
SS2008 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 9 – XQuery

Recent Developments for Data Models

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2 Object relational Views and Collection Types2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5. Data Analysis in SQL
6. Windowed Tables and Window Functions in SQL
III. XML
7. XML Data Modeling

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
2

8. SQL/XML
9. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

SS2008 2

Why do we need a new query language?

Relational Data, SQL
flat (rows and columns), use foreign
keys, structured types for hierarchical
data
d t i if titi

XML
nested, need to search for something at
an arbitrary level (//*[@color = "Red"])

d t i hi hl i bl lf d ibidata is uniform, repetitive
info schema for meta data

uniform query results

rows in a table are unordered

data is highly variable, self-describing
meta data distributed throughout doc
queries may need to access data and
meta data: "tag name equals content"
//*[name(.) = string(.)]

heterogenous query results
severe structural transformations
required

e.g., invert a hierarchy

elements in document are ordered
needs to be preserved

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
3

data is usually dense
NULL for missing/inapplicable data

query based on order, position
output order specification at multiple
levels in the hierarchy

data can be sparse
empty or absent elements

XQuery

XQuery is a general purpose query language for XML data
Standard developed by the World Wide Web Consortium (W3C)

W3C Recommendation since January 23rd, 2007

XQ i d i d fXQuery is derived from
the Quilt (“Quilt” refers both to the origin of the language and to its use in “knitting ” together heterogeneous
data sources) query language, which itself borrows from
XPath: a concise language for navigating in trees
XML-QL: a powerful language for generating new structures
SQL: a database language based on a series of keyword-clauses: SELECT - FROM
– WHERE
OQL: a functional language in which many kinds of expressions can be nested
with full generality

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
4

with full generality

SS2008 3

Tree Model of XML Data

Query and transformation languages are based on a tree model of XML data
An XML document is modeled as a tree, with nodes corresponding to elements,
attributes, text, etc.
Example:Example:

<?xml version = "1.0"?>
<!-- Requires one trained person -->
<procedure title = "Removing a light bulb">
<time unit = "sec">15</time>
<step>Grip bulb.</step>
<step>

Rotate it
<warning>slowly</warning>
counterclockwise

D

E AC

E EE A

procedure

title="Removing a light bulb"

time
unit="sec"

step step

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
5

counterclockwise.
</step>

</procedure>
T ET T T

T

warning

counterclockwise.Rotate it

slowly

Grip bulb.15

XQuery Data Model (XDM)

Builds on a tree-based model, but extends it to support sequences of items
represent collections of documents and complex values
reflect (intermediate) results of query evaluation
closure propertyclosure property

XQuery queries and expressions operate on/produce instances of the XDM

Based on XML Schema for precise type information
XDM instance

ordered sequence of zero or more items
can contain heterogenous values
cannot be nested – all operations on sequences automatically "flatten" sequences

no distinction between an item and a sequence of length 1

i d li d (b l)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
6

may contain duplicate nodes (see below)

An item is a node or an atomic value
Atomic values are typed values

XML Schema simple types
important for representing results of intermediate expressions in the data model

SS2008 4

XDM - Nodes

There are seven kinds of nodes
Document, Element, Attribute, Text, Namespace, Comment, Processing Instruction

Nodes form a tree
i ti fconsisting of
root node
nodes directly or indirectly reachable from the root node via accessors

children
only element, processing instruction, comment and text nodes can be children
only document and element nodes have children

attributes
namespace nodes

trees are called
documents, if the root is a document node

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
7

documents, if the root is a document node
fragments, otherwise

trees have exactly one root
a node belongs to exactly one tree

XDM – Nodes (cont.)

A node has an identity (preserved by operations on nodes)
Each node has a typed value

sequence of atomic values
t b k (Si l T)type may be unknown (anySimpleType)

Element and attribute nodes have a type annotation
generated by validating the node

Document order of nodes
root < child < namespace < attribute < descendants
children and descendants < following siblings
order of siblings correspon

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
8

SS2008 5

General XQuery Rules

XQuery is a case-sensitive language
Keywords are in lower-case
Every expression has a value and no side effects
Expressions are fully composable
Expressions can raise errors
Expressions (usually) propagate lower-level errors

Exception: if-then-else

Comments look like this
(: This is an XQuery comment :)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
9

XQuery Expressions

Literals: "Hello" 47 4.7 4.7E-2
Constructed values: true() false() date("2002-03-15")
Variables: $x
Constructed sequences

$a, $b is the same as ($a, $b)
(1, (2, 3), (), (4)) is the same as 1, 2, 3, 4
5 to 8 is the same as 5, 6, 7, 8

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
10

SS2008 6

Path Expressions in XQuery

An XPath expression maps a node (the context node) into a sequence of
nodes

consists of one or more steps separated by “/”
e g : return the names of all customers in banke.g.: return the names of all customers in bank
/child::bank/child::customer/child::name

Evaluation of path expression
step by step, from left to right
starting from an externally provided context node, or from document root
each step works on a sequence of nodes

for each node in the sequence, look up other nodes based on step expression
eliminate duplicates from result sequence
sort nodes in document order

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
11

sort nodes in document order

empty result sequence does not result in an error

D bank

customer

customer customer-name
Joe

customer-name
Mary

Path Expressions (cont.)

The initial “/” denotes root of the document (above the top-level tag)
In general, a step has three parts:

The axis (direction of movement: child, descendant, parent, ancestor, following,
preceding attribute 13 axes in all)preceding, attribute, … - 13 axes in all -)
A node test (type and/or name of qualifying nodes)
Optional predicates (refine the set of qualifying nodes)

Selection predicates may appear in any step in a path, in []
Evaluated for each node qualified by axis/node test
E.g. /child::bank-2/child::account[child::balance > 400]

returns account elements with a balance value greater than 400

Alternative: filter step

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
12

Alternative: filter step
instead of axis::node-test, an expression can be used that locates nodes based
on the context

SS2008 7

Axis

Result given in document order (exception: positional predicates)
Axis for attributes and namespaces are available in addition to the ones listed
below
hild i i l d l t

ancestor-or-self::
child axis includes elements,
text node, pis, comments

self::

parent::

ancestor::

preceding-sibling:: following-sibling::

following::preceding::

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
13

child::

descendant::

descendant-or-self::

XPath Axes Supported in XQuery

Supported:
child
descendant
attribute

Optionally supported (full axis feature):
ancestor
ancestor-or-self
preceding

self
descendant-or-self
parent

preceding-sibling
following
following-sibling
namespace

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
14

SS2008 8

Node Tests

Name test
Element, attribute name

child::name, name – Matches <name> element nodes
child::*, * - Matches any element nodechild:: , Matches any element node
attribute::name, attribute::*, @* for matching based on attribute name

namespace:name – Matches <name> element nodes in the specified namespace
namespace:* - Matches any element node in the specified namespace

child::bank:* - Matches any element node whose name is defined in bank namespace

Node type test to match nodes of a specific type
document-node()
comment()
text()

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
15

text()
processing-instruction()
element(), element(name), element(name, type)
attribute(), attribute(name), attribute(name, type)
node() – matches any node

Node Test – Examples

Find the names of all customers in bank
/child::bank/child::customer/child::name
Find all the element children of customers in bank
/child::bank/child::customer/child::*/child::bank/child::customer/child::*
Find all attributes of customer elements anywhere in the document
/descendant::customer/attribute::*
Find all attributes of customer elements having the type xs:string
/descendant::customer/attribute::attribute(*, xs:string)
Find all text nodes of the document
/descendant::text()

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
16

SS2008 9

Path Expressions – Abbreviated Notation

Abbreviations
"."

current context node

".."

The following examples use the
abbreviated notation:

Find the names of all customers in bank
/bank/customer/name

"parent::node()"

"//"
"/descendant-or-self::node()/"

"@"
"attribute::"

axis missing
"child::"
(or "attribute::" with an attribute node
type test)

Find all the element children of
customers in bank
/bank/customer/*
Find all attributes of customer elements
anywhere in the document
//customer/@*
Find all attributes of customer elements
having the type xs:string
//customer/attribute(*, xs:string)
Find all text nodes of the document
// ()

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
17

//text()

Predicates

Predicates can be used to apply additional filter conditions for the resulting
nodes

Boolean expressions: selects all nodes for which expression returns "true"
book[author = "Mark Twain"]book[author = Mark Twain]
Numeric expressions: selects all nodes whose position is equal to the resulting
value
chapter[2]
Existence tests: selects nodes where expression does not result in empty sequence
book[appendix]
person[@married] (Tests existence, not value!)

Predicates can be used in path expressions:
//book[author = "Mark Twain"]/chapter[2]

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
18

//book[author = Mark Twain]/chapter[2]

...and in other kinds of expressions:
(1 to 100)[. mod 5 = 0]

SS2008 10

Functions

Context functions, e.g.
fn:last() returns the number of items in the current sequence

Find the last paragraph-child of the context node
para[fn:last()]p [()]

fn:position() returns the position of the current item within the current sequence
Find the laste paragraph-child of the context node (alternative query)
para[fn:position()=fn:last()]

fn:current-date() returns the current date
Find names of customers who have an order with today’s date
//customer[order/date=fn:current-date()]/name

Functions on nodes/items, e.g.
fn:string() returns the string value of an item

element nodes: concatenation of all descendant text nodes, in document order

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
19

element nodes: concatenation of all descendant text nodes, in document order

Functions and operators on sequences, e.g.
concatenation, distinct-values, subsequence
(deep) equal, union, intersect, except

Functions (cont.)

IDREFs can be de-referenced using function fn:id()
fn:id() can also be applied to sets of references such as IDREFS and even to
strings containing multiple references separated by blanks
E g /bank-2/account/fn:id(@owners)E.g. /bank 2/account/fn:id(@owners)
returns all customers referenced by the owners attribute of account elements

The function fn:doc(name) returns the root of the named document
E.g. fn:doc(“bank.xml”)/bank/account

The function fn:collection(name) returns a sequence of nodes
E.g. fn:collection(“myBankCollection”)/bank/account

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
20

SS2008 11

More Expressions

Arithmetic operators: + - * div idiv mod
Extract typed value from node
Multiple values => error
If operand is () return ()If operand is (), return ()
Supported for numeric and date/time types

Comparison operators
eq ne gt ge lt le compare single atomic values
= != > >= < <= implied existential semantics
is is not compare two nodes based on identity
<< >> compare two nodes based on document order

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
21

Logical Expressions

Operators: and or
Function: not()
Return TRUE or FALSE (2-valued logic)
"Early-out" semantics (need not evaluate both operands)
Result depends on Effective Boolean Value of operands

If operand is of type boolean, it serves as its own EBV
If operand is (), zero, or empty string, EBV is FALSE
In any other case, EBV is TRUE

Note that EBV of a node is TRUE, regardless of its content (even if the
content is FALSE)!

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
22

SS2008 12

Constructors

To construct an element with a known name and content, use XML-like
syntax:
<book isbn = "12345">

<title>Huckleberry Finn</title><title>Huckleberry Finn</title>
</book>

If the content of an element or attribute must be computed, use a nested
expression enclosed in { }
<book isbn = "{$x}">

{$b/title }
</book>

If both the name and the content must be computed, use a computed
t t

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
23

constructor:
element {name-expr} {content-expr}
attribute {name-expr} {content-expr}

Validation of Constructed Elements

An element constructor automatically validates the new element against "in-
scope schema definitions"

Results in a type annotation
Can be generic: xs:anyTypeCan be generic: xs:anyType

Validation mode (default = lax)
Strict: element must be defined in schema
Lax: element must match schema definition if it exists
Skip: ignore this element
Mode is set in Prolog or by explicit Validate expression

Validation context:
Schema path inside which current node is validated

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
24

Each constructed element adds its name to the context
Can be overridden by an explicit Validate expression

SS2008 13

RETURN_clauseFOR_clause

LET_clause WHERE_clause

XQuery: The General Syntax Expression FLWOR

ORDER_BY_clause

FOR clause, LET clause generate list of tuples of bound variables (order preserving) by
iterating over a set of nodes (possibly specified by a path expression), or
binding a variable to the result of an expression

WHERE clause applies a predicate to filter the tuples produced by FOR/LET
ORDER BY clause imposes order on the surviving tuples
RETURN clause is executed for each surviving tuple, generates ordered list of outputs
Associations to SQL query expressions

for SQL from

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
25

for SQL from
where SQL where
order by SQL order by
return SQL select
let allows temporary variables, and has no equivalent in SQL

Evaluating FLWOR Expressions

…

$x $y $z

input sequence tuple stream

$x $y $z

ok!

… … …

… … …

ok!

X

FOR $X,$Y ..
LET $Z .. WHERE ..

ORDER
BY ..

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
26

$x $y $z

… … …

…

ouput sequence

RETURN ..

SS2008 14

FLWOR - Examples

Simple FLWR expression in XQuery
Find all accounts with balance > 400, with each result enclosed in an <account-
number> .. </account-number> tag

for $x in /bank-2/accountfor $x in /bank 2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> {$acctno} </account-number>

Let and Where clause not really needed in this query, and selection can be
done in XPath.

Query can be written as:
for $x in /bank-2/account[balance>400]
return <account-number> {$x/@account-number}

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
27

</account-number>

Eliminating Duplicates

Equality of elements
element name, attributes, content are identical
example: average price of books per publisher

FOR $p IN distinct values(doc("bib xml")//publisher)FOR $p IN distinct-values(doc("bib.xml")//publisher)
LET $a := avg(doc("bib.xml")//book[publisher = $p]/price)
RETURN

<publisher>
<name> {$p/text()} </name>
<avgprice> {$a} </avgprice>

</publisher>

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
28

SS2008 15

Nesting of Expressions

Here: nesting inside the return clause
Example: inversion of a hierarchy

<book> <author><book>
<title>
<author>
<author>

</book>
<book>

<title>
<author>
<author>

<author>
<name>
<title>
<title>

</author>
<author>

<name>
<title>
<title>

FOR $a IN distinct-values(//author)
ORDER BY $a/name
RETURN

<author>
<name> { $a/text() } </name>
{ FOR $b IN //book[author = $a]

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
29

</book> </author>
{ FOR $b IN //book[author = $a]

RETURN $b/title }
</author>

Sorting of Results

ORDER BY
Example: Sort the expensive books by first author name, book title
LET $b = doc("bib.xml")//book[price > 100]
ORDER BY $b/author[1], $b/title
RETURN <expensive_books> $b </expensive_books>

Ordering at various levels of nestingOrdering at various levels of nesting
Example: For all publishers, sorted by publisher name, list the title and price of all their books,
sorted by price descending
<publisher_list>
{FOR $p IN distinct-values(doc("bib.xml")//publisher)

ORDER BY $p/name
RETURN

<publisher>
<name> {$p/text()} </name>
{FOR $b IN doc("bib.xml")//book[publisher = $p]
ORDER BY $b/price DESCENDING
RETURN

<book>
{$b/title}

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
30

{$b/title}
{$b/price}

</book>
}

</publisher>
}
</publisher_list>

SS2008 16

Order Insignificance

Indicate that the document order is insignificant
provides an opportunity for the optimizer

Example:
f d d(fn:unordered(

FOR $b IN doc("bib.xml")//book,
$a IN doc("authors.xml")//author

WHERE $b/author_id = $a/id
RETURN

<ps>
{ $b/titel, $a/name }

</ps>)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
31

Nesting and Aggregation

Aggregation
Function over a sequence of elements

count(), avg(), min(), max(), sum()

Example: List all publishers with more than 100 booksExample: List all publishers with more than 100 books
<BIG_PUBLISHERS>

{
FOR $p IN distinct(doc("bib.xml")//publisher)
LET $b := doc("bib.xml")//book[publisher = $p]
WHERE count($b) > 100
RETURN $p

}
</BIG_PUBLISHERS>
LET clause binds $b to a sequence of books

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
32

LET clause binds $b to a sequence of books

SS2008 17

XQuery: Joins

Joins are specified in a manner very similar to SQL
for $a in /bank/account,

$c in /bank/customer,
$d in /bank/depositor$ / / p

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct>{ $c $a }</cust-acct>

The same query can be expressed with the selections specified as XPath
selections:
for $a in /bank/account

$c in /bank/customer
$d in /bank/depositor[

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
33

account-number =$a/account-number and
customer-name = $c/customer-name]

return <cust-acct>{ $c $a }</cust-acct>

XQuery: Outer Join

Example: List all suppliers. If a supplier offers medical items, list the
descriptions of the items

FOR $s IN doc("suppliers.xml")//supplier
ORDER BY $s/nameORDER BY $s/name
RETURN

<supplier>
{ $s/name,
FOR $ci IN doc("catalog.xml")//item[supp_no = $s/number],

$mi IN doc("medical_items.xml")//item[number = $ci/item_no]
RETURN $mi/description

}
</supplier>

Problem with full outer join: nesting forces asymmetric representation

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
34

Problem with full outer join: nesting forces asymmetric representation
produce a two-part document, enclosed by a <master_list> element
query needs a separate expression for computing the "orphan" items

SS2008 18

Quantified Expressions

Existential Quantification
Give me all books where "Sailing" and "Windsurfing" appear at least once in the
same paragraph

FOR $b IN //b kFOR $b IN //book
WHERE SOME $p IN $b//para SATISFIES (contains($p, "Sailing")

AND contains($p, "Windsurfing"))
RETURN $b/title

Universal Quantification
Give me all books where "Sailing" appears in every paragraph

FOR $b IN //book
WHERE EVERY $p IN $b//para SATISFIES contains($p, "Sailing")

$b/ l

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
35

RETURN $b/title

Defining and Using Functions

Predefined Functions
XPath/XQuery function library, e.g., doc()
aggregation functions: avg, sum, count, max, min
additional functions: distinct values() empty()additional functions: distinct-values(), empty(), …

User-defined Functions
Example: compute maximal path length in "bib.xml"
DECLARE FUNCTION local:depth($e AS node()) AS xs:integer
{

(: A node with no children has depth 1 :)
(: Otherwise, add 1 to max depth of children :)
IF (empty($e/*))

THEN 1

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
36

ELSE 1 + fn:max(FOR $c IN $e/* RETURN local:depth($c))
};

LET $h := doc("bib.xml")
RETURN

<depth>{ local:depth($h) }</depth>

SS2008 19

Function Definitions

Function definitions may not be overloaded in Version 1
Much XML data is untyped
XQuery attempts to cast arguments to the expected type
Example: abs($x) expects a numeric argumentExample: abs($x) expects a numeric argument

If $x is a number, return its absolute value
If $x is untyped, cast it to a number
If $x is a node, extract its value and treat as above

This "argument conditioning" conflicts with function overloading
XML Schema substitution rules are already very complex

two kinds of inheritance; substitution groups; etc.

A function can simulate overloading by branching on the type of its argument,
using a typeswitch expression

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
37

Two Phases in Query Processing

Static analysis (compile-time; optional)
Depends only on the query itself
Infers result type of each expression, based on types of operands
Raises error if operand types don't match operators
P t h l t lt tPurpose: catch errors early, guarantee result type
May be helpful in query optimization

Dynamic evaluation (run-time)
Depends on input data
Computes the result value based on the operand values

If a query passes static analysis, it may still raise an error at evaluation time
It may divide by zero
Casts may fail. Example:
cast as integer($x) where value of $x is "garbage"

If a query fails static type checking, it may still evaluate successfully and return a useful

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
38

If a query fails static type checking, it may still evaluate successfully and return a useful
result.

Example (with no schema):
$emp/salary + 1000
Static semantics says this is a type error
Dynamic semantics executes it successfully if $emp has exactly one salary subelement with a
numeric value

SS2008 20

Summary

Characteristics of XML (from a data modeling perspective)
data/meta-data integration, schema flexibility, heterogeneity, nesting, ordering, …

XQuery provides a powerful initial step towards an XML query language that
reflect the above characteristicsreflect the above characteristics
XQuery Data Model (XDM)

builds on XML tree structure, introduces sequences and atomic values
basis for XQuery processing, supports closure property

Major query language constructs
path expressions
constructors
FLWOR expressions

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
39

Problem: lack of an algebraic foundation

XQuery - Status

XQuery is a w3c recommendation since January 2007
Ongoing work

Insert, Update, Delete
candidate recommendation since March 2008candidate recommendation since March 2008

Full-text support
candidate recommendation since May 2008

Host language bindings, APIs
XQuery API for JavaTM (XQJ)
problem to overcome: tradtional XML processing API is based on well-defined documents
proposed final draft since October 2007

Future Work
View definitions DDL

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
40

View definitions, DDL

