
SS 2008 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 1 – User-defined Types and
Typed Tables

Recent Development for Data Models

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2 Object relational Views and Collection Types2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
5. Object-relational SQL and Java
II. Online Analytic Processing
6. Data Analysis in SQL
7. Windows and Query Functions in SQL
III. XML

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
2

8. XML and Databases
9. SQL/XML
10. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

SS 2008 2

The "Big Picture"

SQL99/2003
dynamic SQL

Client DB Server Server-side
Logic

stored procedures
user-defined functions

d d d t t SQL Routines

SQL99/2003

ISO

2.0 SQL92

SQLJ Part 1/JRT

JDBC

SQL OLB
ANSI

static SQL

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
3

structured types
subtyping
methods

advanced datatypes SQ out es
PSM
External Routines

ISO

SQLJ Part 2/JRT

Objects Meet Databases (Atkinson et. al.)

Object-oriented features to be supported by an (OO)DBMS
Complex objects

type constructors: tuple, set, list, array, …
Object identity

object exists independent of its value (i.e., identical ≠ equal)
Encapsulation

separate specification (interface) from implementation
Types and classes

"abstract data types", static type checking
class as an "object factory", extension (i.e., set of "instances")

Type or class hierarchies
inheritance, specialization

Overloading, overriding, late binding

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
4

same name for different operations or implementations
Computational completeness

use DML to express any computable function (-> method implementation)
Extensibility

user-defined types (structure and operations) as first class citizens
strengthens some capabilities defined above (encapsulation, types)

SS 2008 3

User-defined Types: Key Features

New functionality
Users can indefinitely increase the set of provided types
Users can indefinitely increase the set of operations on types and extend SQL to
automate complex operations/calculationsautomate complex operations/calculations

Flexibility
Users can specify any semantics and behavior for a new type

Consistency
Strong typing insures that functions are applied on correct types

Encapsulation
Applications do not depend on the internal representation of the type

Performance

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
5

Potential to integrate types and functions into the DBMS as "first class citizens"

User-defined Types: Benefits

Simplified application development
Code Re-use - allows reuse of common code
Overloading and overriding - makes application development easier -- single
function name for a set of operations on different types e g area of circlesfunction name for a set of operations on different types, e.g., area of circles,
triangles, and rectangles

Consistency
Enables definition of standard, reusable code shared by all applications (guarantee
consistency across all applications using type/function)

Easier application maintenance
Changes are isolated: if application model changes, only the corresponding
types/functions need to change instead of code in each application program

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
6

SS 2008 4

Strong Typing

Well-known concept in programming languages
every value has a type (pre-defined or user-defined) with supported operations
system checks type correctness when performing operations (often statically)

Before SQL99 columns could only be defined with the existing built in dataBefore SQL99, columns could only be defined with the existing built-in data
types

There was no strong typing
Logically incompatible variables could be compared, assigned to each other, …

CREATE TABLE RoomTable (
RoomID CHAR(10),
RoomLength INTEGER, UPDATE RoomTable

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
7

RoomLength INTEGER,
RoomWidth INTEGER,
RoomArea INTEGER,
RoomPerimeter INTEGER);

SET RoomArea = RoomLength;
No Error Results

User-defined Distinct Types

Each DT is logically incompatible with all other types

CREATE TYPE plan.roomtype
AS CHAR(10); UPDATE RoomTableAS CHAR(10);

CREATE TYPE plan.meters
AS INTEGER;

CREATE TYPE plan.squaremeters
AS INTEGER;

CREATE TABLE RoomTable (
RoomID plan.roomtype,
RoomLength plan meters

UPDATE RoomTable
SET RoomArea =
RoomLength;

ERROR
UPDATE RoomTable
SET RoomLength =
RoomWidth;

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
8

RoomLength plan.meters,
RoomWidth plan.meters,
RoomPerimeter plan.meters,
RoomArea plan.squaremeters);

RoomWidth;

NO ERROR RESULTS

SS 2008 5

User-defined Distinct Types

Renamed type, with different behavior than its source type.
Shares internal representation with its source type
Source and distinct type are not directly comparable

CREATE TYPE EURO AS DECIMAL (9,2)

Strong typing
Operations on distinct types (behavior)

Comparison/ordering (automatically created by default)
Can be based on the comparison/ordering of their source type

Casting (automatically created by default)
U d t li itl t i t f th di ti t t d i t f t t d

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
9

Used to explicitly cast instances of the distinct type and instances of source type to and
from one another
Used to obtain "literals"

Methods and functions
No inheritance or subtyping

Cast Functions for Distinct Types

Automatically defines cast functions to and from the source type for a user-
defined distinct type

Casts will also be allowed from any type that is promotable to the source type of
the user-defined type (i.e., that has the source type in its type precedence list)

CREATE TYPE plan.meters
AS INTEGER
CAST (SOURCE AS DISTINCT) WITH meters
CAST (DISTINCT AS SOURCE) WITH integer

Implicit Cast Functions created:

... SET RoomWidth =
CAST (integerCol AS meters)

or
meters(integerCol)

Example Casting Expressions:

the user defined type (i.e., that has the source type in its type precedence list)
Casting from a SMALLINT to a UDT sourced on an integer is OK

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
10

Implicit Cast Functions created:
plan.meters(integer) returns meters;
plan.integer(meters) returns integer;

meters(integerCol)
or

meters(smallintCol)

SS 2008 6

Cast Functions: Comparison Rules

Casts must be used to compare distinct type values with source-type values.
Constants are always considered to be source type values
You may cast from source type to UDT, or vice-versa

SELECT * FROM RoomTable
WHERE RoomID = 'Bedroom';

ERROR
SELECT * FROM RoomTable

WHERE RoomID = roomtype('Bedroom');
or
SELECT * FROM RoomTable

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
11

WHERE char(RoomID) = 'Bedroom';
No Error Results

Cast Functions: Assignment Rules

In general, source-type values may not be assigned to user-defined type
targets (i.e., explict casting is required)
The strong typing associated with UDTs is relaxed for assignment operations,
IF AND ONLY IF a cast function between source and target type has been

Select RoomLength, RoomWidth
INTO :int_hv1, :int_hv2
FROM RoomTable

CREATE TYPE plan.meters
AS INTEGER
CAST (SOURCE AS DISTINCT) WITH meters
CAST (DISTINCT AS SOURCE) WITH integer

CREATE CAST (plan.meters AS integer) WITH

IF AND ONLY IF a cast function between source and target type has been
defined with the AS ASSIGNMENT clause (this is the default)

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
12

Upate RoomTable
Set RoomLength = 10

No Error Results

CREATE CAST (plan.meters AS integer) WITH
integer AS ASSIGNMENT

CREATE CAST (integer AS plan.meters) WITH
meters AS ASSIGNMENT

SS 2008 7

Distinct Types vs. Domains

Distinct types are comparable to value domains in the RM
see, e.g., Date/Darwen "Foundation for Object/Relational Databases"

"domain" and "type" used interchangably

Warning: domains in SQL are different!Warning: domains in SQL are different!
domain definition

name
data type (similar to source type)
constraint (optional)
default (optional)
collation (optional)

comparable to macros in programming languages
no notion of strong typing

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
13

(Super-)Class C

Object Types and Classes

intension extension

(Super-)Type T
(interface IF)

Implementation I
(attributes, method body)

(Super-)Set S
(objects)

Subtype T'
IF(T) ⊆ IF(T')

Implementation I'
reuse, replace

Subset S'
S' ⊆ S

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
14

Subclass C'

SS 2008 8

User-defined Structured Types (ST)

User-defined, complex data types (intensional)
definition of state (attributes) and behavior (methods, see chapter 3)
can be used as data type wherever predefined data types can be used

type of domains or columns in tables
attribute type of other structured types
type of parameters of functions, methods, and procedures
type of SQL variables

strong typing
no object identity

Structured Types can be used to define typed tables (extensional)
types and functions for rows of tables

for modeling entities with relationships & behavior

explicit object identifier column
stuff1 t ff2

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
15

id
name

empstuff1 stuff2

... ... Column Type

nameoid id

... Row Type

CREATE TYPE employee AS
(id INTEGER,
name VARCHAR (20))

Structured Types: Example

CREATE TYPE address AS
(street CHAR (30),
city CHAR (20),
state CHAR (2),
zip INTEGER) NOT FINAL

CREATE TYPE bitmap AS BLOB

CREATE TYPE real_estate AS
(owner CHAR(40),
price money,
rooms INTEGER,
size DECIMAL(8,2),

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
16

location address,
text_description text,
front_view_image bitmap,
document doc) NOT FINAL

SS 2008 9

Creating Instances of Structured Types

System-supplied constructor function
address () -> address or real_estate () -> real_estate

Returns new instance with attributes initialized to their default

NEW operatorNEW operator
NEW <type name>

Invokes constructor function

Example
CREATE TABLE people (..., addr address, …)
INSERT INTO properties VALUES (… , NEW address, ...)

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
17

Accessing Attributes

"Dot'' notation must be used to access attributes
Example

SELECT location.street, location.city, location.state, location.zip
FROM propertiesFROM properties
WHERE price < 100000

Support for several `levels' of dot notation (a.b.c.d.e)
Allow "navigational" access to structured type values
Assignment syntax

DECLARE r real_estate;
...
SET r.size = 2540.50;

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
18

...
SET ... = r.location.state;
SET r.location.city = 'Los Angeles';

SS 2008 10

Subtyping and Inheritance

Structured types can be a subtype of another ST
STs inherit structure (attributes) and behavior (methods) from their
supertypes
E lExample

CREATE TYPE real_estate ... NOT FINAL
CREATE TYPE appartment UNDER real_estate ... NOT FINAL
CREATE TYPE house UNDER real_estate ... NOT FINAL

real_estate

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
19

appartment house cottage

Noninstantiable and Final Types

Structured types may be noninstantiable
Like abstract classes in OO languages

No system-supplied constructor function is generated
Type does not have instances of its ownType does not have instances of its own

Instances can be defined on subtypes

By default, structured types are instantiable
Distinct types are always instantiable
CREATE TYPE person AS
(name VARCHAR (30),
address address,
sex CHAR (1)) NOT INSTANTIABLE NOT FINAL

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
20

User-defined types may be final
no subtypes can be defined

distinct types have to be FINAL
structured types have to be NOT FINAL

future version of SQL may introduce more flexibility

SS 2008 11

Subtyping and Substitutability

Based on the intensional aspects of OO (i.e., type interface)
B is a subtype of A

B supports at least the operations defined for A
d t t f th d t (bli) tt ib t i h it d f A tdata types for method parameters or (public) attributes inherited from A are not
redefined/specialized in B
whereever an instance of A can be used, and instance of B can be used instead

In object-oriented programming languages
instances of type B can be

assigned to variables of type A
used in a method invocation as a parameter of type A
produced as a result of an expression or operation with result type A

enables static typing

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
21

enables static typing

Should be supported in a database context as well

Value Substitutability

CREATE TYPE address AS
(street CHAR(30), city CHAR(20), state CHAR(2), zip INTEGER) NOT FINAL

CREATE TYPE german_addr UNDER address
(family name VARCHAR(30)) NOT FINAL(family_name VARCHAR(30)) NOT FINAL

CREATE TYPE brazilian_addr UNDER address
(neighborhood VARCHAR(30)) NOT FINAL

CREATE TYPE us_addr UNDER address
(area_code INTEGER, phone INTEGER) NOT FINAL

CREATE TYPE us_bus_addr UNDER us_address
(bus_area_code INTEGER, bus_phone INTEGER) NOT FINAL

dd

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
22

address

german_addr brazlian_addr us_addr

us_bus_addr

SS 2008 12

Value Substitutability

Each row can have a column value of a different subtype!
INSERT INTO properties (price, owner, location)

VALUES (US_dollar (100000), REF('Mr.S.White'), NEW us_addr ('1654 Heath
Road', 'Heath', 'OH', 45394, ...))

price owner location

, , , ,))
INSERT INTO properties (price, owner, location)

VALUES (real (400000), REF('Mr.W.Green'), NEW brazilian_addr ('245 Cons. Xavier
da Costa', 'Rio de Janeiro', 'Copacabana'))

INSERT INTO properties (price, owner, location)
VALUES (german_mark (150000), REF('Mrs.D.Black'), NEW german_addr ('305
Kurt-Schumacher Strasse', 'Kaiserslautern', 'Schwarz'))

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
23

<us_dollar
amount 100,000

'Mr. S.
White'

<us_addr
'1654 Heath ...'

<real
amount 400,000

'Mr. W.
Green'

<brazilian_addr>
'245 Cons. Xavier ...'

<german_mark
amount 150,000

'Mrs. D.
Black'

<german_addr>
'305 Kurt-Schumacher ...'

internal
type tag

Type Predicate

Allows determination of dynamic type (most specific type)
Purpose

Allows row selection by specific subtypes (e.g. US_ADDR)
IS OFIS OF

Allows to prune off certain subtypes (e.g. US_BUS_ADDR)
ONLY

Example: Find items from properties table that have a US address (but not a
US business address or any other subtype of US address):

SELECT * FROM properties
WHERE location IS OF ONLY (US_ADDR)

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
24

SS 2008 13

Structured Types and Typed Tables

Structured types can be used to define typed tables
Attributes of type become columns of table
In addition, a typed table has a so-called self-referencing column

holds a value that uniquely identifies the row (similar to an object id)holds a value that uniquely identifies the row (similar to an object id)
(more details later)

CREATE TYPE real_estate AS
(owner CHAR(40),
price money,
rooms INTEGER,
size DECIMAL(8,2),
location address,
text description text

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
25

text_description text,
front_view_image bitmap,
document doc) NOT FINAL …

CREATE TABLE properties OF real_estate
(REF IS oid …)

Manipulating Attributes

Queries over typed tables access attributes (columns)
Update statements on typed tables modify attributes

CREATE TABLE properties OF real estateCREATE TABLE properties OF real_estate ...

SELECT owner, price
FROM properties
WHERE address = NEW address ('1543 3rd Ave. North, Sacramento, CA 93523')

UPDATE properties
SET price = 350000
WHERE dd NEW dd ('1543 3 d A N th S t CA 93523')

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
26

WHERE address = NEW address ('1543 3rd Ave. North, Sacramento, CA 93523')

SS 2008 14

Subtables: Table Hierarchies

Typed tables can have subtables
Inherit columns, contraints, triggers, ... from the supertable

Example
Gi th f ll i t hi h l t tGiven the following type hierarchy …

Create a table hierarchy:
CREATE TABLE properties OF real_estate (…)
CREATE TABLE appartments OF appartment UNDER properties
CREATE TABLE houses OF house UNDER properties

appartment house

real_estate

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
27

appartments houses

properties

Relationship to Type Hierarchies

Each table T(i) in the hierarchy must correspond to a type
ST(i) of a single type hierarchy
Relationships must match

T(i) UNDER T(j) > ST(i) UNDER ST(j)T(i) UNDER T(j) => ST(i) UNDER ST(j)

Not all types in the hierarchy have to have corresponding
tables in the table hierarchy
Multiple table hierarchies may be defined, based on the
same type hierarchy

ST1

ST2 ST3 ST4

ST5 ST6

type hierarchy

table hierarchies

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
28

T3

T5 T6

T1

T2 T3 T4

T1

T2 T3 T4

T5 T6

T1

T2 T4

T5 T6

SS 2008 15

Queries and Table Hierarchies

Query involving a table in a hierarchy also ranges over the rows of every subtable
SELECT price, location.city, location.state FROM properties
WHERE address.city = 'Sacramento'

Returns rows from properties, appartments, and houses
C l t l d fi d f tiCan only return columns defined for properties

E.g., SELECT * FROM properties will not return attributes created in the appartment type

Queries on a subtable require SELECT privilege on that subtable
SELECT * FROM appartments...

Update, Delete statements also range over the subtables
UPDATE properties SET price = … WHERE … may update appartments and houses

properties

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
29

appartments houses

Object Identity

Object identity
a property that distinguishes an object from all other objects
independent of the object state (identity vs. equality)
remains unchanged for the lifetime of the objectremains unchanged for the lifetime of the object

Object IDs as a foundation for representing relationships, references, sharing
dangling references should be prohibited/avoided

What's wrong with keys?
artificial keys need to be generated by the user/application
a meaningful attribute used as a key is part of the object state and may change

may cause problems in maintaining relationships

"nonuniformity" of keys across multiple tables, in data integration scenarios, or
d i DB lif ti

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
30

during DB lifetime
"unnatural" joins when "traversing" relationships or references

SELECT p.price, o.phone FROM properties p, person o WHERE p.owner=o.name
instead of
SELECT price, owner->phone FROM properties

SS 2008 16

Variations of Object Identity

External or internal
external IDs visible, inspectable by an application
internal, maintained and used by the system, operations may implicitly involve IDs (e.g.,
establishing/traversing reference relationships)

Scope of uniqueness
collection/table, table hierarchy, type extension, database, cluster of databases, …
very much depends on the intended functionality

Reusable or not
reuse of IDs may result in erroneous relationships, unless dangling references can be avoided
by the system

System-generated or user-generated
system-generated during object creation

system can guarantee uniqueness and avoid reuse easily

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
31

user/application does not have to generate IDs

user-generated
more suitable for inserting object "networks" (unless a tight PL coupling with pointer swizzling is
supported) from application or using import/export/load utilities
compatible with object-oriented views that preserve relationships
can be combined with DBMS function for creating unique initial values

SQL Reference Types

Structured types have a corresponding reference type
REF(<structured type name>)
used to identify/reference instances of the structured type stored in types tables

identifier: stored in the self-referencing column of a typed tableidentifier: stored in the self-referencing column of a typed table
has to be unique within the table hierarchy

Can be used wherever other types can be used

Representation
User generated (REF USING <predefined type>)

CREATE TYPE real_estate AS
(owner REF (person), ...)
NOT FINAL REF USING INTEGER

System generated (REF IS SYSTEM GENERATED)

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
32

Default is system generated

Derived from a list of attributes (REF (<list of attributes>)
CREATE TYPE person AS

(ssn INTEGER,
name CHAR(30),...)
NOT FINAL REF (ssn)

SS 2008 17

Reference Type Representation

self-referencing
column (SRC)

SYSTEM GENERATED USER GENERATED DERIVED (c1, …, cn)

uniqueness UNIQUE, NOT NULL
is implicit

UNIQUE, NOT NULL
is implicit

UNIQUE, NOT NULL
is implicit, (c1, …cn)is implicit is implicit is implicit, (c1, …cn)
has to be UNIQUE,
NOT NULL as well

id value generation automatic by user/application
during INSERT

automatic (based on
c1, …cn)

id update not permitted not permitted not permitted, but
c1, …, cn can be
updated

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
33

updated

id reuse can be prohibited by
the DBS

has to be
prohibited/controlled
by application

has to be
prohibited/controlled
by application

More on Reference Types

Inserting reference values
USER GENERATED

value is provided by the application, just like any other column/attribute value
appropriate CAST functions are availableappropriate CAST functions are available

SYSTEM GENERATED or DERIVED reference
value needs to be retrieved from the database (in a subquery)
INSERT INTO properties
VALUES ((SELECT pers-oid FROM people where ssn = '123-456-7890'), …)

References are strongly typed
only references to the same/compatible type can be compared, assigned, …

References support substitutability
for REF(T), a reference to an instance of a subtype of T is permitted

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
34

(), yp p

SS 2008 18

Reference Types

Reference values can be scoped
typed table in which the referenced objects are supposed to exist
scoped reference can be checked

existence of referenced object is guaranteed by the DBMSexistence of referenced object is guaranteed by the DBMS
ON DELETE clause, similar to referential integrity constraint

Example:
CREATE TYPE person (ssn INTEGER, name ...) NOT FINAL
CREATE TYPE real_estate (owner REF (person), ...) NOT FINAL
CREATE TABLE people OF person (...)
CREATE TABLE properties OF real_estate

(owner WITH OPTIONS SCOPE people REFERENCES ARE CHECKED)

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
35

people

appartments houses

properties
owner

Path Expressions

Scoped references can be used in path expressions
SELECT prop.price, prop.owner->name FROM properties prop
WHERE prop.owner->address.city = "Hollywood"

Authorization checking follows SQL authorization modelAuthorization checking follows SQL authorization model
user must have SELECT privilege on people.name and people.address
the above statement is equivalent to

SELECT prop.price, (SELECT name FROM people p WHERE p.oid = prop.owner)
FROM properties prop
WHERE (SELECT p.address.city FROM people p WHERE p.oid = owner) = "Hollywood"

SELECT prop.price, p.name
FROM properties prop LEFT JOIN people p ON (prop.owner = p.oid)

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
36

WHERE p.address.city = "Hollywood"

SS 2008 19

Reference Scope and Uniqueness – Discussion

Current SQL:2003 restrictions/limitations
Self-referencing columns (i.e., OIDs) are unique only within a table hierarchy
Dereferencing, path expressions only allowed for scoped references
Reference scope is limited to a single tableReference scope is limited to a single table

Consequences of removing these restrictions in an object-relational DBMS
Dereferencing, path expressions for unscoped references

The table to be accessed is not known statically
object reference representation/implementation needs to incorporate table identifier
dynamic authorization checking, on a per tuple basis

Update of referenced object – which table to update?
either requires additional functionality to find out the table in which the object is stored, and
results in complex update logic in the application
or requires a more flexible UPDATE statement that does not require a table name

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
37

or requires a more flexible UPDATE statement that does not require a table name

Allowing multiple tables in a reference scope still does not solve the update problem

Broadening the scope of object identifier uniqueness
To all objects of a given type (hierarchy) – required for flexible dereferencing
To all objects in a DB? – is this useful for typed references?

Reference Resolution: Nesting

References can be used to obtain the structured type value that is being
referenced

Enables nesting of structured types
SELECT prop price DEREF(prop owner) AS ownervalSELECT prop.price, DEREF(prop.owner) AS ownerval
FROM properties.prop

Column ownerval in the result table has static type person

DEREF nests rows from subtables, respecting value substitutability
most specific type of ownerval values may be a subtype of person

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
38

SS 2008 20

Reference Types vs. Referential Constraints

References do not have the same semantics as referential constraints
CREATE TABLE T1

(C1 REAL PRIMARY KEY, ...

CREATE TABLE T2CREATE TABLE T2
(C2 DECIMAL (7,2) PRIMARY KEY, ...

CREATE TABLE T
(C INTEGER, ...
FOREIGN KEY (C) REFERENCES T1 (C1) NO ACTION,
FOREIGN KEY (C) REFERENCES T2 (C2) NO ACTION)

Referential constraints specify inclusion dependencies
It is unclear which table to access during dereferencing

There is no notion of strong typing

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
39

There is no notion of strong typing

Type Predicate and ONLY on Typed Tables

Type predicate can be used to restrict selected rows
SELECT price, location.city, location.state
FROM properties
WHERE address.city = 'Sacramento'y
AND DEREF (oid) IS OF (house)

ONLY restricts selected rows to rows whose most specific type is the type of
the typed table

SELECT price, location.city, location.state
FROM ONLY (properties)
WHERE address.city = 'Sacramento'

properties

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
40

appartments houses

properties

SS 2008 21

Comparing Objects

Object identity independent from object state
separate notions of identical and equal objects

Identical
h k h th bj t id tifi / f thcheck whether object identifiers/references are the same

Forms of equality
shallow-equal: object state (attributes, including reference attributes) is the same
deep-equal: object state is the same for non-reference attributes, and reference
attributes are also deep-equal

oid: p1 oid: p2 oid: p3

r1:p1 r2:p1 r3:p2 r4:p3references

identical

shallow-equal

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
41

oid: p1
address: a1
owner: o1

oid: p2
address: a1
owner: o2

oid: p3
address: a1
owner: o2

oid: o1
name: n1

oid: o2
name: n1

properties

owners

deep-equal

Comparing "Objects" in SQL:2003

Identical: comparing reference values
SELECT *
FROM properties p1, p2
WHERE p1.owner = p2.ownerp p

Shallow-equal
comparing referenced UDT values
need to create an ORDERING for the UDTs with ordering category STATE
SELECT *
FROM properties p1, p2
WHERE DEREF(p1.owner) = DEREF(p2.owner)

Deep-qual:
comparing referenced UDT values

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
42

comparing referenced UDT values
no "built-in" capabilities, requires an ordering based on a user-defined function

SS 2008 22

Comparison of UDT Values

CREATE ORDERING statement specifies
Which comparison operations are allowed for a user-defined type
How such comparisons are to be performed.

CREATE ORDERING FOR employee
EQUALS ONLY BY STATE;
CREATE ORDERING FOR complex
ORDER FULL BY RELATIVE
WITH FUNCTION complex_order (complex,complex);

Ordering form:
EQUALS ONLY

Only comparison operations allowed are =, <>

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
43

Only comparison operations allowed are ,

ORDER FULL
All comparison operations are allowed

Comparison of UDT Values (cont.)

Ordering category
STATE

An ordering function is implicitly created with two UDT parameters and returning Boolean
Compares pairwise the UDT attributesCompares pairwise the UDT attributes

RELATIVE
User must specify an ordering function with two UDT parameters and returning INTEGER
0 for equal, positive for >, negative for <

MAP
User must specify an ordering function with one UDT parameter and returning a value of
a predefined type
Comparisons are made based on the value of the predefined type

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
44

SS 2008 23

Comparison of UDT Values (cont.)

Ordering category - Rules:
STATE cannot be specified for distinct types.
STATE and RELATIVE must be specified for the maximal supertype in a type
hierarchyhierarchy.
MAP can be specified for more than one type in a type hierarchy, but all such types
must specify MAP and all such types must have the same ordering form.
STATE is allowed only for EQUALS ONLY.
If ORDER FULL is specified, then RELATIVE or MAP must be specified.

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
45

Comparison of UDT Values (cont.)

Comparison type of a given type:
The nearest supertype for which a comparison was defined.
Comparison form, comparison category, and comparison function of a type are the
ordering form ordering category ordering function of its comparison typeordering form, ordering category, ordering function of its comparison type.

A value of type T1 is comparable to a value of type T2 if
T1 and T2 are in the same subtype family.
Comparison types of T1 and T2 both specify the same comparison category (i.e.,
STATE, RELATIVE, or MAP)

Example
Person has subtypes: emp and mgr
Person has an ordering form, ordering category, and an ordering function

emp and mgr types have none

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
46

emp and mgr types have none

Person is the comparison type of emp and mgr
Two emp values, two mgr values, or a value of emp and a value of mgr can be
compared.

SS 2008 24

Comparison of UDT Values (cont.)

No comparison operations are allowed on values of structured types by
default.
All comparison operations are allowed on values of distinct types by default.

Based on the comparison of values of source typeBased on the comparison of values of source type.
Whenever a distinct type is created, a CREATE ORDERING statement is implicitly
executed (SDT is the source type).
The ordering function is the system-generated cast function

CREATE ORDERING FOR DT
ORDER FULL BY MAP WITH FUNCTION SDT(DT);

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
47

Comparison of UDT Values (cont.)

A predicate of the form "V1 = V2" is transformed into the following
expression depending on the comparison category:

STATE
"SF(V1 V2) = TRUE"SF(V1,V2) = TRUE
SF is the comparison function

MAP
"MF1(V1) = MF2(V2)"
MF1 and MF2 are comparison functions

RELATIVE
"RF(V1,V2) = 0"
RF is the comparison function

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
48

SS 2008 25

Comparison of UDT Values (cont.)

DROP ORDERING
Removes the ordering specification for an UDT

DROP ORDERING FOR employee RESTRICT;

RESTRICT impliesRESTRICT implies
There cannot be any

SQL- invoked routine
View
Constraint
Assertion
Trigger

that has a predicate involving employee values or values of subtypes thereof.

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
49

User-defined Casts

Allow a value of one type to be cast into a value of another type
At least one of the types in a user-defined cast must be a user-defined type or a
reference type.

CREATE CAST(t1 AS t2) WITH FUNCTION foo (t1);CREATE CAST(t1 AS t2) WITH FUNCTION foo (t1);
SELECT CAST(c1 AS t2) FROM TAB1;

May optionally be tagged AS ASSIGNMENT
CREATE CAST(t1 AS t2) WITH FUNCTION foo (t1) AS ASSIGNMENT;

Such casts get invoked implicitly during assignment operations.
Above user-defined cast makes the following assignment legal:

DECLARE v1 t1, v2 t2;
SET V2 = V1;

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
50

SS 2008 26

User-defined Casts (cont.)

DROP CAST
Removes the user-defined cast
Does not delete the corresponding function (only its cast flag is removed)

DROP CAST (T1 AS T2) RESTRICT;DROP CAST (T1 AS T2) RESTRICT;

RESTRICT implies:
There cannot be any

Routine
View
Constraint
Assertion
Trigger

that has

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
51

An expression of the form "CAST(V1 AS T2)" where V1 is of type T1 or any subtype of T1;
A DML statement that implicitly invokes the user-defined cast function.

Summary

Object-oriented features for a DBMS
Extensibility

user-defined types, static type checking
Types and classes

"abstract data types"

SQL:2003
User-defined types

distinct types

User-defined structured types
abstract data types ,

class as an "object factory", extension
(i.e., set of "instances")

Type or class hierarchies
inheritance, specialization

Object identity
object exists independent of its value
(i.e., identical ≠ equal)

… still to come
Complex objects

type constructors: tuple, set, list, array,

value type
typed tables

Type and table hierarchies
inheritance, substitutability

Reference types, self-referencing
column

ordering for UDTs

… see next chapters

© Prof.Dr.-Ing. Stefan Deßloch Recent Development for Data Models
52

…
Encapsulation
Overloading, overriding, late binding
Computational completeness

