
SS2010 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 6 –
Windowed Tables and Window Functions

in SQL

Recent Developments for Data Models

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2 Object relational Views and Collection Types2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5. Data Analysis in SQL
6. Windowed Tables and Window Functions in SQL
III. XML
7. XML and Databases

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
2

8. SQL/XML
9. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

SS2010 2

Windowed Table Functions

 Windowed table function
 operates on a window of a table
 returns a value for every row in that window

the value is calculated by taking into consideration values from the set of rows in the value is calculated by taking into consideration values from the set of rows in
that window

 5 new windowed table functions
 RANK () OVER ...
 DENSE_RANK () OVER ...
 PERCENT_RANK () OVER ...
 CUME_DIST () OVER ...
 ROW_NUMBER () OVER ...

I ddi i 8 ld f i d 16 f i

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
3

 In addition, 8 old aggregate functions and 16 new aggregate functions can
also be used as windowed table functions:
Example: sum(salary) OVER ...

 Allows calculation of moving and cumulative aggregate values.

Concept (Compared To Set Functions)

 Set functions
(aggregate functions)

SELECT dept, AVG(salary)
FROM E lFROM Employees
GROUP BY dept

 Windowed Table Functions
(tuple-based aggregation)

SELECT dept, empno, salary,
AVG(salary) OVER(

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
4

AVG(salary) OVER(
PARTITION BY dept
ORDER BY age
ROWS

BETWEEN 2 PRECEEDING
AND 2 FOLLOWING)

FROM Employees

SS2010 3

Windowed Tables and Window Functions

 Windowed table
 table (result of a table expression) together with one or more windows
 windows are independent from each other

Window Window
 defines, for each row in the table, a set of rows (current row window) that is used

to compute additional attributes
 specified using a window specification (OVER clause)
 based on three main concepts

 window partitioning is similar to forming groups, but rows are retained
 window ordering defines an order (sequence) of rows within each partition
 window frame is defined relative to each row to further restrict the set of rows

 Window function

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
5

 Window function
 is applied for each row, over the current row window, returning a single value
 used in column expressions in the select-list

Function(arg)

OVER (

partition-clause order-clause
frame-clause

)

The Partitioning Clause

 The partition-clause allows to subdivide the rows into partitions, much like the
group by clause

Function(arg)

OVER ()

 Without further clauses, the current row window contains all the rows of the
same partition (i.e., all the rows that are not distinct from the current row,

OVER (
partition-clause order-clause

frame-clause

)

PARTITION BY value-expression

,

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
6

p (, ,
including the current row)
 if no partitioning clause is specified, then there is a single partition that contains

the complete table

 Windows do not reach across partition boundaries!

SS2010 4

Set Functions as Window Functions

 The OVER clause turns a set function into a window function
 Aggregated value is computed per current row window (here: per partition)

select empnum, dept, salary,
avg(salary) over (partition by dept) as dept avgavg(salary) over (partition by dept) as dept_avg

from emptab;

EMPNUM DEPT SALARY DEPT_AVG

6 1 78000 63833

2 1 75000 63833

7 1 75000 63833

11 1 53000 63833

5 1 52000 63833

1 1 50000 63833

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
7

9 2 51000 51000

4 2 - 51000

8 3 79000 69667

12 3 75000 69667

10 3 55000 69667

3 - 84000 84000

0 - - 84000

The Order Clause

 The order-clause defines an order (sequence) within a partition
 May contain multiple order items

 Each item includes a value-expression
NULLS FIRST/LAST d fi d i ti f NULL l

Function(arg)

OVER (
partition-clause order-clause

frame-clause

)

 NULLS FIRST/LAST defines ordering semantics for NULL values

 This clause is completely independent of the query's ORDER BY clause

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
8

ORDER BY value-expression
ASC

DESC

,

NULLS FIRST

NULLS LAST

SS2010 5

Ranking Functions For Sequences

 RANK
 returns the relative position of a value in an ordered group
 equal values (ties) are ranked the same

DENSE RANK DENSE_RANK
 like RANK, but no gaps in rankings in the case of ties

 ROW_NUMBER
 ties are non-deterministically numbered

 Ordering is required!
 Example:

select empnum, dept, salary,
rank() over (order by salary desc nulls last) as rank

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
9

rank() over (order by salary desc nulls last) as rank,
dense_rank() over (order by salary desc nulls last) as denserank,
row_number() over (order by salary desc nulls last) as rownum

from emptab;

Ranking Functions Example

EMPNUM DEPT SALARY RANK DENSERANK ROWNUM

3 - 84000 1 1 1

8 3 79000 2 2 28 3 79000 2 2 2

6 1 78000 3 3 3

2 1 75000 4 4 4

7 1 75000 4 4 5

12 3 75000 4 4 6

10 3 55000 7 5 7

11 1 53000 8 6 8

5 1 52000 9 7 9

9 2 51000 10 8 10

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
10

1 1 50000 11 9 11

4 2 - 12 10 12

0 - - 12 10 13

SS2010 6

Example: Rank with Ordering and Partitioning

 Find rankings of each employee's salary within her department
select empnum, dept, salary,

rank() over (partition by dept order by salary desc nulls last)
as rank in dept,_ _ p ,

rank() over (order by salary desc nulls last) as globalrank
from emptab;

EMPNUM DEPT SALARY RANK_IN_DEPT RANK

6 1 78000 1 3

2 1 75000 2 4

7 1 75000 2 4

11 1 53000 4 8

5 1 52000 5 9

1 1 50000 6 11

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
11

9 2 51000 1 10

4 2 - 2 12

8 3 79000 1 2

12 3 75000 2 4

10 3 55000 3 7

3 - 84000 1 1

0 - - 2 12

Rank on Aggregations

 Windowed table functions are computed in the select list
 After applying FROM, WHERE, GROUP BY, HAVING
 They may not be referenced in any of these clauses

May use aggregation functions in window specification expressions May use aggregation functions in window specification expressions
 If you wish to reference them, you must nest them, or use a common table

expression

 Example: Find rankings of each department's total salary
select dept, sum(salary) as sumsal,

rank() over (order by sum(salary) desc nulls last) as rankdept
from emptab
group by dept;

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
12

DEPT SUMSAL RANKDEPT

1 383000 1

3 209000 2

- 84000 3

2 51000 4

SS2010 7

Cumulative Functions with Partitioning

 Without a frame-clause, the current row window is now restricted to all rows
equal to or preceding the current row within the current partition
 Example: Find the total sales per quarter, and cumulative sales in quarter order

PER YEAR for 1993-1995PER YEAR for 1993 1995

select year, quarter, sum(s.dollars) as q_sales,
sum(sum(s.dollars)) over
(partition by year
order by quarter)

as cume_sales_year
from sales s
where year between 1993 and 1995
group by year, quarter;

YEAR QUARTER Q_SALES CUME_SALES_YEAR

1993 1 1270775.75 1270775.75

1993 2 1279171.45 2549947.20

1993 3 1050825.44 3600772.64

1993 4 1062329.99 4663102.63

1994 1 1176312.84 1176312.84

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
13

1994 2 1132602.73 2308915.57

1994 3 1241437.72 3550353.29

1994 4 1103020.49 4653373.78

1995 1 1193343.62 1193343.62

1995 2 1194296.14 2387639.76

1995 3 1418400.68 3806040.44

1995 4 1182153.01 4988193.45

Window Frames

 Further refine the set of rows in a function's window when an order by is
present
 Allows inclusion/exclusion of ranges of values or rows within the ordering

Function(arg)

OVER (

partition-clause order-clause
frame-clause

)

ROWS
RANGE

endpoint-spec

BETWEEN endpoint-spec AND endpoint-spec

frame-clause

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
14

UNBOUNDED PRECEDING
unsigned-value-spec PRECEDING

CURRENT ROW

unsigned-value-spec FOLLOWING

UNBOUNDED FOLLOWING

endpoint-spec

SS2010 8

Example: Curve Smoothing

 Now the curve is smooth, but it is
uncentered

 Centered average:
rows between 1 preceding

Find the three day historical average of IBM stock for
each day it traded

select date,symbol, close_price,

avg(close_price) over (order by date rows 2 preceding) as
smooth_cp

… rows between 1 preceding
and 1 following …

from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01';

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
---------- ------ ------------ -------------
08/02/1999 IBM 110.125 110.1250
08/03/1999 IBM 109.500 109.8125
08/04/1999 IBM 112.000 110.5416
08/05/1999 IBM 110.625 110.7083
08/06/1999 IBM 112.750 111.7916
08/09/1999 IBM 110.625 111.3333
08/10/1999 IBM 108.375 110.5833
08/11/1999 IBM 109.250 109.4166
08/12/1999 IBM 109.375 109.0000
08/13/1999 IBM 108.500 109.0416

110

112

114

116

smooth_cp
close_price

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
15

08/16/1999 IBM 110.250 109.3750
08/17/1999 IBM 108.375 109.0416
08/18/1999 IBM 108.375 109.0000
08/19/1999 IBM 109.375 108.7083
08/20/1999 IBM 112.000 109.9166
08/23/1999 IBM 113.125 111.5000
08/24/1999 IBM 114.875 113.3333
08/25/1999 IBM 115.500 114.5000
08/26/1999 IBM 113.375 114.5833
08/27/1999 IBM 115.625 114.8333

104

106

108

110

08/02/1999 08/09/1999 08/16/1999 08/23/1999 08/30/1999

three day historical average

RANGE Based Windows

ROWS

RANGE

endpoint-spec

BETWEEN endpoint-spec AND endpoint-spec

window-agg-
group

DATE SYMBOL CLOSE_PRICE
---------- ------ ------------
08/02/1999 IBM 110.125
08/03/1999 IBM 109.500
08/04/1999 IBM 112.000
08/05/1999 IBM 110.625
08/06/1999 IBM 112.750

 ROW based windows work great when the data is dense
 duplicate values and missing rows can cause problems

UNBOUNDED PRECEDING

unsigned-value-spec PRECEDING

CURRENT ROW

unsigned-value-spec FOLLOWING

UNBOUNDED FOLLOWING

endpoint-spec
values missing for the weekend!
08/09/1999 IBM 110.625
08/10/1999 IBM 108.375
08/11/1999 IBM 109.250
08/12/1999 IBM 109.375
08/13/1999 IBM 108.500
.. and here

08/16/1999 IBM 110.250

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
16

 In other situations, it would be nice to specify the aggregation group in terms
of values, not absolute row position
 For example, the stock table doesn't have any entries for weekends
 Looking at the last 6 rows gives you more than the last week

SS2010 9

For IBM stock, what is the 7 calendar day historical average, and the 7 trade day historical
average for each day in the month of August, 1999

select date,substr(dayname(date),1,9), close_price,
avg(close_price) over (order by date rows 6 preceding) as avg_7_rows,
count(close price) over (order by date rows 6 preceding) as count 7 rows

RANGE Based Window Example

count(close_price) over (order by date rows 6 preceding) as count_7_rows,
avg(close_price) over (order by date range interval '6' day preceding) as avg_7_range,
count(close_price) over (order by date range interval '6' day preceding) as count_7_range

from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01';

DATE 2 CLOSE_PRICE AVG_7_ROWS COUNT_7_ROWS AVG_7_RANGE COUNT_7_RANGE
---------- --------- ------------ ---------- ------------ ----------- -------------
08/02/1999 Monday 110.125 110.12 1 110.12 1
08/03/1999 Tuesday 109.500 109.81 2 109.81 2
08/04/1999 Wednesday 112.000 110.54 3 110.54 3
08/05/1999 Thursday 110.625 110.56 4 110.56 4
08/06/1999 Friday 112.750 111.00 5 111.00 5

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
17

08/09/1999 Monday 110.625 110.93 6 111.10 5
08/10/1999 Tuesday 108.375 110.57 7 110.87 5
08/11/1999 Wednesday 109.250 110.44 7 110.32 5
08/12/1999 Thursday 109.375 110.42 7 110.07 5
08/13/1999 Friday 108.500 109.92 7 109.22 5
08/16/1999 Monday 110.250 109.87 7 109.15 5
08/17/1999 Tuesday 108.375 109.25 7 109.15 5
...

Explicit Window Definition Clause

 So far, a window was specified "in-line" in the SELECT clause of a query
 Alternative syntax uses an explicit WINDOW clause

select date, symbol, close_price,
(l i) thavg(close_price) over w as smooth_cp

from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01'
window w as (order by date rows 2 preceding)

 Advantages
 window has a name, which can be used by multiple window table function

invocations in the SELECT clause

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
18

SS2010 10

SQL Query Processing Steps incl. OLAP

SELECT …
AVG(…) …
RANK(…) OVER … PROJECTION

SORT

FROM …
WHERE …
GROUP BY …
HAVING …
ORDER BY …

GROUPING

AGGREGATION

SELECTION

SORT

WINDOW

AGGREGATION

WINDOW

AGGREGATION

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
19

JOIN

SELECTION

PARTITION

SORT

PARTITION

SORT

WINDOW…

Additional Capabilities

 Hypothetical Aggregate Functions
 4 new hypothetical aggregate functions:

 RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
 DENSE RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>) DENSE_RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
 PERCENT_RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
 CUME_DIST (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)

 Hypothetical aggregate functions evaluate the aggregate over the window
extended with a new row derived from the specified values.
 "What if" scenarios

 Inverse Distribution Functions
 2 new inverse distribution functions:

 PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY <sort specification list>)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
20

 PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY <sort specification list>)

 Argument must evaluate to a value between 0 and 1.
 Return the values of expressions specified in <sort specification list> that

correspond to the specified percentile value.

SS2010 11

SQL:2003 Built-in Functions for OLAP

 34 new built-in functions:
 7 new numeric functions
 16 new aggregate functions
 5 new windowed table functions
 4 new hypothetical aggregate functions
 2 new inverse distribution functions

 Windowed table functions provide facilities for calculating moving sums,
moving averages, ranks, correlation, standard deviation, regression, etc.

 Significant functionality and performance advantages for OLAP applications

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
21

New Built-in Functions

 7 new numeric functions
 LN (expr)
 EXP (expr)
 POWER (expr, expr)

 16 new aggregate functions
 STDDEV_POP (expr)
 STDDEV_SAMP (expr)
 VAR_POP (expr)

 SQRT (expr)
 FLOOR (expr)
 CEIL[ING] (expr)
 WIDTH_BUCKET(expr, expr, expr, expr)

EX: WIDTH_BUCKET (age, 0, 100, 10)

 VAR_SAMP (expr)
 COVAR_POP (expr, expr)
 COVAR_SAMP (expr, expr)
 CORR (expr, expr)
 REGR_SLOPE (expr, expr)
 REGR_INTERCEPT (expr, expr)
 REGR_COUNT (expr, expr)
 REGR_R2 (expr, expr)
 REGR_AVGX (expr, expr)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
22

(p , p)
 REGR_AVGY (expr, expr)
 REGR_SXX (expr, expr)
 REGR_SYY (expr, expr)
 REGR_SXY (expr, expr)

SS2010 12

Summary

 OLAP-Functionality in SQL
 extension of classical application of aggregation functions

 Windowed tables, window functions
t l b d tt ib t b d titi i d l i / ti f d t tuple-based, attribute-based partitioning and analysis/aggregation of data

 rows in a partition are preserved/expanded
 in contrast to group-by/aggregation

 window order defines sequence for sequence-based analysis
 cumulative aggregation, ranking

 window frame defines current row window dynamically for ordered windows
 moving aggregates

 Multiple windows can be defined for the same table
windows are independent

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
23

 windows are independent

 SQL query execution model enhancement
 This functionality provides powerful infrastructure for optimized data analysis

in the scope of OLAP

