commit” are replaced with “abort”.)

Protocol restart The log entries seen so far are used to restart the 2PC protocol after so-called soft crashes
of coordinators or participants, i.e., failures like process crashes which lead to a loss of main memory but which
leave secondary storage intact. In particular, as participants always force log entries before sending replies,
the coordinator never needs to resend messages for which replies have been received. Moreover, log truncation
(garbage collection) may occur once all acknowledgment messages have arrived. Finally, every log entry uniquely
determines a state, and the last log entry determines the most recent state prior to a failure. Clearly, failures
in the final states (Forgotten for the coordinator and Committed or Aborted for a participant) do not require any

3

action. For the remaining states, restart procedures are as follows:

If the coordinator fails in the Initial or the Collecting state, it simply restarts the protocol in the Initial state.
(Coordinators writing received votes into the log could recover differently from the Collecting state.) If it fails in
the Committed or in the Aborted state, it re-sends the decision message to all participants, and continues waiting
for acknowledgments in the previous state.

If a participant fails in the Initial state it did not yet participate in the 2PC protocol and is free to decide arbitrarily
when asked later on. If it fails in the Prepared state it either waits for the coordinator to announce the decision
or actively queries the coordinator or other participants for the decision.

In addition to these restart procedures, coordinator and participants also need to be able to recover from message
losses. To this end, standard timeout mechanisms are employed: Whenever a message is sent, a timer starts to
run. If the timer expires before an appropriate answer is received, the message is simply resent (assuming that
either original message or answer are lost; e.g., if the coordinator is missing some votes in the Collecting state,
it resends a prepare message to every participant that did not answer in time). Finally, if repeated timeouts
occur in the Collecting state the coordinator may decide to abort the transaction globally (as if an “Abort” vote
was received), and a participant may unilaterally abort the transaction in the Initial state if no prepare message
arrives.

Hierarchical and flattened 2PC New participants enter the 2PC protocol whenever they receive requests (e.g.,
to execute SQL statements) from already existing participants. In such a situation, the new participant can be
regarded as child node of the requesting participant, and all such parent-child relationships form a participant tree
with the transaction’s initiator as root node. To execute the 2PC protocol, that tree may either be used directly
or flattened as explained in the following.

For the flattened 2PC, one node in the participant tree, e.g., the root node, is chosen as coordinator, and this
coordinator communicates directly with every participant contained in the tree to execute the basic 2PC protocol
as described above. In contrary, in case of the hierarchical 2PC, the root node acts as global coordinator, the
leaf nodes are ordinary participants, and the inner nodes are participants with respect to their parents as well
as sub-coordinators for their children. Thus, when an inner node receives a 2PC message from its parent, the
inner node first has to forward the message to its children before it responds on behalf of the entire subtree. For
example, a prepare message is forwarded down the tree recursively, and an inner node first waits for all votes of
its children before it decides, write a log entry, responds with a vote to the parent, and makes a transition to the
Prepared (if all children voted to commit) or Aborted state.

Optimizations As the 2PC protocol involves costly operations such as sending messages and forcing log entries,
several optimizations of the basic protocol have been proposed. In the following the most common variants based
on presumption are sketched; further details and techniques such as real-only subtree optimization, coordinator
transfer, and three-phase commit (3PC) to reduce blocking are presented in [7].

The key idea for presumption based optimizations is to write less log entries and send fewer messages in a
systematic way such that in case of a failure the missing information can be compensated for by suitable
presumptions concerning the transaction’s state. As the basic protocol described above is not based on any
presumptions, it is also called presumed-nothing protocol. In contrast, in the presumed-abort protocol, which aims
to optimize the case of aborted transactions, the essential idea is to omit certain information concerning transaction
aborts. If that information is needed but absent later on, abort is presumed. In fact, for the presumed-abort
protocol

the coordinator’s begin and abort log entries are omitted,

ethe participants’ abort log entries are not forced, and
eparticipants do not send acknowledgment messages before entering the Aborted state.

The actions required in case of a transaction abort are summarized in Fig. 4, which indicates significant savings
when compared with the actions for the basic protocol shown in Fig. 3. In the presumed-abort variant, if a
participant fails after receiving the abort decision from the coordinator and restarts without finding a log entry,
it queries the coordinator for the decision. As the coordinator does not find the appropriate log entry (which has
never been written) it presumes that the transaction should be aborted and informs the participant accordingly,
which leads to a globally consistent decision.

Participant

|
: Force prepared
1
|

Write abort

Coordinator

Force begin

Write commit

Figure 5: Actions for transaction commit in the presumed-commit variant

Alternatively, in the presumed-commit protocol, which aims to optimize the case of committed transactions,
the participants’ commit log entries are not forced and

eparticipants do not send acknowledgment messages before entering the Committed state.

The actions required in case of a transaction commit are summarized in Fig. 5, which again indicates significant
savings in comparison to the basic protocol shown in Fig. 3. In this variant, log entries of committed transactions
can be garbage collected as missing transactions are presumed to have committed. Thus, if a participant fails
after receiving the commit decision from the coordinator and restarts without finding a log entry, it queries the
coordinator for the decision. If the coordinator does not find any log entry it presumes that the transaction has
committed and informs the participant accordingly, which leads to a globally consistent decision.

KEY APPLICATIONS

While there is no single key application for the 2PC protocol, it is applicable wherever decentralized data needs to
be shared by multiple participants under transactional guarantees, e.g., in e-commerce or e-science settings. More
specifically, the 2PC protocol is widely implemented in database systems (commercial as well as open source ones),
TP monitors, and message queue systems, where it is used in the background to provide atomicity for distributed
transactions. In addition, the XA interface [8] for the protocol, more precisely for the hierarchical presumed-abort
variant, has been adopted in the CORBA Transaction Service specified by the OMG [5] and is used as basis for

5

the Java Transaction API (JTA) [6]. Furthermore, the 2PC protocol is also part of the Web Services Atomic
Transaction specification [1] to enable the interoperable atomic composition of Web Service invocations.

CROSS REFERENCE
Transaction, ACID properties, logging and recovery

RECOMMENDED READING
Between 3 and 15 citations to important literature, e.g., in journals, conference proceedings, and websites.

[1] Cabrera, L. F., et al. (2005): Web Services Atomic Transaction.

[2] Gray, J. (1978): Notes on Database Operating Systems. In R. Bayer, M.R. Graham, G. Seegmdiller (eds.), Operating
Systems: An Advanced Course, Lecture Notes in Computer Science 60, Berlin: Springer-Verlag, pp. 393-481.

[3] Gray, J., A. Reuter (1993): Transaction Processing: Concepts and Techniques. San Francisco, CA: Morgan Kaufmann.

[4] Lampson, B. W., H. Sturgis: Crash Recovery in Distributed Data Storage Systems. Technical Report, Xerox Palo
Alto Research Center, Palo Alto, CA.

[5] OMG (2007): Transaction Service, version 1.4. http://www.omg.org/technology/documents/formal/transaction_service.htm

[6] Sun Microsystems (2007): Java Transaction API (JTA). http://java.sun.com/jta/

[7] Weikum, G., G. Vossen (2002): Transactional Information Systems — Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann Publishers, San Francisco, CA.

[8] The Open GROUP (1991): Distributed Transaction Processing: The XA Specification. X/Open Company Ltd, ISBN
1 872630 24 3.

