
 1

A Historic Survey of Transaction Management
From Flat to Grid Transactions

Ting Wang and Paul Grefen

Subdepartment of Information Systems
Department of Technology Management

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{t.wang, p.w.p.j. grefen}@tm.tue.nl

Abstract

This is a working paper for the XTraConServe (XTC) Project, which aims
to develop concepts and support facilities for a Business Transaction
Framework (BTF) that utilizes abstract transactional constructs (ATCs) to
provide a generic foundation for support of complex transactional services
in contract-driven inter-organizational business interactions that rely on
dynamically composed web services. In this paper, we investigate the
classical transaction models and the key concepts and techniques with
regard to transaction management. Some well-known work that has been or
is being done in different application domains is reviewed following a time
line, which reveals the development of transactions from the simplest no-
structure model to the complex framework with hierarchical or layered
structures.

Keywords: transaction; transaction model; transaction framework;
transaction management

 2

Table of Contents

1 Introduction .. 3

1.1 The transaction concept .. 3
1.2 An overview of the history of transaction management....................................... 3
1.3 Structure of this paper .. 4

2 ACID Transactions... 5

2.1 ACID and VCRP properties ... 5
2.2 Flat transactions.. 5

3 Advanced transaction models ... 7

3.1 The save point concept ... 7
3.2 Distributed and nested transactions .. 8
3.3 Chained transactions and sagas .. 9
3.4 Conclusion on advanced transaction models.. 10

4 ACTA model ...11

4.1 Orginal ACTA framework ... 11
4.2 Later developments .. 11

5 Workflow transactions...13

5.1 The transactional workflow concept... 13
5.2 WIDE model... 13
5.3 X-transaction model ... 14

6 Web services transactions..15

6.1 BTP, WS-Tx and WS-CAF .. 15
6.2 Comparing the approaches ... 15

7 Grid transactions..17

7.1 Ongoing work in Grid transactions .. 17
7.2 Comparing the approaches ... 17

8 Conclusion...19

References ..20

 3

1 Introduction

In this paper, we investigate the classical transaction models and the key concepts and
techniques with regard to transaction management from a historic perspective. In this
introduction, we first discuss the transaction concept. Next, we explain the basis for the
timeline we use in our historic treatment. At the end of this introduction, we discuss the
structure of this paper.

1.1 The transaction concept
What is a transaction? Actually, the concept of a transaction was invented as early as
6000 years ago, when Sumerians noted down and scribed on clay tablets in order to
keep records of the changes of royal possessions. Generally speaking, a transaction is a
transformation from one state to another. Over several thousand years, the concept has
found its way into a broad range of disciplines. For example, in the business world, a
transaction is defined as an agreement between a buyer and a seller to exchange an asset
for payment. While in the database world, the real state of outside world is abstracted
from and modeled by a database where the transformation of the state is reflected by an
update of the database. From this perspective, a transaction can be defined as a group of
operations executed to perform some specific functions by accessing and/or updating a
database. These operations are in fact a kind of program designed to consistently
interact with a database system. Later, with the wider use of transactional support in the
IT domain, the original definition of a database transaction was generalized and
extended by imposing a complex structure to support diversified applications.

In this paper, we use the term ‘transaction’ to refer to a reliable and coherent process
unit interacting with one or more systems, independently of other transactions that
provides a certain service or function for a running application. This new definition
reflects the requirements for transactions that are able to capture more complex
semantics arising from a broader range of application areas such as workflow
management, Web services and Grid computing.

1.2 An overview of the history of transaction management
In this paper, we provide a survey of transaction management from a temporal
perspective, i.e. we follow the history of transaction management from the ‘early dark
days’ to current state of the art. In doing so, we distinguish between the following ‘ages’
in transaction management:

Stone Age. In the stone age, no explicit transaction management models and
mechanisms were available. Reliability of business processes running on (database)
systems was often not yet considered an issue at all. And if it was, its support was
entirely the responsibility of application logic. As this age is not too interesting from
a transaction management point of view, we do not pay attention to it in this paper.

Classic History. During the classic history, people realized that reliability of processes
in multi-user, concurrent environments is an issue that deserves explicit attention – or
rather requires explicit attention in order to keep things running correctly. In this age,
the basic transaction model and mechanisms saw the light.

 4

Middle Ages. In the middle ages, business application grew more complex and hence
the requirements to transaction management rapidly increased. Consequently, the
simple models and mechanisms developed in the classic history were not sufficient
anymore. Consequently, a large variation of advanced transaction models and
mechanisms supporting these requirements were developed for various application
domains.

Modern Times. In modern times, we see the emergence of new application domains, in
which the Internet usually plays a prominent role. To allow the proper operation of
business processes in this new environment, transaction management has to be
‘ported’ to the Internet as well. This means, that the results of the previous ages of
transaction management history are made fit for application in the Internet
environment.

1.3 Structure of this paper
This paper gives an overview from the classical transaction models to the state-of-the-
art work in the field of transaction management, moving from classic history to modern
times.

We start the discussion of the classic history of transaction management in Section 2.
We discuss the most basic transactions first used in a single database system – referred
to as ACID transactions.

From Section 3, we proceed to the middle ages. In Section 3, we discuss the
development of various extended transactions models, often referred to as advanced
transaction models. In section 4, a synthesized meta-model for advanced transaction
models, named ACTA, is described. Section 5 investigates a specific application
domain: the transactional support for workflow systems. We apply a focus on the
models proposed in the WIDE and CrossFlow projects, which closely relate to the XTC
project.

From Section 6, we enter the modern times. Section 6 gives an overview of transaction
support for the Web services world in the Internet environment. Afterwards, the work
that is being done in Grid transactions is discussed in Section 7.

We end this paper with conclusions in Section 8.

 5

2 ACID Transactions

As a database is an abstract representation that models part of a real organization and
keeps its state consistent with the state of that organization, the programs interacting
with the database need to reflect the requirements of real-world business. These
requirements impose additional restrictions when designing a transaction. From the mid
1970s, some papers were published with early attempts to introduce these restrictions.
This was the groundwork for the later defined properties generally known by the
famous acronym ‘ACID’. The ACID properties are the basis for the classic form of
transactions known as ‘traditional transactions’ or ‘flat transactions’.

2.1 ACID and VCRP properties
The ACID properties are [Haerder and Reuter 1983]:

Atomicity: A transaction either runs completely or has no effect at all, which means
from the outside, that a transaction appears to have no observable intermediate states
or it has never left the initial state.

Consistency: A transaction is a correct program and preserves all the integrity
constraints. After the execution, the new state of the database complies with all the
consistency constraints.

Isolation: A transaction is executed as if there are no other concurrent transactions. The
effect of the concurrent transactions is the same as the effect when the transactions
are executed serially.

Durability: A transaction completes successfully and thus makes a permanent change
to the state of the database. Consequently, the results from a transaction must be able
to be reestablished after any possible failures.

In fact, there is a more general corresponding representation of ACID properties: VCRP
(Visibility; Consistency; Recovery; Permanence), which can be used as four
measurements of transactions. Visibility represents the ability of an executing
transaction to see the results of other transactions. Consistency refers to the correctness
of the state of the database after a transaction is committed. Recovery means the ability
to recover the database to the previous correct state in case of failures. Permanence is
the ability of a successfully committed transaction to change the state of the database
without the loss of the results when encountering failures. In [Warne 1993], the authors
use these four notions to analyze and compare some transaction models such as nested
transactions, sagas etc. This paper provides a standard framework to evaluate
transactions by capturing the key characteristics of them.

2.2 Flat transactions
When we apply VCRP to evaluate the traditional transactions or flat transactions
with no internal structures, we get the strict ACID properties that are essential for these
relatively simple transactions. The underlying transaction processing (TP) system is
responsible for ensuring the ACID properties. A TP system generally consists of a TP
Monitor, which is a system program providing a middleware solution to manage

 6

transactions and control their access to a Database Management System (DBMS), one
or more DBMSs and a set of application programs containing transactions [Lewis et al.
2002]. Atomicity and durability are guaranteed by the mechanism of recovery that is
usually implemented by maintaining a log of update operations so that ‘redo’ and
‘undo’ actions can be performed when required. Isolation is guaranteed by the
mechanism of concurrency control, which is implemented by using locks during the
transaction process. A detailed overview of concurrency control and recovery
techniques is available in [Ramamritham and Chrysanthis 1997]. Consistency is
guaranteed by the integrity control mechanism usually provided by the TP system,
though not complete in a strict sense.1

Flat transactions have proven to be very useful in traditional database applications
where the execution time is relatively short, the number of concurrent transactions is
relatively small and the database system only resides in one server. However, they lack
the flexibility to meet the requirements of the applications developed later, for example,
multi-database operations that need a certain level of transparency for the interactions
with each local database or a workflow system that needs to support long-living
transactions.

1 There are two approaches to guarantee consistency. One implementation is to incorporate integrity
control into DBMSs [Grefen 1993]. Another is to comply with the integrity constraints through the effort
of application designers instead of TP systems [Gray and Reuter 1993].

 7

3 Advanced transaction models

As mentioned in the previous section, ACID transactions, though very simple and
secure, lack the ability to support the cases requiring long-living and/or complex
transactions. Therefore a lot of advanced transaction models appeared to address such
needs.

The basic idea of advanced transaction models is to divide a transaction into sub-
transactions according to the semantics of the applications. These sub-transactions, also
referred to as component transactions, can also be divided, if necessary, until every sub-
transaction has a flat structure. The advanced transactions can perform more complex
and longer-lasting tasks. For instance, when a failure occurs during a long-living
transactional process, the system might restart from the middle of the transaction instead
of the very beginning.

3.1 The save point concept
The partial rollback is supported by the mechanism of the save point, a concept first
introduced in [Astrahan et al. 1976]. The authors suggested that during the execution of
a transaction, a save point can be marked to return a save point number for subsequent
reference. At each save point, special entries are stored containing the state of the
database context in use by the transaction, and the identity of the lock acquired most
recently. When a transaction fails, it can recover back to the recorded save point, where
it restores the corresponding context and releases locks acquired after this save point.
This way, rollback can return the system to a previous state in case of failure. There are
some observations on the rollback mechanism using save points. For example, despite
of the rollback of the database to the previously recorded state, the transaction’s local
variables are not rolled back, which means the transaction should adopt another
alternative execution path after the rollback. Furthermore, after a rollback to one save
point, the subsequently created save points are lost. Although the idea of persistent save
point had been proposed to overcome the deficiency, it is hard to implement this idea in
reality. For example, the database content can be rolled back to the previous state, but
the local programming language variables will be lost. Another notice is that rollback is
different from abortion. When aborted, the transaction is rolled back to the state when it
started and the execution doesn’t continue anymore. In contrast, a transaction rolled
back to a save point still continues execution until it completes.

Although the save point mechanism can be used in combination with flat transactions, it
gives more hints to the later development of advanced transaction models that have
been proposed since the mid 1980s, i.e. distributed transactions, nested transactions,
chained transactions etc. These models are more or less application specific, each of
them addressing the need for a given situation. For example, if an organization needs to
integrate several database systems residing in different servers to perform more
comprehensive tasks in a multi-database system (MDBS), a distributed transaction or
sometimes referred to as a multi-database transaction is needed. When considering
complex-structured applications, a nested transaction properly addresses the need. For a
time-consuming application with long-lasting transaction processes, a chained
transaction is suitable to handle the problem. The above mentioned models are the

 8

examples of applying the idea of save point in different cases. A chained transaction is a
variation of save points while the nested transaction is a generalization of save points
[Gray and Reuter 1993].

3.2 Distributed and nested transactions
Distributed transactions consist of sub-transactions that may access multiple local
database systems. Consequently, in addition to meeting integrity constraints in local
systems, there are global integrity constraints imposed by the MDBS. Other concerns
like global atomicity and isolation are also addressed. The whole transaction should be
aborted if any sub-transaction fails. In [Breitbart et al. 1992], a most popular model at
that time, ‘base transaction model’ was introduced and possible extensions to this basic
model were proposed. The model defines two types of transactions, local ones and
global ones. Several approaches to realize transaction atomicity and database
consistency were discussed. Their work provides an overview of the most recent work
until then in the MDBS area and raises some open problems for future research.
Distributed transactions use a bottom-up approach to divide transactions into sub-
transactions from a geographical point of view.

The most influential work underlying distributed transactions is the X/Open
Distributed Transaction Processing (X/Open DTP) model, a software architecture
developed by X/Open, a consortium of vendors who are defining portability standards
for the UNIX environment. It allows multiple application programs to share resources
provided by multiple resource managers, e.g. databases, and allows their work to be
coordinated into global transactions [X/Open Ltd. 1996]. The X/Open DTP model is a
standard for Two Phase Commit (2-PC) protocol, a key technology ensuring agreed
outcome between participants in a distributed transaction. In the X/Open DTP model,
the transaction manager, which is a functional component managing global transactions
and coordinating the decision to start, commit or roll back, ensures atomicity at a global
level, while each resource manager is responsible for ACID properties of its own
resources.

In contrast to the distributed transactions, nested transactions adopt a top-down
method to decompose a complex transaction into sub-transactions or child transactions
according to their functionalities. The concept was first proposed in [Moss 1981] as the
first discussion about programming transactions in a structured way. As it claims,
nested transactions overcome the shortcomings of single-level transactions, for example,
by permitting parts of a transaction to fail without necessarily aborting the entire
transaction. The idea is that a transaction is composed of sub-transactions in a
hierarchical manner, which means a sub-transaction can be divided into further sub-
transactions if necessary, but only the leaf-level sub-transactions really perform
database operations while others function as coordinators. A child transaction can only
start after its parent starts and a parent can only commit after all its children have been
terminated. The commitment of a child transaction is conditional on the commitment of
its parents. Each child is atomic, thus it can abort independently regardless of its parent
and siblings. When it aborts, the parent will take an action, like trigging another sub-
transaction as an alternative. The aborted sub-transaction results as if it had not
executed. It in fact changed the state of the database, and thus, a sub-transaction is not

 9

always consistent. However, the whole nested transaction still keeps the database
consistent. The mechanism of the model is very powerful and has a strong relationship
with the concept of modularization in software engineering [Gray and Reuter 1993].
This idea gained a lot of attention -- later on, there appeared some models based on it.

Based on the mechanism of nested transactions, in [Weikum and Schek, 1992],
multilevel transactions (also called layered transactions) and their generalization, open
nested transactions, were proposed. The authors present the concept of multilevel
transactions as a variation of nested transactions where all transaction trees have their
levels corresponding to the layers of the underlying system architecture. Note that the
leaf nodes are all at the bottom level, i.e. the depths of these leaves are the same. They
introduce the concept of pre-commit, which allows for the early commitment of a sub-
transaction before the root transaction actually commits, thereby making it impossible
to roll back in a traditional way. When a parent transaction needs to roll back a sub-
transaction, it uses a compensating sub-transaction to semantically undo the committed
one instead of using a state-based undo. Note that there are three differences from the
nested transactions [Lewis et al. 2002]. First, children are executed only sequentially,
not concurrently. Second, all the leaf-level sub-transactions are at the same bottom level
in the transaction tree. Third, the commitment of a sub-transaction is unconditional,
thereby making the result visible to other concurrently executing sub-transactions at the
same level. Based on this model, if the structure of the transaction tree is no longer
restricted to layering, thus leaves in different levels are allowed, multilevel transactions
then evolve to open nested transactions. The authors investigated how open nested
transactions relax the ACID properties to achieve the ideal orthogonality so that each of
ACID properties can be omitted without affecting the others, to some extent. Compared
to the nested transactions that guarantee global level isolation, which means the
intermediate results of committed sub-transactions in nested transactions are invisible to
other concurrently executing ones, open nested transactions relax the isolation property
in the global level to achieve a higher level of concurrency.

3.3 Chained transactions and sagas
Although the nested transaction and its extensions are more powerful than the classical
flat transaction, they are only fit for some specific environments like federated
databases but are not suitable for environments requiring long-lived transactions. In
such cases, the idea of chained transactions by decomposing a long running
transaction into small, sequentially-executing sub-transactions was adopted. According
to [Gray and Reuter 1993], the idea originates from IBM’s Information Management
System (IMS) and HP’s Allbase database products. This idea is a variation of the save
point mechanism that a sub-transaction in the chain roughly corresponds to a save point
interval. However, the essential difference is that each sub-transaction itself is atomic,
while each interval between every two save points is only part of an atomic transaction.
In the chain, a committed sub-transaction triggers the next upon commitment, one by
one, until the whole chained transactions commit. When encountering a failure, the
previously committed sub-transactions would have already made durable changes to the
database so that only the results of the currently executing sub-transaction are lost. This
way the rollback only returns the system to the beginning of the most recently-executing
sub-transaction. Notably, from the application perspective, the atomicity and isolation

 10

properties are no longer guaranteed by the whole chain. For example, in the middle of
execution, all the committed sub-transactions cannot be undone, which leads to a
problem to abort the whole chain. Another case is that other concurrent transactions can
see the intermediate results generated during the execution of the chain.

Based on the idea of chained transactions, Sagas were proposed with combination of a
compensation mechanism to roll back. The saga model described in [Garcia-Molina and
Salem 1987] is a classical transaction model used as a foundation of many later
transaction frameworks. Sagas divide a long lasting transaction into sequentially
executed sub-transactions and each sub-transaction, except the last one, has a
corresponding compensating sub-transaction. All these sub-transactions are atomic with
ACID properties. When any failure arises, the committed sub-transactions are undone
by those compensating sub-transactions. Unlike the non-atomic chained transactions
that cannot undo the committed sub-transactions in the case of an abort, sagas can use
compensating sub-transactions to return the whole transaction back to the very
beginning. Note that the recovered start state is not exactly the same as the original start
state but only equivalent to it from an application point of view. In this sense, sagas in a
whole still preserve application-dependent atomicity. Similar to chained transactions, a
saga transaction may be interleaved with other current transactions, thus isolation is not
guaranteed. Consequently, consistency in sagas is not realized by serializability. Some
extensions of saga models are introduced in [Chrysanthis and Ramamritham 1992] with
more recovery options.

3.4 Conclusion on advanced transaction models
The above advanced transaction models can be viewed as various extensions to flat
transactions that release one or more ACID constraints to meet with specific
requirements. Through their different structures and applying environments, we can
observe that there are two strategies adopted to extend the simple ACID transactions.
One is to modularize a complex transaction with hierarchies. By this means, a big
transaction is divided into smaller components, which can in turn be decomposed. This
strategy has been applied in various transactions including distributed transactions,
nested transactions, multilevel transactions, and open nested transactions. With the
modularization of a complex transaction, the structure is clearer from a semantic
perspective. Another strategy is applied in chained transactions, sagas etc through
decomposing a long-lasting transaction into shorter sub-transactions. By means of
splitting the long processing time, each transaction can be divided into a sequential
series of smaller components that are operated in a shorter time thus minimizing the
work lost during a clash.

However, the avalanche of the advanced models does not mean that flat transactions
have been replaced by these more powerful models. On the contrary, because of their
simple structures and easily implemented ACID properties, flat transactions still
dominate the database world.

 11

4 ACTA model

Besides the proposals of the transaction models discussed in the previous section, a
novel attempt was made in [Chrysanthis and Ramamritham 1990], which develops a
comprehensive framework named ACTA by unifying existing models to capture the
semantics and reason for the concurrency and recovery properties of complex
transactions.

4.1 Original ACTA framework
In the ACTA framework the behavior of active components (transactions) and passive
components (objects) represents the behavior of a transaction system. Interactions
among transactions are expressed in terms of effects, i.e. effects of transactions on other
transactions and effects of transactions on objects they access.

Two types of effects that transactions have on other transactions are specified as
‘commit-dependency’ and ‘abort-dependency’. Commit-dependency describes the
relationship of one transaction T1 on another transaction T2 that T1 cannot commit until
T2 either commits or aborts. Abort-dependency describes the relationship of T1 on T2,
that if T2 aborts, then T1 should also abort.

The framework captures the effects of transactions on objects by two objects sets and
the concept of delegation. Every transaction is associated with a few objects contained
in ‘view set’ or ‘access set’. View set contains all the objects potentially accessible to
the transaction while access set contains the objects that are already accessed by the
transaction. Transactions make changes on the objects through three forms of delegation,
i.e. ‘delegation of state’, ‘delegation of status’ and ‘limited delegation’. Delegation of
state describes the ability of a delegator (delegating transaction) to move the objects
from its access set to the delegatee’s (delegated transaction) access set. Delegation of
status represents the ability of the delegator to undo the changes on the objects before
those objects are moved to the access set of the delegatee. Limited delegation implies
the ability to make the changes to the objects persistent in the view set before adding
them to the access set of the target transaction. Through the delegation mechanism, the
visibility of objects can be controlled.

When conjuncting with commit and abort dependencies, delegation can also specify the
recovery properties of a transaction model. This way, via formalized expressions
describing the dependencies, object sets and delegations, ACTA allows for the
specification of the structure and behavior of transactions as well as reasoning their
concurrency and recovery properties.

4.2 Later developments
From the above description, ACTA is a meta-model that can be used to flexibly develop
new transaction models. This approach inspired the later ASSET model proposed in
[Biliris et al., 1994], which uses primitives at a programming language level based on
ACTA building blocks such as ‘history’, ‘delegation’, ‘dependency’, ‘conflict set’ etc.
However, the demonstration of the power of the ACTA framework by 5 transaction

 12

models seems inadequate. Not all the types of the popular models are included, for
example, the saga and multilevel transaction models. In addition, its complexity also
makes it difficult to implement.

 13

5 Workflow transactions

Based on the advanced transaction models discussed in Section 3, specific transaction
models have been designed for the support of business processes, usually identified as
workflow transaction models or transactional workflows2. Below, we first explain the
concept of transactional workflows. Next, we describe two example approaches that are
highly relevant to the XTC project.

5.1 The transactional workflow concept
The concept of transactional workflow was first introduced in [Sheth and
Rusinkiewicz 1993] to clearly state the relevance of transactions to workflows. Since
the mid 1990s, two developments took place in the area of workflow technologies. One
is the development of the transaction model supporting workflows and the other is the
development of languages for workflow specification. From a transactional point of
view, workflows are generalized extended transactions with focus on the automation of
the complex, long-lasting business processes in distributed and heterogeneous systems.
A workflow process may involve database transactions or human activities, so the
ACID properties would not be the major concern anymore. Similar to the
decomposition mechanism of advanced transaction models, a workflow process can be
modeled by decomposition into some sub-processes in a hierarchical or sequential way.
From this perspective, a workflow process can be viewed as a complex transaction
hierarchically or sequentially consisting of sub-transactions and/or non-transactional
tasks. A lot of work has been done in this area to address the need for transaction
support in a process-centric environment.

5.2 WIDE model
In [Grefen et al. 1997], a two-layer transaction model, known as the WIDE transaction
model, was presented. The bottom layer consists of local transactions with a nested
structure that conform to the ACID properties [Boertjes et al. 1998]. The upper layer is
based on Sagas that roll back the completed sub-transactions using the compensation
mechanism, thus relaxing the requirement of atomicity. The semantics of the upper
layer have been formalized using simple set and graph theory [Grefen et al. 2001]. The
local transaction layer was designed to model low-level, relatively short-living business
processes, whilst the global transaction was designed to model high-level long-living
business processes.

This flexible approach was adopted later in [Vonk and Grefen 2003] in order to develop
a more comprehensive X-transaction model. Note that these two models address the
needs in different contexts. The WIDE transactional model caters for intra-
organizational workflow while the X-transaction model can deal with specific inter-
organizational workflow.

2 The relation of workflows and transactions can be of various nature, depending on the point of view
[Grefen 2002]. This has resulted in diverse approaches [Grefen 1999].

 14

5.3 X-transaction model
The X-transaction model is a three-level, compensation based transaction model for
inter-organizational workflow management in the CrossFlow project, where a
contracted service outsourcing paradigm was supposed [Vonk and Grefen 2003]. The
three levels in this model are the outsourcing level, contract level and internal level,
each with a different visibility to the consumer or the provider.

The model views an entire workflow process as a transaction. For intra-organizational
processes, they can be divided into smaller I-steps that adhere to ACID properties. Each
I-step has a compensating step in case of failure. Similar to this idea, a contract-level
cross-organizational process is divided into X-steps, each of which corresponds to one
or more I-steps. The model also introduced a concept of the safe point, which is similar
to the save points in Sagas. With the components of I-steps, X-steps and compensating
steps, the X-transactional model realizes a flexible intra- or cross- organizational
rollback effect so as to support all the scenarios with all the combinations of rollback
scopes and rollback modes. An architecture to support this model was also proposed.

There are three layers in the architecture as in the transaction model, where a
dynamically created upper layer is built on the top of the static layer, which involves
local Workflow Management Systems. Between them, an isolation layer exists to
provide portability with respect to specific WFMSs.

 15

6 Web services transactions

From the late 1990s until now, more and more attention has been placed on the area of
transactions in the loosely-coupled Web services (WS) world. In addition to other
accepted standards such as SOAP, WSDL, UDDI etc., a technique to guarantee the
consistency and reliability of WS applications is needed. However, there is no such
mature transaction mechanism that is widely accepted as a standard. Currently, there are
three possible candidates, which we discuss below. Next, we compare the approaches.

6.1 BTP, WS-Tx and WS-CAF

The first candidate is the Business Transaction Protocol (BTP) [Ceponkus et al. 2002]
developed by OASIS, which, as its name shows, is not exclusively designed for Web
services but also for non-Web services applications. BTP is an eXtensible Markup
Language (XML) based protocol for representing and seamlessly managing complex,
multi-step business-to-business (B2B) transactions over the Internet.

The second candidate is the Web Services Transactions (WS-Tx) specification
consisting of WS-Coordination (WS-C) specification, WS-AtomicTransaction (WS-AT)
specification and WS-BusinessActivity (WS-BA) specification initiated by Microsoft,
IBM and BEA [Cabrera et al. 2004a, Cabrera et al. 2004b, Cabrera et al. 2004c]. WS-Tx
specifications define mechanisms for transactional interoperability between Web
services domains and provide a means to compose transactional qualities of service into
WS applications. Among the specifications, WS-C describes an extensible coordination
framework to coordinate the distributed applications. WS-AT specifies the coordination
type for ACID transactions and WS-BA specifies the type for long-running business
transactions.

The third candidate, WS Composite Application Framework (WS-CAF) [Bunting et
al. 2003a], is also under the umbrella of OASIS initiated by a consortium consisting of
SUN, Oracle, Arijuna etc., with the purpose of developing an interoperable, easy to use
and implement framework for composite WS applications. Similar with WS-Tx, it is
also a series of specifications consisting of WS Context [Bunting et al. 2003b], WS
Coordination Framework [Bunting et al. 2003c] and WS Transaction Management
[Bunting et al. 2003d].

6.2 Comparing the approaches

In [Little and Freund 2003], a comparison between BTP and WS-Tx is made. This
paper shows how these two specifications both attempt to address the problems of
running transactions with Web services. With a clear list of pros and cons, the authors
make a comparative analysis of the two competitors in a table. At the end, they
conclude that the two specifications differ in some critical areas such as transaction
interoperability. It also concludes that BTP lacks ‘the ability to use existing enterprise
infrastructures and applications and for Web services transactions to operate as the glue
between different corporate domains’. Considering the fact that large strongly-coupled
corporate infrastructures exist behind those loosely-coupled Web services, the authors

 16

call for the attention of leveraging ACID transactions, which underlying the internal
corporate infrastructures, instead of replacing them with new models to design WS
transactions.

Another comparison of the above mentioned three specifications is presented in [Kratz
2004]. This technical report gives a detailed overview of the three specifications and
highlights the differences between the three candidates. At the end, the author points out
the need for one open standard to realize the interoperability both in Web services and
business areas, possibly by integrating the existing ones within the WS-CAF framework.

In [Jin and Goschnick 2003], it is stated that BTP is the most appropriate candidate to
be an Internet transaction standard. The authors present an Agent Based Transactional
(ABT) model by applying the ‘Shadowboard Agent Architecture’ to the wrapping of the
existing services as Web services. They claim that using agent technology for
transaction management is the right choice in the Web services environment. The
benefit of the ABT model, according to the authors, is that it can flexibly choose
alternative participants to reduce the rollback and compensation chances. This is a novel
attempt to combine Web services with agent technologies. However, it is still in a
preliminary stage. The implementation is only based on a simple scenario, which can be
realized by existing technologies.

 17

7 Grid transactions

Like an electricity power grid that pools together distributed electric energy, Grid
computing is a form of distributed computing that involves coordinating and sharing of
computing resources across the web globally. Because of its vision to create a
worldwide network of computers that act as if they are one, Grid computing makes the
exclusive immense computing power previously only available to a few organizations
now available to everyone. This new emerging technology has been gaining a lot of
attention from its birth.

With more and more projects launched, among them the largest one, CoreGRID
commenced on 1 September 2004, a lot of research is available within the areas of
infrastructure and middleware. Much less effort is spent in the area of Grid transactions,
however. Below, we describe two efforts currently ongoing in this area.

7.1 Ongoing work in Grid transactions
TM-RG (GGF Transaction Management Research Group), initiated in Europe, is
working on Grid transactions with the goal of investigating how to apply transaction
management (TM) techniques to Grid systems. It is stated in the charter [Steinbach et al.
2004] that ‘a common grid transaction service would contribute a useful building block
for professional grid systems’. The group is trying to implement possible Grid
transaction approaches that may develop on the basis of Web services transactions as
discussed in Section 6. However, there is no research output yet from this group.

In Shanghai Jiang Tong University, a group is working on a new service-oriented Grid
Transaction Processing architecture called GridTP based on the Open Grid Services
Architecture (OGSA) platform and the X/Open DTP model [Qi et al. 2004]. It is
claimed that GridTP provides a consistent and effective way of making existing
autonomously managed databases available within Grid environments.

One recently available paper [Türker et al. 2005] tackles some of the highlighting
questions in this emerging research area in terms of how transactions fit into a grid
environment. A protocol ensuring correct executions of concurrent applications in the
global level with the absence of a global coordinator is proposed to realize the concept
of distributed, peer-to-peer grid transactions. The approach in this paper is based on
some known concepts and techniques, such as the recoverability criterion, serialization
graph testing and partial rollback. The main idea of the approach is that dependencies
between transactions are managed by the transactions, so globally correct executions
can be achieved even without the complete knowledge gained from communications
among dependent transactions and the peers they have accessed. The idea is innovative
in the sense that it uniquely combines old concepts and techniques for a new purpose.

7.2 Comparing the approaches
It is hard to properly evaluate and compare the above approaches at this early stage in
such a new area. We can expect that with the developments of Grid technology, the

 18

need for a standard protocol to provide transactional support will be on the agenda as
Grid computing does need a reliable way to coordinate and communicate.

 19

8 Conclusion

From the discussion of transaction management in this paper, a clear historical thread
from the classic age to modern times is revealed reflecting the transition from database
transactions to workflow transactions to grid transactions.

We notice that, with the development of information technology toward a broader
geographical scope and larger scale, the future trend of transaction management is
correspondingly following a direction to address the need for more functionalities and
better performance in a distributed, heterogeneous, cross-organizational environment.
This need is essentially prominent in an era witnessing a rapidly increasing e-business,
which often involves multiple organizations all across the world dynamically
establishing business relationships over the Internet.

However, despite the complex requirements developed through all these years, the
fundamental idea that a transaction provides a reliable approach to achieve mutually
agreed goals remains the same when designing new transaction models or frameworks.

 20

References

Astrahan, M., et al., (1976). System R: A relational approach to database management.
ACM Transactions on Database Systems 1(2): 97-137.

Biliris. A., et al., (1994). ASSET: A System for Supporting Extended Transactions.
Proceedings of ACM SIGMOD Conference on Management of Data: 44-54,
Minneapolis, MN.

Boertjes, E., et al., (1998). An Architecture for Nested Transaction Support on Standard
Database Systems. Proceedings 9th International Conference on Database and Expert
System Applications (DEXA): 448-459.

Breitbart, Y., et al., (1992). Overview of multidatabase transaction management. VLDB
Journal 1(2): 181-240.

Bunting, D., et al., (2003a). Web Service Context (WS-CTX).

Bunting, D., et al., (2003b). Web Service Coordination Framework (WS-CF).

Bunting, D., et al., (2003c). Web Services Composite Application Framework (WS-
CAF).

Bunting, D., et al., (2003d). Web Services Transaction Management (WS-TXM).

Cabrera, L.F., et al., (2004a). Web Service Coordination (WS-Coordination).

Cabrera, L.F., et al., (2004b). Web Services Atomic Transaction (WS-Atomic
Transaction).

Cabrera, L.F., et al., (2004c). Web Services Business Activity Framework (WS-
Business Activity).

Ceponkus, A., et al., (2002). Business transaction protocol version 1.0.

Chrysanthis, P. K., and Ramamritham, K., (1990). ACTA: A Framework for Specifying
and Reasoning about Transaction Structure and Behavior. Proceedings of the ACM
SIGMOD International Conference on Management of Data: 194-203.

Chrysanthis, P. K., and Ramamritham, K., (1992). ACTA: The SAGA continues. In
Elmagarmid, A., editor, Database Transaction Models for Advanced Applications.
Morgan Kaufmann Publishers.

Garcia-Molina, H., and Salem, K., (1987). Sagas. Proceedings of the ACM SIGMOD
International Conference on Management of Data: 249-259, San Francisco.

Gray, J., and Reuter, A., (1993). Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, San Francisco.

 21

Grefen, P., and Apers, P., (1993). Integrity Control in Relational Database Systems - An
Overview. Journal of Data & Knowledge Engineering (10)2: 187-223.

Grefen, P., et al., (1997). Two-Layer Transaction Management for Workflow
Management Applications. DEXA 1997: 430-439.

Grefen, P., (1999). Advanced Architectures for Transactional Workflows - or -
Advanced Transactions in Workflow Architectures. Proceedings International Process
Technology Workshop (IPTW).

Grefen, P., et al., (2001). Global Transaction Support for Workflow Management
Systems: from Formal Specification to Practical Implementation. VLDB Journal
(10)4: 316-333.

Grefen, P., (2002). Transactional Workflows or Workflow Transactions?, Proceedings
13th International Conference on Database and Expert Systems Applications (DEXA):
60-69.

Haerder, T., and Reuter, A., (1983). Principles of transaction-oriented database recovery.
ACM computing Surveys 15(4): 287-317.

Jin, T., and Goschnick, S., (2003). Utilizing Web Services in an Agent-based
Transaction Model (ABT). International workshop on Web Services and Agent-based
Engineering (WSABE-2003), held in conjunction with AAMAS-2003: 1-9, Melbourne,
Australia.

Kratz, B., (2004). Protocols For Long Running Business Transactions.

Lewis, P. M., et al., (2002). Databases and Transaction Processing: An Application-
Oriented Approach. Addison-Wesley, United States

Moss, J. E. B., (1981). Nested Transactions: An Approach to Reliable Distributed
Computing. PhD thesis, EECS Department, M.I.T.

Qi, Z., et al., (2004). Integrating X/Open DTP into Grid Services for Grid Transaction
Processing. 10th IEEE International Workshop on Future Trends of Distributed
Computing Systems (FTDCS'04): 128-134, Suzhou, China.

Ramamritham, K., and Chrysanthis, P. K., (1997). Advances in Concurrency Control
and Transaction Processing. IEEE Computer Society Press, Los Alamitos, California.

Sheth, A., and Rusinkiewicz, M., (1993). On Transactional Workflows. In Hsu, M.,
editor (1993). Special Issue on Workflow and Extended Transaction Systems, volume 16.
IEEE Computer Society, Washington, DC.

Steinbach T., et al., (2004) Proposed Grid Transactions RG – Charter at
http://www.data-grid.org/tm-rg-charter.html

 22

Türker, C., el al., (2005). How can we support Grid Transactions? Towards Peer-to-Peer
Transaction Processing. Proceedings of the 2005 CIDR Conference, Asilomar,
California.

Vonk, J., and Grefen, P., (2003). Cross-Organizational Transaction Support for E-
Services in Virtual Enterprises. Distributed and Parallel Databases 14(2): 137-172.

Warne, J., (1993). An extensible transaction framework: Technical overview.
Cambridge, U.K.

Weikum, G., (1991). Principles and realization strategies of multilevel transaction
management. ACM Transactions on Database Systems 16(1): 132-180.

Weikum, G., and Schek, H., (1992). Concepts and Applications of Multilevel
Transactions and Open Nested Transactions. In Elmagarmid, A., editor, Database
Transaction Models for Advanced Applications. Morgan Kaufmann Publishers.

X/Open Company Ltd., (1996). Distributed Transaction Processing: Reference Model,
version 3. X/Open Company Ltd., U.K.

