
SS2010 1

Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 6 –
Windowed Tables and Window Functions

in SQL

Recent Developments for Data Models

Outline

Overview
I. Object-Relational Database Concepts
1. User-defined Data Types and Typed Tables
2 Object relational Views and Collection Types2. Object-relational Views and Collection Types
3. User-defined Routines and Object Behavior
4. Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5. Data Analysis in SQL
6. Windowed Tables and Window Functions in SQL
III. XML
7. XML and Databases

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
2

8. SQL/XML
9. XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

SS2010 2

Windowed Table Functions

 Windowed table function
 operates on a window of a table
 returns a value for every row in that window

the value is calculated by taking into consideration values from the set of rows in the value is calculated by taking into consideration values from the set of rows in
that window

 5 new windowed table functions
 RANK () OVER ...
 DENSE_RANK () OVER ...
 PERCENT_RANK () OVER ...
 CUME_DIST () OVER ...
 ROW_NUMBER () OVER ...

I ddi i 8 ld f i d 16 f i

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
3

 In addition, 8 old aggregate functions and 16 new aggregate functions can
also be used as windowed table functions:
Example: sum(salary) OVER ...

 Allows calculation of moving and cumulative aggregate values.

Concept (Compared To Set Functions)

 Set functions
(aggregate functions)

SELECT dept, AVG(salary)
FROM E lFROM Employees
GROUP BY dept

 Windowed Table Functions
(tuple-based aggregation)

SELECT dept, empno, salary,
AVG(salary) OVER(

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
4

AVG(salary) OVER(
PARTITION BY dept
ORDER BY age
ROWS

BETWEEN 2 PRECEEDING
AND 2 FOLLOWING)

FROM Employees

SS2010 3

Windowed Tables and Window Functions

 Windowed table
 table (result of a table expression) together with one or more windows
 windows are independent from each other

Window Window
 defines, for each row in the table, a set of rows (current row window) that is used

to compute additional attributes
 specified using a window specification (OVER clause)
 based on three main concepts

 window partitioning is similar to forming groups, but rows are retained
 window ordering defines an order (sequence) of rows within each partition
 window frame is defined relative to each row to further restrict the set of rows

 Window function

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
5

 Window function
 is applied for each row, over the current row window, returning a single value
 used in column expressions in the select-list

Function(arg)

OVER (

partition-clause order-clause
frame-clause

)

The Partitioning Clause

 The partition-clause allows to subdivide the rows into partitions, much like the
group by clause

Function(arg)

OVER ()

 Without further clauses, the current row window contains all the rows of the
same partition (i.e., all the rows that are not distinct from the current row,

OVER (
partition-clause order-clause

frame-clause

)

PARTITION BY value-expression

,

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
6

p (, ,
including the current row)
 if no partitioning clause is specified, then there is a single partition that contains

the complete table

 Windows do not reach across partition boundaries!

SS2010 4

Set Functions as Window Functions

 The OVER clause turns a set function into a window function
 Aggregated value is computed per current row window (here: per partition)

select empnum, dept, salary,
avg(salary) over (partition by dept) as dept avgavg(salary) over (partition by dept) as dept_avg

from emptab;

EMPNUM DEPT SALARY DEPT_AVG

6 1 78000 63833

2 1 75000 63833

7 1 75000 63833

11 1 53000 63833

5 1 52000 63833

1 1 50000 63833

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
7

9 2 51000 51000

4 2 - 51000

8 3 79000 69667

12 3 75000 69667

10 3 55000 69667

3 - 84000 84000

0 - - 84000

The Order Clause

 The order-clause defines an order (sequence) within a partition
 May contain multiple order items

 Each item includes a value-expression
NULLS FIRST/LAST d fi d i ti f NULL l

Function(arg)

OVER (
partition-clause order-clause

frame-clause

)

 NULLS FIRST/LAST defines ordering semantics for NULL values

 This clause is completely independent of the query's ORDER BY clause

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
8

ORDER BY value-expression
ASC

DESC

,

NULLS FIRST

NULLS LAST

SS2010 5

Ranking Functions For Sequences

 RANK
 returns the relative position of a value in an ordered group
 equal values (ties) are ranked the same

DENSE RANK DENSE_RANK
 like RANK, but no gaps in rankings in the case of ties

 ROW_NUMBER
 ties are non-deterministically numbered

 Ordering is required!
 Example:

select empnum, dept, salary,
rank() over (order by salary desc nulls last) as rank

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
9

rank() over (order by salary desc nulls last) as rank,
dense_rank() over (order by salary desc nulls last) as denserank,
row_number() over (order by salary desc nulls last) as rownum

from emptab;

Ranking Functions Example

EMPNUM DEPT SALARY RANK DENSERANK ROWNUM

3 - 84000 1 1 1

8 3 79000 2 2 28 3 79000 2 2 2

6 1 78000 3 3 3

2 1 75000 4 4 4

7 1 75000 4 4 5

12 3 75000 4 4 6

10 3 55000 7 5 7

11 1 53000 8 6 8

5 1 52000 9 7 9

9 2 51000 10 8 10

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
10

1 1 50000 11 9 11

4 2 - 12 10 12

0 - - 12 10 13

SS2010 6

Example: Rank with Ordering and Partitioning

 Find rankings of each employee's salary within her department
select empnum, dept, salary,

rank() over (partition by dept order by salary desc nulls last)
as rank in dept,_ _ p ,

rank() over (order by salary desc nulls last) as globalrank
from emptab;

EMPNUM DEPT SALARY RANK_IN_DEPT RANK

6 1 78000 1 3

2 1 75000 2 4

7 1 75000 2 4

11 1 53000 4 8

5 1 52000 5 9

1 1 50000 6 11

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
11

9 2 51000 1 10

4 2 - 2 12

8 3 79000 1 2

12 3 75000 2 4

10 3 55000 3 7

3 - 84000 1 1

0 - - 2 12

Rank on Aggregations

 Windowed table functions are computed in the select list
 After applying FROM, WHERE, GROUP BY, HAVING
 They may not be referenced in any of these clauses

May use aggregation functions in window specification expressions May use aggregation functions in window specification expressions
 If you wish to reference them, you must nest them, or use a common table

expression

 Example: Find rankings of each department's total salary
select dept, sum(salary) as sumsal,

rank() over (order by sum(salary) desc nulls last) as rankdept
from emptab
group by dept;

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
12

DEPT SUMSAL RANKDEPT

1 383000 1

3 209000 2

- 84000 3

2 51000 4

SS2010 7

Cumulative Functions with Partitioning

 Without a frame-clause, the current row window is now restricted to all rows
equal to or preceding the current row within the current partition
 Example: Find the total sales per quarter, and cumulative sales in quarter order

PER YEAR for 1993-1995PER YEAR for 1993 1995

select year, quarter, sum(s.dollars) as q_sales,
sum(sum(s.dollars)) over
(partition by year
order by quarter)

as cume_sales_year
from sales s
where year between 1993 and 1995
group by year, quarter;

YEAR QUARTER Q_SALES CUME_SALES_YEAR

1993 1 1270775.75 1270775.75

1993 2 1279171.45 2549947.20

1993 3 1050825.44 3600772.64

1993 4 1062329.99 4663102.63

1994 1 1176312.84 1176312.84

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
13

1994 2 1132602.73 2308915.57

1994 3 1241437.72 3550353.29

1994 4 1103020.49 4653373.78

1995 1 1193343.62 1193343.62

1995 2 1194296.14 2387639.76

1995 3 1418400.68 3806040.44

1995 4 1182153.01 4988193.45

Window Frames

 Further refine the set of rows in a function's window when an order by is
present
 Allows inclusion/exclusion of ranges of values or rows within the ordering

Function(arg)

OVER (

partition-clause order-clause
frame-clause

)

ROWS
RANGE

endpoint-spec

BETWEEN endpoint-spec AND endpoint-spec

frame-clause

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
14

UNBOUNDED PRECEDING
unsigned-value-spec PRECEDING

CURRENT ROW

unsigned-value-spec FOLLOWING

UNBOUNDED FOLLOWING

endpoint-spec

SS2010 8

Example: Curve Smoothing

 Now the curve is smooth, but it is
uncentered

 Centered average:
rows between 1 preceding

Find the three day historical average of IBM stock for
each day it traded

select date,symbol, close_price,

avg(close_price) over (order by date rows 2 preceding) as
smooth_cp

… rows between 1 preceding
and 1 following …

from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01';

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
---------- ------ ------------ -------------
08/02/1999 IBM 110.125 110.1250
08/03/1999 IBM 109.500 109.8125
08/04/1999 IBM 112.000 110.5416
08/05/1999 IBM 110.625 110.7083
08/06/1999 IBM 112.750 111.7916
08/09/1999 IBM 110.625 111.3333
08/10/1999 IBM 108.375 110.5833
08/11/1999 IBM 109.250 109.4166
08/12/1999 IBM 109.375 109.0000
08/13/1999 IBM 108.500 109.0416

110

112

114

116

smooth_cp
close_price

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
15

08/16/1999 IBM 110.250 109.3750
08/17/1999 IBM 108.375 109.0416
08/18/1999 IBM 108.375 109.0000
08/19/1999 IBM 109.375 108.7083
08/20/1999 IBM 112.000 109.9166
08/23/1999 IBM 113.125 111.5000
08/24/1999 IBM 114.875 113.3333
08/25/1999 IBM 115.500 114.5000
08/26/1999 IBM 113.375 114.5833
08/27/1999 IBM 115.625 114.8333

104

106

108

110

08/02/1999 08/09/1999 08/16/1999 08/23/1999 08/30/1999

three day historical average

RANGE Based Windows

ROWS

RANGE

endpoint-spec

BETWEEN endpoint-spec AND endpoint-spec

window-agg-
group

DATE SYMBOL CLOSE_PRICE
---------- ------ ------------
08/02/1999 IBM 110.125
08/03/1999 IBM 109.500
08/04/1999 IBM 112.000
08/05/1999 IBM 110.625
08/06/1999 IBM 112.750

 ROW based windows work great when the data is dense
 duplicate values and missing rows can cause problems

UNBOUNDED PRECEDING

unsigned-value-spec PRECEDING

CURRENT ROW

unsigned-value-spec FOLLOWING

UNBOUNDED FOLLOWING

endpoint-spec
values missing for the weekend!
08/09/1999 IBM 110.625
08/10/1999 IBM 108.375
08/11/1999 IBM 109.250
08/12/1999 IBM 109.375
08/13/1999 IBM 108.500
.. and here

08/16/1999 IBM 110.250

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
16

 In other situations, it would be nice to specify the aggregation group in terms
of values, not absolute row position
 For example, the stock table doesn't have any entries for weekends
 Looking at the last 6 rows gives you more than the last week

SS2010 9

For IBM stock, what is the 7 calendar day historical average, and the 7 trade day historical
average for each day in the month of August, 1999

select date,substr(dayname(date),1,9), close_price,
avg(close_price) over (order by date rows 6 preceding) as avg_7_rows,
count(close price) over (order by date rows 6 preceding) as count 7 rows

RANGE Based Window Example

count(close_price) over (order by date rows 6 preceding) as count_7_rows,
avg(close_price) over (order by date range interval '6' day preceding) as avg_7_range,
count(close_price) over (order by date range interval '6' day preceding) as count_7_range

from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01';

DATE 2 CLOSE_PRICE AVG_7_ROWS COUNT_7_ROWS AVG_7_RANGE COUNT_7_RANGE
---------- --------- ------------ ---------- ------------ ----------- -------------
08/02/1999 Monday 110.125 110.12 1 110.12 1
08/03/1999 Tuesday 109.500 109.81 2 109.81 2
08/04/1999 Wednesday 112.000 110.54 3 110.54 3
08/05/1999 Thursday 110.625 110.56 4 110.56 4
08/06/1999 Friday 112.750 111.00 5 111.00 5

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
17

08/09/1999 Monday 110.625 110.93 6 111.10 5
08/10/1999 Tuesday 108.375 110.57 7 110.87 5
08/11/1999 Wednesday 109.250 110.44 7 110.32 5
08/12/1999 Thursday 109.375 110.42 7 110.07 5
08/13/1999 Friday 108.500 109.92 7 109.22 5
08/16/1999 Monday 110.250 109.87 7 109.15 5
08/17/1999 Tuesday 108.375 109.25 7 109.15 5
...

Explicit Window Definition Clause

 So far, a window was specified "in-line" in the SELECT clause of a query
 Alternative syntax uses an explicit WINDOW clause

select date, symbol, close_price,
(l i) thavg(close_price) over w as smooth_cp

from stocktab
where symbol = 'IBM' and date between '1999-08-01' and '1999-09-01'
window w as (order by date rows 2 preceding)

 Advantages
 window has a name, which can be used by multiple window table function

invocations in the SELECT clause

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
18

SS2010 10

SQL Query Processing Steps incl. OLAP

SELECT …
AVG(…) …
RANK(…) OVER … PROJECTION

SORT

FROM …
WHERE …
GROUP BY …
HAVING …
ORDER BY …

GROUPING

AGGREGATION

SELECTION

SORT

WINDOW

AGGREGATION

WINDOW

AGGREGATION

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
19

JOIN

SELECTION

PARTITION

SORT

PARTITION

SORT

WINDOW…

Additional Capabilities

 Hypothetical Aggregate Functions
 4 new hypothetical aggregate functions:

 RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
 DENSE RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>) DENSE_RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
 PERCENT_RANK (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)
 CUME_DIST (expr, expr ...) WITHIN GROUP (ORDER BY <sort specification list>)

 Hypothetical aggregate functions evaluate the aggregate over the window
extended with a new row derived from the specified values.
 "What if" scenarios

 Inverse Distribution Functions
 2 new inverse distribution functions:

 PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY <sort specification list>)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
20

 PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY <sort specification list>)

 Argument must evaluate to a value between 0 and 1.
 Return the values of expressions specified in <sort specification list> that

correspond to the specified percentile value.

SS2010 11

SQL:2003 Built-in Functions for OLAP

 34 new built-in functions:
 7 new numeric functions
 16 new aggregate functions
 5 new windowed table functions
 4 new hypothetical aggregate functions
 2 new inverse distribution functions

 Windowed table functions provide facilities for calculating moving sums,
moving averages, ranks, correlation, standard deviation, regression, etc.

 Significant functionality and performance advantages for OLAP applications

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
21

New Built-in Functions

 7 new numeric functions
 LN (expr)
 EXP (expr)
 POWER (expr, expr)

 16 new aggregate functions
 STDDEV_POP (expr)
 STDDEV_SAMP (expr)
 VAR_POP (expr)

 SQRT (expr)
 FLOOR (expr)
 CEIL[ING] (expr)
 WIDTH_BUCKET(expr, expr, expr, expr)

EX: WIDTH_BUCKET (age, 0, 100, 10)

 VAR_SAMP (expr)
 COVAR_POP (expr, expr)
 COVAR_SAMP (expr, expr)
 CORR (expr, expr)
 REGR_SLOPE (expr, expr)
 REGR_INTERCEPT (expr, expr)
 REGR_COUNT (expr, expr)
 REGR_R2 (expr, expr)
 REGR_AVGX (expr, expr)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
22

(p , p)
 REGR_AVGY (expr, expr)
 REGR_SXX (expr, expr)
 REGR_SYY (expr, expr)
 REGR_SXY (expr, expr)

SS2010 12

Summary

 OLAP-Functionality in SQL
 extension of classical application of aggregation functions

 Windowed tables, window functions
t l b d tt ib t b d titi i d l i / ti f d t tuple-based, attribute-based partitioning and analysis/aggregation of data

 rows in a partition are preserved/expanded
 in contrast to group-by/aggregation

 window order defines sequence for sequence-based analysis
 cumulative aggregation, ranking

 window frame defines current row window dynamically for ordered windows
 moving aggregates

 Multiple windows can be defined for the same table
windows are independent

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
23

 windows are independent

 SQL query execution model enhancement
 This functionality provides powerful infrastructure for optimized data analysis

in the scope of OLAP

