SS2008

Prof. Dr.-Ing. Stefan DeRBloch

AG Heterogene Informationssysteme —-
Geb. 36, Raum 329
Tel. 0631/205 3275

m TecHNISCHE UNIVERSITAT
m KAISERSLAUTERN

dessloch@informatik.uni-kl.de

Chapter 8 — SQL/XML

@ ‘S B Recent Developments for Data Models

<HsS

Qutline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2. Object-relational Views and Collection Types
s. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
1. Online Analytic Processing
5. Data Analysis in SQL
6. Windowed Tables and Window Functions in SQL
111, XML

7. XML Data Modeling
8. SQL/XML
9. XQuery

IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, ...

D

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

SQL and XML?!

= Two major perspectives
= Flexible exchange of relational data using XML
= publish relational as XML
= decompose or "shred" XML into relational
= Reliable XML data management
= manage, search, maintain, update, ...
= integrate with relational data
= Native-XML databases? No significant customer interest!
= reluctance to introduce new DBMS environment
= limited integration with relational DBMS products
= lack of maturity (scalable, reliable, highly available, ...)
= skill revolution (not evolution) required

Remember OO-DBMS?

<Hgs>

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SQL and XML

= Use existing (object-)relational technology?
= Large Objects: granularity understood by DBMS may be too coarse!
= search/retrieval of subsets, update of documents
= Decompose into tables: often complex, inefficient
= mapping complexity, especially for highly “denormalized" documents
= Useful, but not sufficient
= should be standardized as part of SQL
= but needs further enhancement to support "native” XML support in SQL
= Enable "hybrid" XML/relational data management
= supports both relational and XML data
= storage, access
= query language
= programming interfaces
= ability to view/access relational as XML, and XML as relational
= all major relational DBMS vendors are moving into this direction

<Hgs>

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

SQL/XML Big Picture

XML, enhanced
Query clien SQL client

<?xml version = "1.0"?>

SPxmive LT 11 T T 1T 11 client
oder= o ——— L i
e e T 2 view
</order> </order>

storage

<?xml version = "1.0"?> T
<order> |

<item> ... </item> S7xml version = 71,077
<item> ... </item> | <item>
<item>

< >
/order: </order>

<Hgs>

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

XML Data Type

= New SQL type “XML”
= for storing XML data "natively" in the database

= for capturing the data type of results and input values of SQL/XML functions that
work with XML data

= can have optimized internal representation (different from character string)
= "Shape" of an XML value
= ot just a well-formed XML document
= but also the content of an XML element
= element, sequence of elements, text, mixed content, ...
= based on XQuery
= value of type XML is an instance of the XQuery data model

<Hgs>

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

XML Data Model

= There is no uniform XML data model
= different approaches with different goals
= XML Information Set, DOM Structure Model, XPath 1.0 data model, XQuery data model
= Common denominator: an XML document is modeled as a tree, with nodes
of different node types
= Document, Element, Attribute, Text, Namespace, Comment, Processing Instruction
= XQuery data model builds on a tree-based model, but extends it to support
= sequences of items
= items are
nodes of different types (see above)

atomic values (instances of XML Schema simple types)
= can contain heterogeneous values, are ordered, can be empty

= typed values and type annotations
= result of schema validation
= type may be unknown
= Closure property
= XQuery expressions operate on/produce instances of the XQuery Data Model

<Hgs>

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

Example

<?xml version = "1.0"?>
<I-- Requires one trained person -->
<procedure title = "Removing a light bulb">
<time unit = "sec">15</time>
<step>Grip bulb.</step>
<step>
Rotate it
<warning>slowly</warning>
counterclockwise.
</step>
</procedure>

Grip bulb. Rotate it counterclockwise.

possible
instance of slowly
XQuery data model

<Hgs>

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

XML Data Type - Example

CREATE TABLE employees

(id CHAR(S),
lastname VARCHAR (30),
e
resume XML
ID LASTNAME SN RESUME
940401 Long - <?xml version="1.0"?>
<resume xmlns="http://www.res.com/resume">
<name> .. </name>
<address> .. </address>
</resume>
862233 Nicks N null
766500 Banner e <resume
ref="http://www.banner.com/resume.html"/>
© Prof.Dr.-Ing. Stefan DeBloch 9 Recent Developments for Data Models

XML Data Type — Modifiers

= Permitted values can (optionally) be restricted (e.g., in column definition)
= XML(SEQUENCE)
= XQuery DM instance (i.e., a sequence)
= XML(CONTENT)

= XQuery document node
more flexible than well-formed documents
permits document nodes that have several element children (i.e., no single root)

= XML(DOCUMENT)
= document node with a single root element (i.e., a well-formed XML document)
s Further modifiers for CONTENT, DOCUMENT
= UNTYPED

= element and attribute nodes don't have type annotations (i.e., have not undergone a
schema validation)

= XMLSCHEMA

= requires nodes contained in the XML values to be valid according to a registered schema
or a global element in a schema

= XML(DOCUMENT(XMLSCHEMA <XML valid according to what>))

By o

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

XML Data Type (continued)

= Conversion to/from character strings and BLOBs
= XMLPARSE and XMLSERIALIZE functions
= implicit conversion during host language interaction
= Examples:

INSERT INTO employees VALUES (‘123456’, ‘Smith’, ..., XMLPARSE (DOCUMENT '<?xml
version="1.0"?> <resume xmIns="http://www.res.com/resume"><name> ...
</name><address> ... </address>...</resume>' PRESERVE WHITESPACE));

SELECT e.id, XMLSERIALIZE (DOCUMENT e.resume AS VARCHAR (2000)) AS resume
FROM employees AS e
WHERE e.id = ‘123456';

>
ID RESUME
123456 <?xml version="1.0" encoding ="UTF-8">
<resume xmlns="http://www.res.com/resume">
<name> .. </name>
<address> .. </address>
</resume>
His a
© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

XMLCAST - Converting SQL to XML, XML to SQL

= Convert an SQL value into an XML value
= Values of SQL predefined types are cast to XQuery atomic types using
= The defined mapping of SQL types/values to XML Schema types/values
= The semantics of XQuery’s cast expression
= XMLCAST(NULL AS XML) returns the SQL null value typed as XML
= Convert an XML value into an SQL value
= XML values are converted to values of SQL predefined types using a combination
of
= The defined mapping of SQL types to XML Schema types and SQL’s CAST specification
= XQuery's fn:data() function and cast expression
= An XML value that is the empty sequence is converted to a NULL value of the
specified SQL data type
= Note: XMLCAST to/from character strings is different from XMLSERIALIZE and
XMLPARSE

cast
SQL varchar: "<part>Gear</part>" «————— » xs:string: "<part>Gear</part>"

parse
o part
serialize

SQL varchar: "Gear" —
cast

@.S 5 Gear
12
© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

XML Schema and Validating XML

= XML Schema has to be registered with the DBMS before it can be referenced
= how this is done is left to the DBMS (i.e., implementation-defined)

= need to supply at least a location URI, namespace information, and an SQL identifier
(three-part name)

= registered schema can be reference using the SQL identifier (ID) or the location
URI (URI)
= XMLVALIDATE function
= ensure that XML values are valid according to a certain registered XML schema
= XMLVALIDATE() validates and annotates XML values
= Multiple options to identify the XML schema to use
= ID, URI
= Xxsi:schemal ocation information provided in the input document
= Example:

INSERT INTO POrders
VALUES (‘W020051234’, CURRENT TIMESTAMP, ‘R’, ‘W',
XMLVALIDATE
(XMLPARSE (DOCUMENT ‘<purchaseOrder>...</purchaseOrder>’
PRESERVE WHITESPACE)
ACCORDING TO XMLSCHEMA ID PORDER));

By :

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SQL/XML “constructor functions”

= Functions/operators for generating XML constructs (elements, attributes, ...)
within an SQL query
= Function syntax for generating XML nodes of various types
= XMLELEMENT, XMLATTRIBUTE, XMLCOMMENT, XMLPI, XMLTEXT
= XMLDOCUMENT wraps an XQuery document node around an XML value
= Producing sequences of values/nodes
= XMLFOREST generates multiple element nodes
= XMLCONCAT concatenates XML values
= Concatenation over sets of tuples
= XMLAGG aggregates XML across multiple tuples

@-59 14

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

XMLELEMENT

= Produces an XML value that corresponds to an XML element, given:
= An SQL identifier that acts as its name
= An optional list of namespace declarations

= An optional list of named expressions that provides hames and values of its
attributes, and

= An optional list of expressions that provides its content
= Options for NULL content
= empty element
= NULL
= empty element with attribute nil="true’
= empty sequence or XQuery document node with no children

By .

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

XMLELEMENT (continued)

= A simple example:

SELECT e.id,

XMLELEMENT (NAME "Emp", e.Iname) AS "result"
FROM employees e

WHERE ... ;
2>
iD result
1001 <Emp>Smith</Emp>
1006 <Emp>Martin</Emp>
© Prof.Dr.-Ing. Stefan DeBloch 16 Recent Developments for Data Models

SS2008

XMLELEMENT (continued)

= XMLELEMENT can produce nested elements (with mixed content):
SELECT e.id,
XMLELEMENT (NAME "Emp*,
XMLELEMENT (NAME "name", e.lname),
"was hired on '
XMLELEMENT (NAME "hiredate", e.hire)

) AS "result”
FROM employees e
WHERE ... ;
>
D result
1001 <Emp>
<name>Smith</name>
was hired on <hiredate>2000-05-24</hiredate>
</Emp>
1006 <Emp>
<name>Martin</name>
was hired on <hiredate>1996-02-0l</hiredate>
</Emp>

IIIIS 17
@ Prof.Dr.-Ing. Stefan DefBloch

Recent Developments for Data Models

XMLELEMENT (continued)

= XMLELEMENT can take subqueries as arguments:
SELECT e.id,
XMLELEMENT (NAME "Emp",

XMLELEMENT (NAME "name", e.Iname),

XMLELEMENT (NAME "dependants”,
(SELECT COUNT (*)
FROM dependants d
WHERE d.parent = e.id))

) AS "result”
FROM employees e
WHERE ... ;
> 1D result
1001 <Emp>

<name>Smith</name>
<dependants>3</dependants>
</Emp>

<Hgs>

1
@ Prof.Dr.-Ing. Stefan DefBloch 8

Recent Developments for Data Models

XMLATTRIBUTES (within XMLELEMENT)

= Attribute specifications must appear directly after element name and optional
namespace declaration.

= Each attribute can be named implicitly or explicitly.

SELECT e.id,
XMLELEMENT (NAME "Emp",
XMLATTRIBUTES (e.id, e.lname AS "name")

) AS “result"
FROM employees e
WHERE ... ;
>
D result
1001 <Emp ID="1001" name="Smith"/>
1006 <Emp ID="1206" name="Martin"/>
© Prof.Dr.-Ing. Stefan DeBloch 19 Recent Developments for Data Models

XMLNAMESPACES (within XMLELEMENT)

= Namespace declarations must appear directly after element name.

SELECT empno,

XMLELEMENT(NAME "admi:employee",
XMLNAMESPACES(http://www.admi.com’ AS "admi"),
XMLATTRIBUTES(e.workdept AS "admi:department”),
e.lastname

) AS "result"

FROM employees e
WHERE e. job = 'ANALYST’;

>
ID result
1130 <admi:employee xmlns:admi="http://www.admi.com"
admi:department="C01">QUINTANA</admi:employee>
1140 <admi:employee xmlns:admi="http://www.admi.com"
admi:department="C01">NICHOLLS</admi:employee>
© Prof.Dr.-Ing. Stefan DeBloch 20 Recent Developments for Data Models

SS2008

XMLCONCAT

= Produces an XML value given two or more expressions of XML type.
= |If any of the arguments evaluate to the null value, it is ignored.

SELECT e.id,
XMLCONCAT (XMLELEMENT (NAME “first", e.fname),
XMLELEMENT (NAME "last", e.Iname)

) AS “result"
FROM employees e ;
>
D result
1001 <first>John</first>
<last>Smith</last>
1006 <last>Martin</last>
© Prof.Dr.-Ing. Stefan DeBloch 2 Recent Developments for Data Models

XMLFOREST

= Produces a sequence of XML elements given named expressions as
arguments. Arguments can also contain a list of namespace declarations.

= Element can have an explicit name or an implicit name, if the expression is a
column reference

= Same options for handling NULL values as in XMLELEMENT

SELECT e.id,
XMLELEMENT (NAME "employee”, XMLFOREST (e.hire, e.dept AS "department")
AS "result”
FROM employees e
WHERE ... ;
> ID result
1001 <employee>

<HIRE>2000-05-24</HIRE>
<department>Accounting</department>
</employees>

1006 <employee>
<HIRE>1996-02-01</HIRE>
<department>Shipping</department>
</employees>

@‘55 22

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

SS2008

XMLAGG

= An aggregate function, similar to SUM, AVG, etc.
= The argument for XMLAGG must be an expression of XML type.
= Semantics

= For each row in a group G, the expression is evaluated and the resulting XML
values are concatenated to produce a single XML value as the result for G.

= An ORDER BY clause can be specified to order the results of the argument
expression before concatenating.

= All null values are dropped before concatenating.

= If all inputs to concatenation are null or if the group is empty, the result is the null
value.

By .

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

XMLAGG - Example

SELECT XMLELEMENT (NAME "Department"”,
XMLATTRIBUTES (e.dept AS "name"),
XMLAGG (XMLELEMENT (NAME "emp", e.Iname)
ORDER BY e.Iname)

) AS "dept_list",

COUNT(*) AS "dept_count"
FROM employees e
GROUP BY dept ;

2>

dept_list dept_count

<Department name="Accounting"s> 2
<emp>Smith</emp>
<emp>Yates</emp>

</Department>

<Department name="Shipping"> 2
<emp>Martin</emp>
<emp>Oppenheimer</emp>

</Department>

HiS .
© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

12

SS2008

SQL/XML Constructor Function Usage

= Dynamically retrieve SQL data in XML format (optionally mixed with SQL)
= Use query results to update/insert into tables with XML columns
= Use standard SQL views to create logical tables with XML columns

CREATE VIEW XMLDept (DeptDoc XML) AS (
SELECT XMLELEMENT (NAME "Department"”,
XMLATTRIBUTES (e.dept AS "name"),
XMLATTRIBUTES (COUNT(*) AS "count",
XMLAGG (XMLELEMENT (NAME "emp",
XMLELEMENT(NAME "name", e.lname)
XMLELEMENT(NAME "hire", e.hire))

)
FROM employees e
GROUP BY dept) ;
© Prof.Dr.-Ing. Stefan DeBloch 2 Recent Developments for Data Models

Manipulating XML Data

= Constructor functions
= focus on publishing SQL data as XML
= no further manipulation of XML
= More requirements
= how do we select or extract portions of XML data (e.g., from stored XML)?
= how can we decompose XML into relational data?
= XMLCAST is not sufficient

= both require a language to identify, extract and possibly combine parts of XML
values

SQL/XML utilizes the XQuery standard for this!

<His> .

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

13

SS2008

<Hgs

XMLQUERY

Evaluates an XQuery or XPath SELECT XMLQUERY/(
expression ‘for $e in $dept[@count > 3]/emp
= Provided as a character string where $e/hire > 2004-12-31 return $e/name’
literal PASSING BY REF deptDoc AS “dept”
. RETURNING SEQUENCE) AS “Name_elements”
Allows for optional arguments to FROM XMLDept
be passed in -
= Zero or more named arguments
= At most one unnamed argument Name_elements
can be passed in as the XQuery
context item <name>Miller</name>

= Arguments can be of any - ~smith</ =~
predefined SQL data type incl. name=omi name
XML <name>Johnson</name>
= Non-XML arguments will be <name>Martin</name>
implicitly converted using
XMLCAST
Returns a sequence of XQuery
nodes

D

27

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

<Hgs

XMLTABLE

Transforming XML data into table format
Evaluates an XQuery or XPath expression — the “row pattern”

= each item of result sequence is turned into a row

= allows for optional arguments to be passed in, just like XMLQuery
Element/attribute values are mapped to column values using path
expressions (PATH) — the “column pattern”
Names and SQL data types for extracted values/columns need to be specified
Default values for “missing” columns can be provided
ORDINALITY column can be generated

= contains a sequential number of the corresponding XQuery item in the XQuery
sequence (result of the row pattern)

D

28

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

14

SS2008

XMLTABLE - Example

SELECT X.*
FROM XMLDept d,
XMLTABLE (‘$dept/emp’ PASSING d.deptDoc AS “dept”

COLUMNS
“#num” FOR ORDINALITY,
“name” VARCHAR(30) PATH 'name’,
“hire” DATE PATH 'hire’,
“dept” VARCHAR(40) PATH ‘../@name’
) AS “X”
=>
#num name hire dept
1 Smith 2005-01-01 Accounting
2 Yates 2002-02-01 Accounting
3 Martin 2000-05-01 Shipping
© Prof.Dr.-Ing. Stefan DeBloch 29 Recent Developments for Data Models

SQL Predicates on XML type

= |S DOCUMENT

= Checks whether an XML value conforms to the definition of a well-formed XML
document

= [S CONTENT

= Checks whether an XML value conforms to the definition of either a well-formed
XML document or a well-formed external parsed entity

= ISVALID

= Checks whether an XML value is valid according to a given XML Schema

= Does not validate/modify the XML value; i.e., no default values are supplied.
= XMLEXISTS

= Checks whether the result of an XQuery expression (an XQuery sequence) contains
at least one XQuery item

@‘55 30

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

15

SS2008

<Hgs

@ Prof.Dr.-Ing. Stefan DefBloch

SQL/XML Mapping Definitions

Mapping SQL identifiers to XML Names and vice versa
= rules for mapping regular and delimited identifiers
= encoding/decoding of illegal character or character combinations
Mapping SQL (built-in) data types to XML Schema types
= best match, additional XML schema facets
= schema annotations
Mapping of values based on the type mappings
Mapping of SQL tables, schemas, catalogs to XML documents
= options for fine-tuning the XML schema structure
= can be used to produce an XML-only "view" of a relational database
= potential basis for XQuery over SQL data

D

31

Recent Developments for Data Models

<Hgs

@ Prof.Dr.-Ing. Stefan DefBloch

Mapping SQL identifiers to XML Names

SQL identifiers and XML Names have different rules:
= SQL regular identifiers are case insensitive
= SQL delimited identifiers can have characters like space and “<”
= SQL identifiers use an implementation-defined character set
Map SQL identifiers to XML Names by:

= Encoding characters that cannot be included in an XML Name as “_xNNNN_" or

“_XNNNNNN_" (N is hex digit)
= “_X"is represented with “_x005F_x”
= “”is represented with “_x003A_"
= For <identifier>s that begin with “XML” or “xml”, encode the “X” or “x”
= “XML..."will be encoded as “_x0078_ML...”

D

32

Recent Developments for Data Models

16

SS2008

Examples

<Hgs>

SQL <identifier> XML Name
employee EMPLOYEE
"employee" employee

"hire date"

hire x0020_date

"comp_xplan"

comp_x005F_xplan

xmlcol

%0078 MLCOL

@ Prof.Dr.-Ing. Stefan DefBloch

33

Recent Developments for Data Models

Mapping SQL data types to XML Schema
data types

= Each SQL data type is mapped to an XML Schema data type; with the
exception of:

Structured type
Reference type

= Appropriate XML Schema facets are used to constrain the range of values of
XML Schema types to match the range of values of SQL types.

= XML Schema annotations may be used to keep SQL data type information
that would otherwise be lost (optional).

<Hgs>

@ Prof.Dr.-Ing. Stefan DefBloch

34

Recent Developments for Data Models

17

SS2008

Mapping Character Strings - Example

CHAR (10)

CHARACTER SET LATIN1 <xsd:restriction base="xsd:string">
COLLATION DEUTSCH

<xsd:simpleType>

<xsd:annotation>
<xsd:appinfo>
<sqglxml:sgltype name="CHAR"
length="10"
characterSetName="LATIN1"
collation="DEUTSCH"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:length value="10"/>
</xsd:restriction>
</xsd:simpleType>

<Hgs>

@ Prof.Dr.-Ing. Stefan DefBloch

35

Recent Developments for Data Models

Mapping Integer - Example

INTEGER

<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:annotation>
<xsd:appinfo>
<sglxml:sqgltype name="INTEGER"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:maxInclusive value="2157483647"/>
<xsd:minInclusive value="-2157483648"/>
</xsd:restriction>

</xsd:simpleType>

<Hgs>

@ Prof.Dr.-Ing. Stefan DefBloch

36

Recent Developments for Data Models

SS2008

Mapping Unnamed

Row Types

ROW
(city VARCHAR(30),
state CHAR(2)
)

<xsd:complexType name='ROW.001'>
<xsd:sequence>
<xsd:element name='CITY'
nillable='true'
type='VARCHAR_30'/>
<xsd:element name='STATE'
nillable="true'
type='CHAR_2'/>
</xsd:sequence>
</xsd:complexType>

<Hgs>

@ Prof.Dr.-Ing. Stefan DefBloch

37 Recent Developments for Data Models

Mapping Array Types - Example

CHAR (12) ARRAY [4] <xsd:complexType name='ARRAY 4.CHAR_12'>

<xsd:sequence>

</xsd:sequence>
</xsd:complexType>

<xsd:element name='element'
minOccurs='0"' maxOccurs='4"
nillable='true' type='CHAR 12'/>

<Hgs>

@ Prof.Dr.-Ing. Stefan DefBloch

38

Recent Developments for Data Models

Mapping SQL values to XML

= Data type of values is mapped to corresponding XML schema types.

= Values of predefined types are first cast to a character string and then the
resulting string is mapped to the string representation of the corresponding
XML value.

= Values of numeric types with no fractional part are mapped with no periods.

= NULLs are mapped to either xsi:nil="true" or to absent elements, except for
values of collection types whose NULLs are always mapped to xsi:nil="true".

@‘55 39

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

Mapping SQL values to XML (continued)

= For scalar types it is straightforward:

SQL data type SQL literal XML value

VARCHAR (10) 'Smith' Smith

INTEGER 10 10

DECIMAL (5,2) |99.95 99.95

TIME TIME'12:30:00"' 12:30:00

TIMESTAMP TIMESTAMP'2001-09-14 11:00:00' 2001-09-14T11:00:00
INTERVAL HOUR | INTERVAL'2:15' PT02H15M

TO MINUTE

<His> o

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

Mapping SQL values to XML (continued)

= ROW data type:

SQL data ROW (city VARCHAR(30), state CHAR(2))
type:
SQL value: ROW ('Long Beach', 'NY')

XML Value: <BIRTH>

(in birth <CITY>Long Beach</CITY>
column) <STATE>NY</STATE>
</BIRTH>
© Prof.Dr.-Ing. Stefan DefSloch 41 Recent Developments for Data Models

Mapping SQL values to XML (continued)

= ARRAY data type:

SQL data CHAR (12) ARRAY[4]
type:
SQL value: |[ARRAY ['1-333-555-1212°',
NULL,
'1-444-555-1212"
1

XML Value: | <PHONE>

(in phone <element>1-333-555-1212</element>
column)

<element xsi:nil="true"/>
<element>1-444-555-1212</element>
</PHONE >

@.55 42

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

SS2008

SS2008

Mapping SQL Tables to XML Documents

= The following can be mapped to an XML Document:
= Table
= Tables of an SQL Schema
= Tables of an SQL Catalog
= The mapping produces an XML Document and an XML Schema Document
= These XML Documents may be physical or virtual
= The mapping of SQL Tables uses the mapping of SQL identifiers, SQL data
types, and SQL values
= Two choices for the mapping of null values:
= nil: use xsi:nil="true"
= absent: column element is omitted

By -

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

Mapping Options

= Users can control whether a table is mapped to a single element or a
sequence of elements.

= In a single element option:
= The table name serves as the element name.
= Each row is mapped to a nested element with each element named as "row".
= Each column is mapped to a nested element with column name serving as the

element name.
= In a sequence of elements option:

= Each row is mapped to an element with the table name serving as the element
name.

= Each column is mapped to a nested element with column name serving as the
element name.

@‘55 44

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

22

SS2008

Mapping Example — Single Element

= Map the EMPLOYEE table (“single element option”):

<EMPLOYEE>

<row>
<EMPNO>000010</EMPNO>
<FIRSTNME>CHRISTINE</FIRSTNME>
<LASTNAME>HAAS</LASTNAME>
<BIRTHDATE>1933-08-24</BIRTHDATE>
<SALARY>52750.00</SALARY>

</row>

<row>
<EMPNO>000020</EMPNO>
<FIRSTNME>MICHAEL</FIRSTNME>
<LASTNAME>THOMPSON< /LASTNAME >
<BIRTHDATE>1948-02-02</BIRTHDATE>
<SALARY>41250.00</SALARY>

</row>
</EMPLOYEE>
His .
© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

Mapping Example — Sequence of Elements

= Map the EMPLOYEE table (“sequence of elements option”):

<EMPLOYEE>
<EMPNO>000010</EMPNO>
<FIRSTNME>CHRISTINE</FIRSTNME>
<LASTNAME>HAAS</LASTNAME>
<BIRTHDATE>1933-08-24</BIRTHDATE>
<SALARY>52750.00</SALARY>
</EMPLOYEE>

<EMPLOYEE>
<EMPNO>000020</EMPNO>
<FIRSTNME>MICHAEL</FIRSTNME>
<LASTNAME >THOMPSON< /LASTNAME >
<BIRTHDATE>1948-02-02</BIRTHDATE>
<SALARY>41250.00</SALARY>
</EMPLOYEE>

By .

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

23

SS2008

Mapping All Tables of a Schema

= Map the ADMINISTRATOR schema:

<ADMINISTRATOR>
<DEPARTMENT >
<row>
<DEPTNO>A00</DEPTNO>
<DEPTNAME>SPIFFY COMPUTER SERVICE DIV.</DEPTNAME>
<MGRNO>000010</MGRNO>
</row>

</DEPARTMENT >
<ORG>
<row>
<DEPTNUMB>10</DEPTNUMB>
<DEPTNAME>Head Office</DEPTNAME>
<MANAGER>160</MANAGER>

</row>
</ORG>
</ADMINISTRATOR>
HiS .
© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

Mapping All Tables of a Catalog

= Mapping the HR catalog:

<HR>
<ADMINISTRATOR>
<DEPARTMENT >
<rows..</row>

</DEPARTMENT >

</ADMINISTRATOR>
<SYSCAT>

</SYSCAT>
</HR>

oS> .

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

24

SS2008

Corresponding XML Schema

= XML Schema that is generated:
= provides named type for every column, row, table, schema, and catalog
= allows annotation to be included in each of these definitions

= SQL data types map to XML Schema type names

SQL Data Type XML Schema type name
INTEGER INTEGER
CHAR (12) CHAR_12
DECIMAL (6,2) DECIMAL 6_2
INTEGER ARRAY [20] ARRAY 20.INTEGER
© Prof.Dr.-Ing. Stefan DeBloch 49 Recent Developments for Data Models

SQL/XML Mapping - Example

= SQL table “EMPLOYEE”

= XML document:
<EMPLOYEE>

<row=>
<EMPNO>000010</EMPNO>
<FIRSTNME>CHRISTINE</FIRSTNME>
<LASTNAME>HAAS</LASTNAME>
<BIRTHDATE>1933-08-24</BIRTHDATE>
<SALARY>52750.00</SALARY>

</row>

<row=>
<EMPNO>000020</EMPNO>
<FIRSTNME>MICHAEL</FIRSTNME>
<LASTNAME>THOMPSON</LASTNAME>
<BIRTHDATE>1948-02-02</BIRTHDATE>
<SALARY>41250.00</SALARY>

</row=>
</EMPLOYEE>
© Prof.Dr.-Ing. Stefan DeBloch 50 Recent Developments for Data Models

25

SS2008

Corresponding XML-Schema document

<xsd:schema> <xsd:element name="SALARY"
type="DECIMAL_9_2" nillable="true"/>
<xsd:simpleType name="CHAR_6"> </xsd:sequence>
<xsd:restriction base="xsd:string"> </xsd:complexType>
<xsd:length value="6"/>
</xsd:restriction> <xsd:complexType name=
</xsd:simpleType> "TableType.HR.ADMINISTRATOR.EMPLOYEE">
<xsd:sequence>
<xsd:simpleType name="DECIMAL_9_2"> <xsd:element name="row"
<xsd:restriction base="xsd:decimal"> type=
<xsd:totalDigits value="9"/> "RowType.HR.ADMINISTRATOR.EMPLOYEE"
<xsd:fractionDigits value="2"/> minOccurs="0" maxOccurs="unbounded"/>
</xsd:restriction> </xsd:sequence>
</xsd:simpleType> </xsd:complexType>
<xsd:complexType name= <xsd:element name="EMPLOYEE" type=
"RowType.HR.ADMINISTRATOR.EMPLOYEE"> "TableType.HR.ADMINISTRATOR.EMPLOYEE"/>
<xsd:sequence>
<xsd:element name="EMPNO" type="CHAR_6"/> </xsd:schema>

<xsd:element name="FIRSTNME"
type="VARCHAR_12"/>

<xsd:element name="LASTNAME"
type="VARCHAR_15"/>

<xsd:element name="BIRTHDATE" type="DATE"
nillable="true"/>

<Hgs>

@ Prof.Dr.-Ing. Stefan DefBloch

51 Recent Developments for Data Models

XML Schema Annotations

= Annotations may be included:

<xsd:complexType name="TableType.HR.ADMINISTRATOR.EMPLOYEE" >
<xsd:annotation>
<xsd:appinfo>
<sqglxml:sglname
type="BASE TABLE"
catalogName="HR"
schemaName="ADMINISTRATOR"
localName="EMPLOYEE" />
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="row"
type="RowType.HR.ADMINISTRATOR.EMPLOYEE"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<Hgs>

@ Prof.Dr.-Ing. Stefan DefBloch

52

Recent Developments for Data Models

26

SS2008

Product Support

= The "big three" support XML in SQL databases
= IBM, Oracle implement (almost) complete support of SQL/XML
= Microsoft supports similar capabilities using proprietary syntax
= all three support XQuery inside SQL
= differences in implementation of XML storage
= |BM DB2 V9 (SIGMOD2005, VLDB2005)
= CLOB-based as well as native storage for XML values
= efficient storage, indexing, processing techniques
= allows to include SQL requests in XQuery expressions, too
Oracle 10g (Oracle XML-DB technical whitepaper, VLDB2004)
= storage based on CLOBs or object-relational tables
= additional indexing capabilities, XML query rewrite
= protocols (ftp, WebDAV, ...) for supporting file-oriented XML storage/access
= Microsoft SQL Server 2005 (MSDN whitepaper, VLDB2005)

= stored as BLOB in an internal format
= primary (B+ tree) and secondary indexes, query processing based on mapping to RDM

@.55 53

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

Summary

= Increasing importance of XML in combination with data management
= flexible exchange of relational data using XML
= managing XML data and documents
= trend towards "hybrid" approaches for relational DBMS
= SQL/XML standard attempts to support the following
= "Publish" SQL query results as XML documents
= Ability to store and retrieve (parts of) XML documents with SQL databases

= Rules and functionality for mapping SQL constructs to and from corresponding XML
concepts

= Relies partly on XQuery standard
= XML data model
= queries over XML data
= Broad support by major SQL DBMS vendors

<His> ’

© Prof.Dr.-Ing. Stefan DeBloch Recent Developments for Data Models

27

