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Abstract 
 

This is a working paper for the XTraConServe (XTC) Project, which aims 
to develop concepts and support facilities for a Business Transaction 
Framework (BTF) that utilizes abstract transactional constructs (ATCs) to 
provide a generic foundation for support of complex transactional services 
in contract-driven inter-organizational business interactions that rely on 
dynamically composed web services. In this paper, we investigate the 
classical transaction models and the key concepts and techniques with 
regard to transaction management. Some well-known work that has been or 
is being done in different application domains is reviewed following a time 
line, which reveals the development of transactions from the simplest no-
structure model to the complex framework with hierarchical or layered 
structures.  
 
Keywords: transaction; transaction model; transaction framework; 
transaction management 
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1 Introduction 

In this paper, we investigate the classical transaction models and the key concepts and 
techniques with regard to transaction management from a historic perspective. In this 
introduction, we first discuss the transaction concept. Next, we explain the basis for the 
timeline we use in our historic treatment. At the end of this introduction, we discuss the 
structure of this paper. 

1.1 The transaction concept 
What is a transaction? Actually, the concept of a transaction was invented as early as 
6000 years ago, when Sumerians noted down and scribed on clay tablets in order to 
keep records of the changes of royal possessions. Generally speaking, a transaction is a 
transformation from one state to another. Over several thousand years, the concept has 
found its way into a broad range of disciplines. For example, in the business world, a 
transaction is defined as an agreement between a buyer and a seller to exchange an asset 
for payment. While in the database world, the real state of outside world is abstracted 
from and modeled by a database where the transformation of the state is reflected by an 
update of the database. From this perspective, a transaction can be defined as a group of 
operations executed to perform some specific functions by accessing and/or updating a 
database. These operations are in fact a kind of program designed to consistently 
interact with a database system. Later, with the wider use of transactional support in the 
IT domain, the original definition of a database transaction was generalized and 
extended by imposing a complex structure to support diversified applications. 
 
In this paper, we use the term ‘transaction’ to refer to a reliable and coherent process 
unit interacting with one or more systems, independently of other transactions that 
provides a certain service or function for a running application. This new definition 
reflects the requirements for transactions that are able to capture more complex 
semantics arising from a broader range of application areas such as workflow 
management, Web services and Grid computing. 

1.2 An overview of the history of transaction management 
In this paper, we provide a survey of transaction management from a temporal 
perspective, i.e. we follow the history of transaction management from the ‘early dark 
days’ to current state of the art. In doing so, we distinguish between the following ‘ages’ 
in transaction management: 

Stone Age. In the stone age, no explicit transaction management models and 
mechanisms were available. Reliability of business processes running on (database) 
systems was often not yet considered an issue at all. And if it was, its support was 
entirely the responsibility of application logic. As this age is not too interesting from 
a transaction management point of view, we do not pay attention to it in this paper. 

Classic History. During the classic history, people realized that reliability of processes 
in multi-user, concurrent environments is an issue that deserves explicit attention – or 
rather requires explicit attention in order to keep things running correctly. In this age, 
the basic transaction model and mechanisms saw the light. 
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Middle Ages. In the middle ages, business application grew more complex and hence 
the requirements to transaction management rapidly increased. Consequently, the 
simple models and mechanisms developed in the classic history were not sufficient 
anymore. Consequently, a large variation of advanced transaction models and 
mechanisms supporting these requirements were developed for various application 
domains. 

Modern Times. In modern times, we see the emergence of new application domains, in 
which the Internet usually plays a prominent role. To allow the proper operation of 
business processes in this new environment, transaction management has to be 
‘ported’ to the Internet as well. This means, that the results of the previous ages of 
transaction management history are made fit for application in the Internet 
environment. 

1.3 Structure of this paper 
This paper gives an overview from the classical transaction models to the state-of-the-
art work in the field of transaction management, moving from classic history to modern 
times. 
 
We start the discussion of the classic history of transaction management in Section 2. 
We discuss the most basic transactions first used in a single database system – referred 
to as ACID transactions.  
 
From Section 3, we proceed to the middle ages. In Section 3, we discuss the 
development of various extended transactions models, often referred to as advanced 
transaction models. In section 4, a synthesized meta-model for advanced transaction 
models, named ACTA, is described. Section 5 investigates a specific application 
domain: the transactional support for workflow systems. We apply a focus on the 
models proposed in the WIDE and CrossFlow projects, which closely relate to the XTC 
project. 
 
From Section 6, we enter the modern times. Section 6 gives an overview of transaction 
support for the Web services world in the Internet environment. Afterwards, the work 
that is being done in Grid transactions is discussed in Section 7.  
 
We end this paper with conclusions in Section 8. 
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2 ACID Transactions 

As a database is an abstract representation that models part of a real organization and 
keeps its state consistent with the state of that organization, the programs interacting 
with the database need to reflect the requirements of real-world business. These 
requirements impose additional restrictions when designing a transaction. From the mid 
1970s, some papers were published with early attempts to introduce these restrictions. 
This was the groundwork for the later defined properties generally known by the 
famous acronym ‘ACID’. The ACID properties are the basis for the classic form of 
transactions known as ‘traditional transactions’ or ‘flat transactions’. 

2.1 ACID and VCRP properties 
The ACID properties are [Haerder and Reuter 1983]: 

Atomicity: A transaction either runs completely or has no effect at all, which means 
from the outside, that a transaction appears to have no observable intermediate states 
or it has never left the initial state. 

Consistency: A transaction is a correct program and preserves all the integrity 
constraints. After the execution, the new state of the database complies with all the 
consistency constraints. 

Isolation: A transaction is executed as if there are no other concurrent transactions. The 
effect of the concurrent transactions is the same as the effect when the transactions 
are executed serially.  

Durability: A transaction completes successfully and thus makes a permanent change 
to the state of the database. Consequently, the results from a transaction must be able 
to be reestablished after any possible failures. 

 
In fact, there is a more general corresponding representation of ACID properties: VCRP 
(Visibility; Consistency; Recovery; Permanence), which can be used as four 
measurements of transactions. Visibility represents the ability of an executing 
transaction to see the results of other transactions. Consistency refers to the correctness 
of the state of the database after a transaction is committed. Recovery means the ability 
to recover the database to the previous correct state in case of failures. Permanence is 
the ability of a successfully committed transaction to change the state of the database 
without the loss of the results when encountering failures. In [Warne 1993], the authors 
use these four notions to analyze and compare some transaction models such as nested 
transactions, sagas etc. This paper provides a standard framework to evaluate 
transactions by capturing the key characteristics of them. 

2.2 Flat transactions 
When we apply VCRP to evaluate the traditional transactions or flat transactions 
with no internal structures, we get the strict ACID properties that are essential for these 
relatively simple transactions. The underlying transaction processing (TP) system is 
responsible for ensuring the ACID properties. A TP system generally consists of a TP 
Monitor, which is a system program providing a middleware solution to manage 



 6

transactions and control their access to a Database Management System (DBMS), one 
or more DBMSs and a set of application programs containing transactions [Lewis et al. 
2002]. Atomicity and durability are guaranteed by the mechanism of recovery that is 
usually implemented by maintaining a log of update operations so that ‘redo’ and 
‘undo’ actions can be performed when required. Isolation is guaranteed by the 
mechanism of concurrency control, which is implemented by using locks during the 
transaction process. A detailed overview of concurrency control and recovery 
techniques is available in [Ramamritham and Chrysanthis 1997]. Consistency is 
guaranteed by the integrity control mechanism usually provided by the TP system, 
though not complete in a strict sense.1 
  
Flat transactions have proven to be very useful in traditional database applications 
where the execution time is relatively short, the number of concurrent transactions is 
relatively small and the database system only resides in one server. However, they lack 
the flexibility to meet the requirements of the applications developed later, for example, 
multi-database operations that need a certain level of transparency for the interactions 
with each local database or a workflow system that needs to support long-living 
transactions.  
 

                                                 
1 There are two approaches to guarantee consistency. One implementation is to incorporate integrity 
control into DBMSs [Grefen 1993]. Another is to comply with the integrity constraints through the effort 
of application designers instead of TP systems [Gray and Reuter 1993].  



 7

3 Advanced transaction models 

As mentioned in the previous section, ACID transactions, though very simple and 
secure, lack the ability to support the cases requiring long-living and/or complex 
transactions. Therefore a lot of advanced transaction models appeared to address such 
needs. 
 
The basic idea of advanced transaction models is to divide a transaction into sub-
transactions according to the semantics of the applications. These sub-transactions, also 
referred to as component transactions, can also be divided, if necessary, until every sub-
transaction has a flat structure. The advanced transactions can perform more complex 
and longer-lasting tasks. For instance, when a failure occurs during a long-living 
transactional process, the system might restart from the middle of the transaction instead 
of the very beginning.  

3.1 The save point concept 
The partial rollback is supported by the mechanism of the save point, a concept first 
introduced in [Astrahan et al. 1976]. The authors suggested that during the execution of 
a transaction, a save point can be marked to return a save point number for subsequent 
reference. At each save point, special entries are stored containing the state of the 
database context in use by the transaction, and the identity of the lock acquired most 
recently. When a transaction fails, it can recover back to the recorded save point, where 
it restores the corresponding context and releases locks acquired after this save point. 
This way, rollback can return the system to a previous state in case of failure. There are 
some observations on the rollback mechanism using save points. For example, despite 
of the rollback of the database to the previously recorded state, the transaction’s local 
variables are not rolled back, which means the transaction should adopt another 
alternative execution path after the rollback. Furthermore, after a rollback to one save 
point, the subsequently created save points are lost. Although the idea of persistent save 
point had been proposed to overcome the deficiency, it is hard to implement this idea in 
reality. For example, the database content can be rolled back to the previous state, but 
the local programming language variables will be lost. Another notice is that rollback is 
different from abortion. When aborted, the transaction is rolled back to the state when it 
started and the execution doesn’t continue anymore. In contrast, a transaction rolled 
back to a save point still continues execution until it completes. 
 
Although the save point mechanism can be used in combination with flat transactions, it 
gives more hints to the later development of advanced transaction models that have 
been proposed since the mid 1980s, i.e. distributed transactions, nested transactions, 
chained transactions etc. These models are more or less application specific, each of 
them addressing the need for a given situation. For example, if an organization needs to 
integrate several database systems residing in different servers to perform more 
comprehensive tasks in a multi-database system (MDBS), a distributed transaction or 
sometimes referred to as a multi-database transaction is needed. When considering 
complex-structured applications, a nested transaction properly addresses the need.  For a 
time-consuming application with long-lasting transaction processes, a chained 
transaction is suitable to handle the problem. The above mentioned models are the 
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examples of applying the idea of save point in different cases. A chained transaction is a 
variation of save points while the nested transaction is a generalization of save points 
[Gray and Reuter 1993]. 

3.2 Distributed and nested transactions 
Distributed transactions consist of sub-transactions that may access multiple local 
database systems. Consequently, in addition to meeting integrity constraints in local 
systems, there are global integrity constraints imposed by the MDBS. Other concerns 
like global atomicity and isolation are also addressed. The whole transaction should be 
aborted if any sub-transaction fails. In [Breitbart et al. 1992], a most popular model at 
that time, ‘base transaction model’ was introduced and possible extensions to this basic 
model were proposed. The model defines two types of transactions, local ones and 
global ones. Several approaches to realize transaction atomicity and database 
consistency were discussed. Their work provides an overview of the most recent work 
until then in the MDBS area and raises some open problems for future research. 
Distributed transactions use a bottom-up approach to divide transactions into sub-
transactions from a geographical point of view.  
 
The most influential work underlying distributed transactions is the X/Open 
Distributed Transaction Processing (X/Open DTP) model, a software architecture 
developed by X/Open, a consortium of vendors who are defining portability standards 
for the UNIX environment. It allows multiple application programs to share resources 
provided by multiple resource managers, e.g. databases, and allows their work to be 
coordinated into global transactions [X/Open Ltd. 1996]. The X/Open DTP model is a 
standard for Two Phase Commit (2-PC) protocol, a key technology ensuring agreed 
outcome between participants in a distributed transaction. In the X/Open DTP model, 
the transaction manager, which is a functional component managing global transactions 
and coordinating the decision to start, commit or roll back, ensures atomicity at a global 
level, while each resource manager is responsible for ACID properties of its own 
resources.   
 
In contrast to the distributed transactions, nested transactions adopt a top-down 
method to decompose a complex transaction into sub-transactions or child transactions 
according to their functionalities. The concept was first proposed in [Moss 1981] as the 
first discussion about programming transactions in a structured way. As it claims, 
nested transactions overcome the shortcomings of single-level transactions, for example, 
by permitting parts of a transaction to fail without necessarily aborting the entire 
transaction. The idea is that a transaction is composed of sub-transactions in a 
hierarchical manner, which means a sub-transaction can be divided into further sub-
transactions if necessary, but only the leaf-level sub-transactions really perform 
database operations while others function as coordinators. A child transaction can only 
start after its parent starts and a parent can only commit after all its children have been 
terminated. The commitment of a child transaction is conditional on the commitment of 
its parents. Each child is atomic, thus it can abort independently regardless of its parent 
and siblings. When it aborts, the parent will take an action, like trigging another sub-
transaction as an alternative. The aborted sub-transaction results as if it had not 
executed. It in fact changed the state of the database, and thus, a sub-transaction is not 
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always consistent. However, the whole nested transaction still keeps the database 
consistent. The mechanism of the model is very powerful and has a strong relationship 
with the concept of modularization in software engineering [Gray and Reuter 1993]. 
This idea gained a lot of attention -- later on, there appeared some models based on it.  
 
Based on the mechanism of nested transactions, in [Weikum and Schek, 1992], 
multilevel transactions (also called layered transactions) and their generalization, open 
nested transactions, were proposed. The authors present the concept of multilevel 
transactions as a variation of nested transactions where all transaction trees have their 
levels corresponding to the layers of the underlying system architecture. Note that the 
leaf nodes are all at the bottom level, i.e. the depths of these leaves are the same. They 
introduce the concept of pre-commit, which allows for the early commitment of a sub-
transaction before the root transaction actually commits, thereby making it impossible 
to roll back in a traditional way. When a parent transaction needs to roll back a sub-
transaction, it uses a compensating sub-transaction to semantically undo the committed 
one instead of using a state-based undo. Note that there are three differences from the 
nested transactions [Lewis et al. 2002]. First, children are executed only sequentially, 
not concurrently. Second, all the leaf-level sub-transactions are at the same bottom level 
in the transaction tree. Third, the commitment of a sub-transaction is unconditional, 
thereby making the result visible to other concurrently executing sub-transactions at the 
same level. Based on this model, if the structure of the transaction tree is no longer 
restricted to layering, thus leaves in different levels are allowed, multilevel transactions 
then evolve to open nested transactions. The authors investigated how open nested 
transactions relax the ACID properties to achieve the ideal orthogonality so that each of 
ACID properties can be omitted without affecting the others, to some extent. Compared 
to the nested transactions that guarantee global level isolation, which means the 
intermediate results of committed sub-transactions in nested transactions are invisible to 
other concurrently executing ones, open nested transactions relax the isolation property 
in the global level to achieve a higher level of concurrency. 

3.3 Chained transactions and sagas 
Although the nested transaction and its extensions are more powerful than the classical 
flat transaction, they are only fit for some specific environments like federated 
databases but are not suitable for environments requiring long-lived transactions. In 
such cases, the idea of chained transactions by decomposing a long running 
transaction into small, sequentially-executing sub-transactions was adopted. According 
to [Gray and Reuter 1993], the idea originates from IBM’s Information Management 
System (IMS) and HP’s Allbase database products. This idea is a variation of the save 
point mechanism that a sub-transaction in the chain roughly corresponds to a save point 
interval. However, the essential difference is that each sub-transaction itself is atomic, 
while each interval between every two save points is only part of an atomic transaction. 
In the chain, a committed sub-transaction triggers the next upon commitment, one by 
one, until the whole chained transactions commit. When encountering a failure, the 
previously committed sub-transactions would have already made durable changes to the 
database so that only the results of the currently executing sub-transaction are lost. This 
way the rollback only returns the system to the beginning of the most recently-executing 
sub-transaction. Notably, from the application perspective, the atomicity and isolation 
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properties are no longer guaranteed by the whole chain. For example, in the middle of 
execution, all the committed sub-transactions cannot be undone, which leads to a 
problem to abort the whole chain. Another case is that other concurrent transactions can 
see the intermediate results generated during the execution of the chain.  
 
Based on the idea of chained transactions, Sagas were proposed with combination of a 
compensation mechanism to roll back. The saga model described in [Garcia-Molina and 
Salem 1987] is a classical transaction model used as a foundation of many later 
transaction frameworks. Sagas divide a long lasting transaction into sequentially 
executed sub-transactions and each sub-transaction, except the last one, has a 
corresponding compensating sub-transaction. All these sub-transactions are atomic with 
ACID properties. When any failure arises, the committed sub-transactions are undone 
by those compensating sub-transactions. Unlike the non-atomic chained transactions 
that cannot undo the committed sub-transactions in the case of an abort, sagas can use 
compensating sub-transactions to return the whole transaction back to the very 
beginning. Note that the recovered start state is not exactly the same as the original start 
state but only equivalent to it from an application point of view. In this sense, sagas in a 
whole still preserve application-dependent atomicity. Similar to chained transactions, a 
saga transaction may be interleaved with other current transactions, thus isolation is not 
guaranteed. Consequently, consistency in sagas is not realized by serializability. Some 
extensions of saga models are introduced in [Chrysanthis and Ramamritham 1992] with 
more recovery options.  

3.4 Conclusion on advanced transaction models 
The above advanced transaction models can be viewed as various extensions to flat 
transactions that release one or more ACID constraints to meet with specific 
requirements. Through their different structures and applying environments, we can 
observe that there are two strategies adopted to extend the simple ACID transactions. 
One is to modularize a complex transaction with hierarchies. By this means, a big 
transaction is divided into smaller components, which can in turn be decomposed. This 
strategy has been applied in various transactions including distributed transactions, 
nested transactions, multilevel transactions, and open nested transactions. With the 
modularization of a complex transaction, the structure is clearer from a semantic 
perspective. Another strategy is applied in chained transactions, sagas etc through 
decomposing a long-lasting transaction into shorter sub-transactions. By means of 
splitting the long processing time, each transaction can be divided into a sequential 
series of smaller components that are operated in a shorter time thus minimizing the 
work lost during a clash.  
 
However, the avalanche of the advanced models does not mean that flat transactions 
have been replaced by these more powerful models. On the contrary, because of their 
simple structures and easily implemented ACID properties, flat transactions still 
dominate the database world.  
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4 ACTA model 

Besides the proposals of the transaction models discussed in the previous section, a 
novel attempt was made in [Chrysanthis and Ramamritham 1990], which develops a 
comprehensive framework named ACTA by unifying existing models to capture the 
semantics and reason for the concurrency and recovery properties of complex 
transactions. 

4.1 Original ACTA framework 
In the ACTA framework the behavior of active components (transactions) and passive 
components (objects) represents the behavior of a transaction system. Interactions 
among transactions are expressed in terms of effects, i.e. effects of transactions on other 
transactions and effects of transactions on objects they access.  
 
Two types of effects that transactions have on other transactions are specified as 
‘commit-dependency’ and ‘abort-dependency’. Commit-dependency describes the 
relationship of one transaction T1 on another transaction T2 that T1 cannot commit until 
T2 either commits or aborts.  Abort-dependency describes the relationship of T1 on T2, 
that if T2 aborts, then T1 should also abort. 
 
The framework captures the effects of transactions on objects by two objects sets and 
the concept of delegation. Every transaction is associated with a few objects contained 
in ‘view set’ or ‘access set’. View set contains all the objects potentially accessible to 
the transaction while access set contains the objects that are already accessed by the 
transaction. Transactions make changes on the objects through three forms of delegation, 
i.e. ‘delegation of state’, ‘delegation of status’ and ‘limited delegation’. Delegation of 
state describes the ability of a delegator (delegating transaction) to move the objects 
from its access set to the delegatee’s (delegated transaction) access set. Delegation of 
status represents the ability of the delegator to undo the changes on the objects before 
those objects are moved to the access set of the delegatee. Limited delegation implies 
the ability to make the changes to the objects persistent in the view set before adding 
them to the access set of the target transaction. Through the delegation mechanism, the 
visibility of objects can be controlled. 
 
When conjuncting with commit and abort dependencies, delegation can also specify the 
recovery properties of a transaction model. This way, via formalized expressions 
describing the dependencies, object sets and delegations, ACTA allows for the 
specification of the structure and behavior of transactions as well as reasoning their 
concurrency and recovery properties. 

4.2 Later developments 
From the above description, ACTA is a meta-model that can be used to flexibly develop 
new transaction models. This approach inspired the later ASSET model proposed in 
[Biliris et al., 1994], which uses primitives at a programming language level based on 
ACTA building blocks such as ‘history’, ‘delegation’, ‘dependency’, ‘conflict set’ etc. 
However, the demonstration of the power of the ACTA framework by 5 transaction 
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models seems inadequate. Not all the types of the popular models are included, for 
example, the saga and multilevel transaction models. In addition, its complexity also 
makes it difficult to implement.  
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5 Workflow transactions 

Based on the advanced transaction models discussed in Section 3, specific transaction 
models have been designed for the support of business processes, usually identified as 
workflow transaction models or transactional workflows2. Below, we first explain the 
concept of transactional workflows. Next, we describe two example approaches that are 
highly relevant to the XTC project. 

5.1 The transactional workflow concept 
The concept of transactional workflow was first introduced in [Sheth and 
Rusinkiewicz 1993] to clearly state the relevance of transactions to workflows. Since 
the mid 1990s, two developments took place in the area of workflow technologies. One 
is the development of the transaction model supporting workflows and the other is the 
development of languages for workflow specification. From a transactional point of 
view, workflows are generalized extended transactions with focus on the automation of 
the complex, long-lasting business processes in distributed and heterogeneous systems. 
A workflow process may involve database transactions or human activities, so the 
ACID properties would not be the major concern anymore. Similar to the 
decomposition mechanism of advanced transaction models, a workflow process can be 
modeled by decomposition into some sub-processes in a hierarchical or sequential way. 
From this perspective, a workflow process can be viewed as a complex transaction 
hierarchically or sequentially consisting of sub-transactions and/or non-transactional 
tasks. A lot of work has been done in this area to address the need for transaction 
support in a process-centric environment. 

5.2 WIDE model 
In [Grefen et al. 1997], a two-layer transaction model, known as the WIDE transaction 
model, was presented. The bottom layer consists of local transactions with a nested 
structure that conform to the ACID properties [Boertjes et al. 1998]. The upper layer is 
based on Sagas that roll back the completed sub-transactions using the compensation 
mechanism, thus relaxing the requirement of atomicity. The semantics of the upper 
layer have been formalized using simple set and graph theory [Grefen et al. 2001]. The 
local transaction layer was designed to model low-level, relatively short-living business 
processes, whilst the global transaction was designed to model high-level long-living 
business processes.  
 
This flexible approach was adopted later in [Vonk and Grefen 2003] in order to develop 
a more comprehensive X-transaction model. Note that these two models address the 
needs in different contexts. The WIDE transactional model caters for intra-
organizational workflow while the X-transaction model can deal with specific inter-
organizational workflow. 

                                                 
2 The relation of workflows and transactions can be of various nature, depending on the point of view 
[Grefen 2002]. This has resulted in diverse approaches [Grefen 1999]. 
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5.3 X-transaction model 
The X-transaction model is a three-level, compensation based transaction model for 
inter-organizational workflow management in the CrossFlow project, where a 
contracted service outsourcing paradigm was supposed [Vonk and Grefen 2003]. The 
three levels in this model are the outsourcing level, contract level and internal level, 
each with a different visibility to the consumer or the provider. 
 
The model views an entire workflow process as a transaction. For intra-organizational 
processes, they can be divided into smaller I-steps that adhere to ACID properties. Each 
I-step has a compensating step in case of failure. Similar to this idea, a contract-level 
cross-organizational process is divided into X-steps, each of which corresponds to one 
or more I-steps. The model also introduced a concept of the safe point, which is similar 
to the save points in Sagas. With the components of I-steps, X-steps and compensating 
steps, the X-transactional model realizes a flexible intra- or cross- organizational 
rollback effect so as to support all the scenarios with all the combinations of rollback 
scopes and rollback modes. An architecture to support this model was also proposed.  
 
There are three layers in the architecture as in the transaction model, where a 
dynamically created upper layer is built on the top of the static layer, which involves 
local Workflow Management Systems. Between them, an isolation layer exists to 
provide portability with respect to specific WFMSs.  
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6 Web services transactions 

From the late 1990s until now, more and more attention has been placed on the area of 
transactions in the loosely-coupled Web services (WS) world. In addition to other 
accepted standards such as SOAP, WSDL, UDDI etc., a technique to guarantee the 
consistency and reliability of WS applications is needed. However, there is no such 
mature transaction mechanism that is widely accepted as a standard. Currently, there are 
three possible candidates, which we discuss below. Next, we compare the approaches. 

6.1 BTP, WS-Tx and WS-CAF 

The first candidate is the Business Transaction Protocol (BTP) [Ceponkus et al. 2002] 
developed by OASIS, which, as its name shows, is not exclusively designed for Web 
services but also for non-Web services applications. BTP is an eXtensible Markup 
Language (XML) based protocol for representing and seamlessly managing complex, 
multi-step business-to-business (B2B) transactions over the Internet. 

The second candidate is the Web Services Transactions (WS-Tx) specification 
consisting of WS-Coordination (WS-C) specification, WS-AtomicTransaction (WS-AT) 
specification and WS-BusinessActivity (WS-BA) specification initiated by Microsoft, 
IBM and BEA [Cabrera et al. 2004a, Cabrera et al. 2004b, Cabrera et al. 2004c]. WS-Tx 
specifications define mechanisms for transactional interoperability between Web 
services domains and provide a means to compose transactional qualities of service into 
WS applications. Among the specifications, WS-C describes an extensible coordination 
framework to coordinate the distributed applications. WS-AT specifies the coordination 
type for ACID transactions and WS-BA specifies the type for long-running business 
transactions. 

The third candidate, WS Composite Application Framework (WS-CAF) [Bunting et 
al. 2003a], is also under the umbrella of OASIS initiated by a consortium consisting of 
SUN, Oracle, Arijuna etc., with the purpose of developing an interoperable, easy to use 
and implement framework for composite WS applications. Similar with WS-Tx, it is 
also a series of specifications consisting of WS Context [Bunting et al. 2003b], WS 
Coordination Framework [Bunting et al. 2003c] and WS Transaction Management 
[Bunting et al. 2003d]. 

6.2 Comparing the approaches  

In [Little and Freund 2003], a comparison between BTP and WS-Tx is made. This 
paper shows how these two specifications both attempt to address the problems of 
running transactions with Web services. With a clear list of pros and cons, the authors 
make a comparative analysis of the two competitors in a table. At the end, they 
conclude that the two specifications differ in some critical areas such as transaction 
interoperability. It also concludes that BTP lacks ‘the ability to use existing enterprise 
infrastructures and applications and for Web services transactions to operate as the glue 
between different corporate domains’. Considering the fact that large strongly-coupled 
corporate infrastructures exist behind those loosely-coupled Web services, the authors 
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call for the attention of leveraging ACID transactions, which underlying the internal 
corporate infrastructures, instead of replacing them with new models to design WS 
transactions.  

Another comparison of the above mentioned three specifications is presented in [Kratz 
2004]. This technical report gives a detailed overview of the three specifications and 
highlights the differences between the three candidates. At the end, the author points out 
the need for one open standard to realize the interoperability both in Web services and 
business areas, possibly by integrating the existing ones within the WS-CAF framework.  
 
In [Jin and Goschnick 2003], it is stated that BTP is the most appropriate candidate to 
be an Internet transaction standard. The authors present an Agent Based Transactional 
(ABT) model by applying the ‘Shadowboard Agent Architecture’ to the wrapping of the 
existing services as Web services. They claim that using agent technology for 
transaction management is the right choice in the Web services environment. The 
benefit of the ABT model, according to the authors, is that it can flexibly choose 
alternative participants to reduce the rollback and compensation chances. This is a novel 
attempt to combine Web services with agent technologies. However, it is still in a 
preliminary stage. The implementation is only based on a simple scenario, which can be 
realized by existing technologies. 
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7 Grid transactions 

Like an electricity power grid that pools together distributed electric energy, Grid 
computing is a form of distributed computing that involves coordinating and sharing of 
computing resources across the web globally. Because of its vision to create a 
worldwide network of computers that act as if they are one, Grid computing makes the 
exclusive immense computing power previously only available to a few organizations 
now available to everyone. This new emerging technology has been gaining a lot of 
attention from its birth. 
 
With more and more projects launched, among them the largest one, CoreGRID 
commenced on 1 September 2004, a lot of research is available within the areas of 
infrastructure and middleware. Much less effort is spent in the area of Grid transactions, 
however. Below, we describe two efforts currently ongoing in this area. 

7.1 Ongoing work in Grid transactions 
TM-RG (GGF Transaction Management Research Group), initiated in Europe, is 
working on Grid transactions with the goal of investigating how to apply transaction 
management (TM) techniques to Grid systems. It is stated in the charter [Steinbach et al. 
2004] that ‘a common grid transaction service would contribute a useful building block 
for professional grid systems’. The group is trying to implement possible Grid 
transaction approaches that may develop on the basis of Web services transactions as 
discussed in Section 6. However, there is no research output yet from this group. 
 
In Shanghai Jiang Tong University, a group is working on a new service-oriented Grid 
Transaction Processing architecture called GridTP based on the Open Grid Services 
Architecture (OGSA) platform and the X/Open DTP model [Qi et al. 2004]. It is 
claimed that GridTP provides a consistent and effective way of making existing 
autonomously managed databases available within Grid environments. 
 
One recently available paper [Türker et al. 2005] tackles some of the highlighting 
questions in this emerging research area in terms of how transactions fit into a grid 
environment. A protocol ensuring correct executions of concurrent applications in the 
global level with the absence of a global coordinator is proposed to realize the concept 
of distributed, peer-to-peer grid transactions. The approach in this paper is based on 
some known concepts and techniques, such as the recoverability criterion, serialization 
graph testing and partial rollback. The main idea of the approach is that dependencies 
between transactions are managed by the transactions, so globally correct executions 
can be achieved even without the complete knowledge gained from communications 
among dependent transactions and the peers they have accessed. The idea is innovative 
in the sense that it uniquely combines old concepts and techniques for a new purpose.  

7.2 Comparing the approaches 
It is hard to properly evaluate and compare the above approaches at this early stage in 
such a new area. We can expect that with the developments of Grid technology, the 
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need for a standard protocol to provide transactional support will be on the agenda as 
Grid computing does need a reliable way to coordinate and communicate. 
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8 Conclusion 

From the discussion of transaction management in this paper, a clear historical thread 
from the classic age to modern times is revealed reflecting the transition from database 
transactions to workflow transactions to grid transactions. 
 
We notice that, with the development of information technology toward a broader 
geographical scope and larger scale, the future trend of transaction management is 
correspondingly following a direction to address the need for more functionalities and 
better performance in a distributed, heterogeneous, cross-organizational environment. 
This need is essentially prominent in an era witnessing a rapidly increasing e-business, 
which often involves multiple organizations all across the world dynamically 
establishing business relationships over the Internet. 
 
However, despite the complex requirements developed through all these years, the 
fundamental idea that a transaction provides a reliable approach to achieve mutually 
agreed goals remains the same when designing new transaction models or frameworks.   
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