
Realization
of DBS

6. Tree-Based Access Paths

Theo Härder
www.haerder.de

Optimization techniques that reduce the number of physical I/Os are generally more efficient
than those that improve the efficiency in performing the I/Os!

© 2011 AG DBIS

Realization of Database Systems – SS 2011

Main reference:
Theo Härder, Erhard Rahm: Datenbanksysteme – Konzepte und Techniken der
Implementierung, Springer, 2001, Chapter 7.

Jim Gray, Andreas Reuter: Transaction Processing – Concepts and Techniques,
5th printing, Morgan Kaufmann Publ., 1993, Chapter 15.

Realization
of DBS

Primary key
access

Classification

Tree-Based Access Paths
 Goal

• Design principles for access paths to the records of a table, for which a
search criterion is supported

• Ways to support hierarchical access

 Access paths for primary key

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

p p y y
• Binary search trees?
• Multi-way trees and digital trees, hash methods (chapter 7)

 B- and B*-trees (repetition)

 Digital trees (m-ary Trie, binary digital trees)

 Addressing in trees
• Important for fine-granular mapping of XML documents
• Labeling schemes for nodes should consider structure and order of the

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-2

Labeling schemes for nodes should consider structure and order of the
document and avoid relabeling in case of arbitrary subtree insertions

• Support of navigation, declarative query evaluation, and locking

 Important characteristics
• n = #instances of a record type, b = avg. #records/page (blocking factor)
• q = #hits of a query, NS = #page accesses, NB = #leaf pages, hB = height of B*-tree

Realization
of DBS

Primary key
access

Classification

Some Important Access Methods to a Record Type

 Table scan

S (t b t d b ll DBMS !)

data pages

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

Scan (must be supported by all DBMSs!)
• is sufficient / efficient in case of:

- small volumes of a record type (e.g.,  5 pages)
- queries returning large sets of hits (e.g., > 3% for disks)

• DBMS can apply prefetching to optimize scan operations

 Index scan
25 61IEmp(Dno) root page

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-3

33 458 13 77 85

..

data pages

intermediate pages

leaf pages

Realization
of DBS

Primary key
access

Classification

Requirements for Access Paths

 Following types of accesses must be supported
• Sequential access to all records of a record type (scan)

Select * From Emp

• Sequential access in sorted sequence of an attribute

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

... Order by Name

• Direct access via primary key

... Where Eno = 0815

• Direct access via a secondary key

... Where Job = ‘programmer’

• Direct access via composed keys and

complex search expressions (ranges)

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-4

complex search expressions (ranges, ...)

... Where Salary Between 50K And 100K

• Navigational access from a record to a related set

of records of the same or of another record type

... Where E.Dno = D.Dno

 If a suitable access path is missing, sequential search (scan) is needed

Realization
of DBS

Primary key
access

Classification

Classification of Primary-Key Access Paths

sequential scatteredtree structures

access methods for data structures

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

q
storage structures storage structures

sequential
lists

chained
lists

static hash
structures

dynamic hash
structures

multi-way
trees

digital-
trees

binary
search trees

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-5

physical logical entire key key parts

sequential tree-structured fixed dynamic

key comparison key transformation

Realization
of DBS

Primary key
access

Classification

Multi-Way Trees

 Base: page = transportation unit to disk (in contrast to binary search trees)

 Ancestor: ISAM (static, periodic reorganization)

 Evolution to B- and B*-tree
• Referenced and materialized storage of data records

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

• Referenced and materialized storage of data records
• Dynamic reorganization by splitting and merging of pages

 Functions
• Direct key access and sorted sequential access (range access)

 Balanced structure
• Independent of set of keys and independent of insertion sequence

 Realization of index-organized tables
• Often ordered according to primary key

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-6

• Often ordered according to primary key
• Clustering by embedded data records

 Improvement of fan-out
• Key compression
• Use of “separator keys” in B*-trees, Prefix-B-trees

 Improvement of occupancy degree
 Generalized splitting method

Realization
of DBS

Primary key
access

Classification

B-Trees
 Def.: A B-tree of type (k, h) is a tree with the following properties

1. Each path from root to leaf has length h
2. Each inner node has at least k+1 children.

The root is a leaf or has at least 2 children
3. Each node has at most 2k+1 children

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

 Page format

Zi = pointer child page
Ki = key
Di = data of the record or reference to the record (materialized or referenced)

Z0 K1Z0 K1 Z1D1 K2 D2 Km Zm Dm freeZ2 ···

 Example
6

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-7

3 8

92 4 5 7

Z=4 B, K=4 B, D=92 B => 100 B per entry => ca. 80 children
Z=4 B, K=4 B, D=4 B => 12 B per entry => ca. 680 children

8KB pages:

Realization
of DBS

Primary key
access

Classification

B*-Trees

 Def.: A B*-tree of type (k, k*, h) is a tree with following properties

• Each path from root to leaf has length h
• Each inner node has at least k+1 children. The root is a leaf or has at least 2 children.
• Each leaf has at least k* entries.
• Each inner node has at most 2k+1 children. Each leaf has at most 2k* entries.

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

 Inner node Leaf node

Zi = pointer child page, Ki = key

Z0 K1Z0 K1 Z1 K2 freeKm ZmZ2 ···
Di = reference to record (materialized or referenced)
N = successor pointer, P = predecessor pointer

V K1K1 D1 K2 D2 Km··· Dm free N

2 4 6 8 Example

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-8

Z=4 B, K=4 B => 8 B per entry => ca. 1000 children for 8 KB pages

2 9

3 4 7 8

5 6

Realization
of DBS

Primary key
access

Classification

Unclustered vs. Clustered Access

 Index scan without clustering

25 61

33 458 13 77 85

IEmp(Dno) root page

intermediate pages

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

..

data pages

leaf pages

 Index scan with clustering

25 61IDept(Dno) root page

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-9

33 458 13 77 85

..

intermediate pages

leaf pages

data pages

Realization
of DBS

Primary key
access

Classification

Splitting in B*-Trees
 Split factor m Pi Pi Pk

m = 1

Pi Pi+1

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

Pi Pk Pi+1
m = 2

m = 3

Pi 1 Pi Pk Pi 1

Pi-1 Pi Pi+112

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-10

Pi-1 Pi Pk Pi+1

 Occupancy
occupancy m=1 m=2 m

worst case
11

1
 12

2
 1m

m


avg. case: ln 2 (69%) 






 
m

1mlnm

 m ≤3:
otherwise too expensive

Realization
of DBS

Primary key
access

Classification

Search in a Page (Internal structure is a list with n entries)

• Sequential search
- Sorted or unordered set of keys: Cavg (n)  n/2
- Only minor improvements for sorted lists (in case of unsuccessful search)

• Binary search essentially more efficient (Divide-and-Conquer strategy)

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

nlargefor 11)(n2log(n)avgC 
- Assumption: sorted order and entries of fixed size
-

1 n

• Jump search
- Assumption: sorted order and entries of fixed size
- Principle

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-11

- At first, the list is traversed in jumps of m entries, to localize the section which
potentially contains the requested key

- Then, the key is searched according to some method in the given section

- if a jump costs a units and a comparison b units

- What is the optimal jump size m?

1)b(m
2
1

m
na

2
1(n)avgC 

1 n

Realization
of DBS

Primary key
access

Classification

Digital Trees

 So far: always comparison of the entire key
In digital search trees or digital trees, for short, comparisons in tree nodes are performed to
determine the search path not according to the entire key, but according to subsequent key
fractions. Each differing sequence of key fractions results in a separate search path in the
tree; all keys with the same prefix have the same search path for the length of the prefix.

 O i ti f th di it l t d h i th t

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

 Organization of the digital tree and search in the tree occur
according to “key fractions”

 Digital search trees - principle

 m-ary Trie (detour)
General alphabet
• Trie representation
• Base operations
• Improvement of space occupancy

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-12

• Improvement of space occupancy
• Digital tree having a variable node format

 Binary digital tree
Binary alphabet
• Binary digital search tree
• PATRICIA tree: avoidance of one-way branching
• Binary Radix tree: improvement of lookup opportunities

Realization
of DBS

Primary key
access

Classification

Digital Trees – The Idea
 Principle

• Decomposition of the key in fractions
• Tree construction according to key fractions
• Search in the tree by comparison of key fractions

 What are key fractions?
• Key consists of L characters of an alphabet

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

• Key consists of L characters of an alphabet
• Key fractions can be formed by bits, digits, characters as elements of an alphabet
• But also aggregations of these basic elements can be used (e.g., syllables of length k)
• Longest path in the tree + 1 = height of the tree = L/k + 1, if L is the key length and k is

the length of the key fractions

 Conceptual representation of a digital tree

2117 39 47

alphabet using digits
L = 6, k = 2

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-13

01

99

17

02 17

34 95

170234 170295 171717 219901

49

50 20

15 17

391550 391720

10 25

394910 394925

47

11

471147

 max. degree of the digital tree m = 100

Realization
of DBS

Primary key
access

Classification

Binary Digital Trees (Binary Alphabet)

 1. variant: binary digital search tree
• A complete key is stored in each node - similar to a binary search tree
• Upon insertion, a key obtains the first free leaf node located via its bit sequence
• For the decision, whether the left or right branch is used in a node if the stored

key does not match the search key, the single bits of the search key are tested
in the sequence they occur

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

in the sequence they occur
Hans

Heinz

1

Holger

0

Bert

0

Uwe

1

Abel Hein

0 1

1

HANS = 1 0 0 1 0 0 0 …
HEINZ = 1 0 0 1 0 0 0 …
HOLGER = 1 0 0 1 0 0 0 …
BERT = 1 0 0 0 0 1 0 …
…
OTTO = 1 0 0 1 1 1 1 …
…

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-14

Otto

Olaf

1

1 Evaluation
• No representation of an ordered set (in-order traversal?)
• Dependent on the set of keys and their insertion sequence
• Long one-way branches, no dynamic balancing

 balanced trees are better: instead of the bit sequence of Ki use a
random number with Ki as seed

 Application: static set of keys with strongly weighted access frequencies

Realization
of DBS

Primary key
access

Classification

Binary Digital Trees (2)
 2. variant: PATRICIA tree (Practical Algorithm To Retrieve Information Coded In Alphanumeric)

• Basic idea: avoidance of one-way branches
• Storage of keys in the leaves
• Inner nodes: maintain how many bits have to be skipped for the path selection test
• Construction principle

PATRICIA tree
binary digital tree

ith b hkey set

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

10000
K1

10001
K2

11100
K3

11110
K4

11111
K5

1

2 1

0

PATRICIA treewith one-way brancheskey set

K1 = 1 0 0 0 0
K2 = 1 0 0 0 1
K3 = 1 1 1 0 0
K4 = 1 1 1 1 0
K5 = 1 1 1 1 1

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-15

10000
K1

10001
K2

11100
K3

11110
K4

11111
K5

 Evaluation
• There are no one-way branches
• Otherwise, however, similar to the binary digital search tree
• Tree structure can be understood as test procedure for search keys. For each key,

the test sequence must be completely checked before success or failure is decided

Realization
of DBS

Primary key
access

Classification

Binary Digital Trees (3)
 PATRICIA tree as an

application example

H
O
L
G

H
U
B
E H H11

25

6

0

0

6

9

• Simple structure of the
inner nodes

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

H
A
R
A
L
D

H
A
R
T
M
U
T

H
E
I
N
•

H
E
I
N
Z

H
E
I
N
R
I
C

E
R

H
E
L
M
U
T

R
•

H
U
B
E
R
T
•

H
U
B
E
R
T
U
S

2

9

n number of bits
to be skipped

key

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-16

- How does search proceed for key
HEINZ = X’10010001000101100100110011101011010’ ?

- How has to be tested if search goes for

ABEL = X’1000001100001010001011001100’ ?
 successful and failed search ends in a leaf node

C
H

Realization
of DBS

Primary key
access

Classification

Binary Digital Trees (4)
 3. variant: binary Radix tree

As modification of the PATRICIA Trie
- Storage of test information
- Additionally storage of variable-length key fractions in inner nodes,

as soon as they can be factored out as prefixes for the keys of the related subtree

 Application example H

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

 Application example

A
L
D

T
M
U

O
L
G
E
R

L
M
U
T

3

U
B
E
R
1

1

5

5

4

3

I
N

A
R

E

• U

1
T•

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-17

1-7 indicator, which bit has to be tested
shared key element
key remainder

T •

ZR
I
C
H

4 • U
S

- More complex node formats and more expensive search and update operations
- Failed search can be frequently stopped in an inner node

HEINZ = X’10010001000101100100110011101011010’

Realization
of DBS

Primary key
access

Classification

Mapping: XML  Relational Model

D

Persons

Person

Name Address Age

measured_at
=“2010.07.06”

Height

Person

Name Address

Metadata (schema)

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

Müller Schloss-
allee 1, …

55

Person

Maier

Name Age

20

Address

B d t 3

Street ZIP City

67663 KL

Address

F W Str 5

Street ZIP City

67657 KL

180Schmidt Opern-
platz 5, …

measure=“cm”

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-18
7-18

RM mapping in a table
is not possible, if object description has
 more than 3 levels,
 multi- or relation-valued attributes,
 aspects (attributes of elements)

--55Schlossallee 1,..Müller

HeightAgeAddressName

Person

--20?Maier

180--Opernplatz 5, …Schmidt

Badstr. 3 67663 KL F-W-Str. 5 67657 KL

Realization
of DBS

Primary key
access

Classification

Mapping: XML  Relational Model (2)
D

Persons

180Schmidt

Person

Name Address

Opern-Müller

Person

Name Address Age

Schloss- 55

measured_at
=“2010.01.06”

Height
measure=“cm”

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs? RM mapping across several
tables

Person
No Name Address RefNo Age Height

1 Müller Schlossallee
1 -- 55 --

platz 5, …allee 1, … Person

Maier

Name Age

20

Address

Badstr. 3

Street ZIP City

67663 KL

Address

F-W-Str. 5

Street ZIP City

67657 KL

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-19

 is very complex and
incomprehensible,
 must preserve order,
 is also called “Shredding”

1, …

2 Maier - - 20 --

3 Schmidt Opernplatz 5,
… -- -- 180

Address
RefNo No Street ZIP City

1 1 Bachstr. 3 67663 KL

1 2 F-W-Str. 5 67657 KL

…

1

Realization
of DBS

Primary key
access

Classification

Why XML Data Model? It‘s the Flexibility, Stupid!

 Flexibility
 Data mapping
 Cardinality variations
 Optional or non-existing structures

No need
for atomic

values

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

Optional or non existing structures

 Potential for data integration and evolution
 Every industry uses large and evolving sets of sparsely

populated attributes (elements)
 Financial companies defined >10 XML schemata and

vocabularies
T d di d i

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-20

 To standardize data processing
 To leverage cooperation and data exchange

 Domain- or application-specific standardization
• Facilitates intra- and inter-organization cooperation
• With a precise understanding of the data

Realization
of DBS

Primary key
access

Classification

Why XML DBMSs?

 XML defined for message exchange
• Messages are data, too
• Large volumes of messages and data
• Avoid conversion

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

 Transaction-safe document processing
• Support of cooperative and concurrent multi-user operations
• Example: Financial Application Logging

- 10M to 20M inserts of heterogeneous data in 24h

 XDBMSs: unified management for messages and data

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-21

- 500 peak inserts/sec
- Concurrently: > 100 users read the data for troubleshooting

and auditing tasks
- Short response times

 Performance is not everything,
but without performance everything is worth nothing!

Realization
of DBS

Primary key
access

Classification

XML Applications Need DBMS Support
xml.cover-pages.org

OWL, TEI, Bergen MLCD Project, MASTER, GDA, EMELD, ETCSL, XSTAR, METS, IMAGES, EAD, EAC, LEAF, Based on XML,
RSS, OCS, DocBook, WebML, PSI, DOM, RDDL, ANZLIC, NCIP, EVA, ATLAS, e-GIF, CTML, GovML, TIGERS, OXCI, XCI,
EML, Ballots, Elections, Polls, EPA, PIXIT, University of Washington, OMG, CWMI, MDA, OIM, DCMI, VocML, OAI-PMH,
PRISM, PICS, XGMML, SGF, GXL, PNML, OPML, WSP, XMTP, OSD, LOGML, Extensible Log Format, RML, XMPP, CPIM,

PIDF, IETF, XMSG,
Sho t Message Se ice MAXML XDNL DRP MatML MoDL BSML BIOML GEML GeneXML GAME LSID MAGE ML MAML

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

Short Message Service, MAXML, XDNL, DRP, MatML, MoDL, BSML, BIOML, GEML, GeneXML, GAME, LSID, MAGE-ML, MAML,
MSAML, SBML, PROXIML, VHG, OMF, XTHML, OPX, OFX/OFE, IFX, IRML, XFRML, XBRL, VRXML, FpML, TWIST, MDDL,
MDML, WeatherML, RIXML, daliML, STPML, tpaML, IOTP, JAXM, JAXR, DRM, DPRL, XrML, ODRL, DOI, XACML, EPAL,
XMCL, EBX, ITML, EPP, XNS, DMML, IETF/W3C, XKMS, XCBF, SAML, WS-Security, S2ML, XACL, IDMEF, IODEF,

IOTP, DOMHASH, SDML, FSML, ECML, BIPS, SML, RETML, Real Estate Listing Markup Language, Real Estate Standards,
CRTML, CPEX, STAR, SML, ebXML, UBL, XBDL, DRIVE, PML, GCI, COE, EDXL, MathML, RDL, SMIL, MPML, DIDL,

CPXe, XMP, SVG,
PGML, VML, IML, Virtual Reality Modeling Language, XML-Based DSL Provisioning, WIDL, GEN, VCML, tXML, TXML, UCC,

PML, GUIDE, igML, UDEF, OTA, HITIS, ICE, cXML, mpXML, qbXML, OCP, eCX, Electronic Business Card, HML, ADIS,
xNL, xAL, CIML, NAML, HEML, xCal, tML, TCIF/IPI, bcXML, gbXML, PDML, PDX, ECIX, CIDS, TDML, EDA, UXF, JAXB,
XLIFF, DESSERT, Bitstream Inc., MPEG-7, CIM, SMI-S, DCML, XTND, Bayesian Networks, PMML, MULECO, RDF, OIL,
MDL, XML, ORM-ML, DAML, RoboML, RuleML, BRML, BPML, AORML, XRML, SRML, RFML, IFF, SHOE, DLML, CBML,

AIML, PML, PIF-XML, GML, DNF, POIX, XMML, NVML, XDF, ADC, XSIL, OODT, OpenDocument, AIML, PhysicsML, NAA,
NITF NML NFF CFML ESI DCD DDML CharMapML DASL DITA XML DTB XPP JDF PPML PrintML PCX IMS

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-22

NITF, NML, NFF, CFML, ESI, DCD, DDML, CharMapML, DASL, DITA XML, DTB, XPP, JDF, PPML, PrintML, PCX, IMS,
SCORM, LMML, SIF, TML, DML, CCXML, CPL, CPML, VoiceXML, SALT, TML, MATE, CELLAR, ATLAS, XTML,

JSML/JSpeech, PMXML, XRL, ADML, HumanML, ThML, XSEM, OSIS, 'XML for FAX', XFDL, XFA, EFS, BML, BHTML,
OSP, DSML, BEEP, OPES, LOTP, SMI, xCBL, UCLP, NAXML, SOX, XBEL, SODL, WS-I, SOAP, UDDI, WS-Addressing,
WSIL, WSCL, WSDL, WSCI, WSIA, WSFL, WSUI, WSRP, WSXL, BPEL4WS, DIME, XAML, AML, XER, OOPML, eCTD,
NLM, XMLEPR, DTDs, TDL, HRMML, SIDES, BML, KBML, JigXML, Media Object Server - XML, Formal Language for

Business Communication, ETD-ML, XUL, XAML, XBL, UIML, PSL, AISI, SML, ETSG, PIDX, POSC, PIPE, MTML, gXML,
SM X, ChessML, MRML, …

ACID properties and XQuery eval. have to be guaranteed!

 here flexible implementation concepts!

Realization
of DBS

Primary key
access

Classification

Introduction to DOM (Document Object Model)

 XML fragment

<bib>
<book year="1994" id="1">
<title>TCP/IP Illustrated</title>
<author>

 Representation as DOM tree

bib

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

<author>
<last>Stevens</last>
<first>W.</first>

</author>
<price>65.95</price>

</book>
</bib>

T

book

title author priceid year

Tlast first

TT

 DOM API
i ti difi ti

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-23

• navigation
getFirstChild()
getLastChild()
getNextSibling()
getPreviousSibling()
getAttributes()
getNodeValue()

• modification
appendChild (...)
insertBefore (...)
removeChild (...)
setNodeValue (...)
setAttribute (...)

• query
getElementById (...)
getElementsByTagName (...)
hasAttribute (...)

Realization
of DBS

Primary key
access

Classification

Native XML Storage Structures

department<department>
<employee id=“450”>

<name> Tom Meier</name>
<t l>0211 126812</t l>

Transformation into an internal XML tree

Conceptual XML mapping to a fine-grained storage structure

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

employee

id=450 name tel office id=426 name tel office

Tom Meier 0211-126812 119 Tina Lint 0211-679088 113

employee
<tel>0211-126812</tel>
<office>119</office>

</employee>
<employee id=“426”>

<name>Tina Lint</name>
<tel>0211-679088</tel>
<office>113</office>

</employee>
</department>

9 SYSIBM:SYSXMLSTRINGS

Element names are replaced by means of a dictionary

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-24

5=450 7 3 5=426 7

Tom Meier 0211-126812 119 Tina Lint 0211-679088 113

9

66

1 1 3

office3

tel7

id5

name1

employee6

department9

String table

SYSIBM:SYSXMLSTRINGS

Realization
of DBS

Primary key
access

Classification

Node labeling –
the key to fine-grained management

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

the key to fine grained management
of XML documents

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-25

Realization
of DBS

Primary key
access

Classification

Holistic Support of all Internal XDBMS Operations

 Node Labeling
• Representation of an XML document: ordered, labeled tree

with nodes of type element, attribute, text

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

 Specific support needed
• Declarative query processing

- All core operations
- Indexing support

• Navigational processing
- In combination with XML document representation and

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-26

- Additional access path structures

• Concurrency control
- Most operations jump into the document tree
- Intention locks up to the document root required

Without accessing the XML document on disk

Realization
of DBS

Primary key
access

Classification

Node Labeling – Early Requirements

 Declarative access of static XML documents
• Efficient evaluation of the 13 axes of the XQuery and the XPath 2.0

language model (sequence semantics)
• Most important axes:

t/ hild t /d d t di

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

parent/child, ancestor/descendant, preceding-
sibling/following-sibling

 Complete k-ary trees (example: k = 3)

2

1

43

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-27

• Pre-analysis required to determine max (k)
• Real documents are incomplete k-ary trees

135 10

14 31 40

Realization
of DBS

Primary key
access

Classification

Node Labeling – Early Requirements (2)
 Concept of virtual nodes 1

2 43

135 10

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

• parent (cn, k) = ceil ((cn – 1)/k)
• child (cn, k) = cn*k – (k-1) + 1, cn*k – (k-2) + 1,

cn*k – (k-i) + 1, …, cn*k – 1 + 1, cn*k + 1
• ancestor (cn, k) = parent (cn, k), parent (parent (cn, k), k), …

135 10

14 31 40

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-28

• descendant (cn, k) = child (cn, k), child (child (cn, k), k), …
• sibling (cn, k) = child (parent (cn, k), k), …
• previous/following …

 KO criterion
• Any computed label may correspond to a virtual node
• Tree representation has to be accessed to check if a node is real or virtual

A document may have a very large k and very many levels

Realization
of DBS

Primary key
access

Classification

Node Labeling – Early Requirements (3)

 Improvements (see eXist prototype): use pre-analysis to
• Determine max (ki) per level li
• Build complete trees (ki, li)
• Reduce the set of virtual nodes

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

k1 = 3

k2 = 2

k3 = 1

1

2 3 4

5 10

1611

metadata

Relationships among nodes may still be computed

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-29

 KO criterion
• Order-preserving insertion (replacement of virtual nodes) not

always possible
• Subtree insertions may violate the labeling scheme

• Insertions may enforce the relabeling of the entire tree

Relationships among nodes may still be computed

Realization
of DBS

Primary key
access

Classification

Node Labeling – New Requirements

 Support of dynamic XML documents
• All axes relationships should be evaluated

without accessing the document

I t l i ti ti h ld h l t ti i d l ti

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

• Internal navigation operations should help to optimize declarative
queries

• Multi-lingual XML interfaces require navigational support (e.g.,
DOM and SAX)

• Labeling scheme should be insensitive to insertions

• Most important for intention locking:

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-30

Most important for intention locking:
A node label should allow for the determination of the node labels
(IDs) of all its ancestors

 Principal Approaches to a Solution
• Two classes: range-based and prefix-based schemes

Realization
of DBS

Primary key
access

Classification

Range-based Schemes

• Positions of nodes marked by (DocNo, LeftPos:RightPos, LevelNo)
• LP and RP describe the labeling range in each node with its subtree;

generated by a depth-first traversal of the tree
• Ancestor-descendant containment (DocNo is omitted):

a node n1 (LP1:RP1, lv1) contains a node n2 (LP2:RP2, lv2),
iff LP1 < LP2 d RP1 > RP2

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

iff LP1 < LP2 and RP1 > RP2.
• Additional condition for parent-child containment: lv1 = lv2 - 1
• Supporting preceding-sibling/following-sibling relationship?

• Simple example

1 (1:10, 0, null)

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-31

2

3 4

5 76
label template (LP:RP, lv, P_LP)

(2:9, 1, 1)

(4:8, 2, 2)

(7:7, 3, 4)

Realization
of DBS

Primary key
access

Classification

Prefix-Based Schemes
 Each node is encoded with a unique string S such that

• S(v) is before S(u) in lexicographic order iff node v is before node u in the
document order

• S(v) is a prefix of S(u) iff node v is the ancestor of node u

 Simple example:

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

- Assign to the outgoing edges of each node a set of prefix-free binary
strings in lexicographical order from left to right

- The label of each node is the concatenation of the parent’s label and the
string assigned to its incoming edge

- Record the level of a node
- Add the edge string length esl to each node descriptor to derive the

ancestor label
1 (“0”, 0, 0)

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-32

2

3 4

5 76

“0“

“0“

“00“

“1“

“01“ “10“

label template (S, lv, esl)

(“00”, 1, 1)

(“001”, 2, 4)

(“00110”, 3, 14)

Realization
of DBS

Primary key
access

Classification

Prefix-Based Labeling Scheme – DeweyIDs (SPLIDs)

 DeweyIDs consist of several division values separated by dots
 On initial loading, only odd division values are assigned
 Initial assignment is controlled by parameter distance (= 4)
 Computation of XPath axes relationships

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs? preceding sibling

following sibling

1

book 1.5

year
1.5.1.3

id

1.5.1.5

bib

book

1994 1

1.13book1.9

title price

1.5.5 1.5.13

author

1.5.9

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-33

following sibling

T
T

TPC/IP...

1.5.5.5
1.5.13.5

65.95

last first
1.5.9.5 1.5.9.9

1.5.9.5.5 1.5.9.9.5

Stevens W.

T
T

element

attribute

text node
T

without accessing the XML document on disk

Realization
of DBS

Primary key
access

Classification

DeweyIDs Embody a Special Prefix Labeling Scheme

 Labels must
• be immutable for the lifetime of the nodes
• preserve the document order, when inserting new nodes
• easily reveal the level and the ID for all ancestor nodes

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

 DeweyID consists of several divisions separated by dots
• Overflow mechanism: even division values

• Level determination

d1 = 1.3.17.2.2.3.4.9

d1 = 1.3.17.2.2.3.4.9

d2 = 1.3.17.2.3.7

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-34

• Ancestor IDs: a0 = 1; a1 = 1.3; a2 = 1.3.17; a3 = 1.3.17.2.2.3

• Ordering
d2 ? d1

d1 < d2 : 1.3.17.2.2.3.4.9 < 1.3.17.2.3.7

Realization
of DBS

Primary key
access

Classification

Initial Assignment of DeweyIDs

• Assignment of division values is affected by parameter
distance (= 4)

• On initial loading, only odd division values are assigned
• Odd division value indicates level transition

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

1

book 1.5

year

1.5.1.3

id

1.5.1.5

bib

book

1994 1

1.13book1.9

title author price

1.5.5 1.5.9 1.5.13

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-35

T
T

TPC/IP...

last first

1.5.5.5
1.5.9.5 1.5.5.9 1.5.13.5

1.5.9.5.5 1.5.9.9.5 65.95

Stevens W.
T T

T

element

attribute

text node

Realization
of DBS

Primary key
access

Classification

DeweyIDs: Insertion of Subtrees

distance = 4 1

book 1.5

bib

book 1.13book1.9

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

T

year

1.5.1.3

id

1.5.1.5
1994 1 title author price

T

1.5.5 1.5.9

author

1.5.11 1.5.13

TPC/IP...

last first

1.5.5.5
1.5.9.5 1.5.9.9 1.5.13.5

1.5.9.5.5 1.5.9.9.5 65.95

T T

type

1.5.3

author

1.5.12.5

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-36

book 1.2.9

Worst-case considerations:
distance = 8

book 1.2.3 1.5

1

1.9

bib

bookbookbook 1.3book 1.2.5book 1.2.2.9

Stevens W.

Realization
of DBS

Primary key
access

Classification

Benefits of DeweyID Use

• Existing DeweyIDs allow the assignment of new IDs without the
need to reorganize the IDs of nodes present. Relabeling only in case
of violations of implementation restrictions

• The DeweyID of each ancestor node can be determined in a very

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

• The DeweyID of each ancestor node can be determined in a very
simple way

• Comparison of two DeweyIDs delivers the order of the respective
nodes in the left-most depth-first stored document.

• Checking whether node d1 is an ancestor of d2 only requires to
check whether DeweyID of d1 is a prefix of DeweyID of d2.

h d l d h b b l f h

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-37

• High distance values reduce the probability of reorganization. They
have to be balanced against increased storage space

But: DeweyIDs may become very long

OrdPaths and DLN schemes have similar properties.
We call the generic form SPLIDs (Stable Path Labeling IDs)

Realization
of DBS

Primary key
access

Classification

Encoding of DeweyIDs

 Fixed length field

TL L0 E 0 L1 E 1 Lk E k. . .

TL = total length
li = length of Li
Li = length of i-th division
Ei = encoding of i-th division
Oi = value of the i-th division

l 6 L 64 O 264 bit O 7 d 6 3 bit

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

 Fixed- and variable-length length fields

TL Lf0 Lv0 E 0 Lf1 Lvk E k. . . lf = length of Lfi
Lfi = length of Lvi
Lvi = length of the i-th division

li = 6 : LOi < 64 : Oi < 264 bits

length of L < 2Lfi : value of O < 2Lvi+1 using range expansion

Oi = 7 needs 6+3 bits

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-38

length of Lvi < 2 value of Oi < 2 using range expansion

lf = 2 : Oi < 231

lf = 3 : Oi < 2511

But penalty for small division values: Oi = 7 needs 3+2+3 bits

Realization
of DBS

Primary key
access

Classification

Encoding of DeweyIDs (2)

 k-based representation
• m = ceil (log (k + 1))

• Reserve one code of length m to represent the separator “.”

• Interpret a sequence of m-bit codes as a number with base k

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

Interpret a sequence of m bit codes as a number with base k

k = 3: “0”: 00, “1”: 01, “2”: 10, “.”: 11

1.7.11 : TL 01 11 10 01 11 01 00 10

1*30 2*31 + 1*30 1*32 + 0*31 + 2*30

Good space efficiency: Oi = 7 needs 6 bits, but no adaptation to value distributions

Is there a better k: k = 1 or k = 7?

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-39

k = 7: “0”: 000, “1”: 001, “2”: 010, “3”: 011, …., “.”: 111

1.7.11 : TL 001 111 001 000 111 001 100

1*70 1*71 + 0*70 1*71 + 4*70

Oi = 7
needs 9 bits

KO criterion: comparison of DeweyIDs at the bit/byte level not possible

Realization
of DBS

Primary key
access

Classification

Encoding of DeweyIDs (3)

 Huffman codes

3

0 1

10
TL C0 E 0 C1 E 1 Ck E k. . .

1.7.11: TL 0001 0111 1000011

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?
 Degrees of freedom

range weights and

64

0 0 11

128

0 1

2016

0 1

0 1

3124

0 1

0 1

Oi = 7 needs 4 bits

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-40

range weights and
length assignments

1

128

0

0 0 11

2016

0 1

3124

0 1

64

0 1

Oi = 7 needs 6 bits

1.7.11: TL 000001 000111 001011

Realization
of DBS

Primary key
access

Classification

Characteristics of XML Documents Considered

1,762,4356.08956,317476,646
2)

l

1.5856,3858.443712,437,666
1)

treebank_e.xml

−fanout
of elements

max.
fanout

−
depth

max.
depth

number
of

attributes

number
of element

nodes

size
(bytes)

Astronomical
d t

Encoded DB of
English records of
Wall Street Journal

descriptionfile name

25,050,288

86,082,517

number
of text
nodes

303,676

1,391,845

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

2.4150,0004.0762,189,8592,977,031
4)

SwissProt.xml

,,,,
nasa.xml

1 90124 2660156
7)

1.891,5013.414113,501
6)

customer.xml

1.81262,5295.6881,290,64721,305,818
3)

psd7003.xml

DB of protein
sequences

data

Ebay

Customers from
TPC-H benchmark

DB of protein
sequences

5)
dblp.xml 2.11649,0803.3971,375,8326,662,623

114,820,211

, ,

35 562

515,660

716,853,016

284,994,162
Computer Science

Index

2,013,844

,

107

12,000

15,955,109

6,013,355

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-41
1.912,1124.376666,729

11)
uwm.xml

1.9015,0013.4241150,001
10)

orders.xml

3.459554.15647,42322,423
9)

mondial-3.0.xml

1.9460,1763.45411,022,976
8)

lineitem.xml

1.90124.2660156
ebay.xml

Courses of a
University Website

Orders from
TPC-H Benchmark

Geographical DB
of diverse sources

Line items from
TPC-H benchmark

auction data

2,337,522

5,378,845

1,784,825

32,295,475

35,562

40,234

135,000

7,467

962,800

107

Realization
of DBS

Primary key
access

Classification

Encoding of DeweyIDs

Huffman
code

Li value range of Oi

0 3 1-7

100 4 8-23

r
a
n
g

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

100 4 8-23

101 6 24-87

1100 8 88-343

1101 12 344-4,439

11100 16 4,440-69,975

11101 20 69,976-1,118,551

11110 24 1,118,552-17,895,767

11111 31 17 895 768 2 165 379 414

g
e

e
x
p
a
n
s
i
o
n

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-42

11111 31 17,895,768-2,165,379,414

Optimization potential
- Analysis phase, if possible: determine DOM tree parameters
for optimized Huffman code assignment (even level-wise applicable)

- Cut prefix 1.
- Apply prefix compression to DeweyIDs

n

Realization
of DBS

Primary key
access

Classification

DeweyIDs – Comparison of Avg. Sizes to Max. Sizes

Document
-size max-size

dist(2) dist(32) dist(256) dist(2) dist(256) dist(256)

1. treebank 6.67 11.57 15.94 22 46 72

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

2. nasa 5.19 8.54 11.30 8 13 18

3. psd7003 5.61 8.84 11.30 8 13 17

4. SwissProt 5.10 7.04 8.14 8 11 13

5. dblp 4.58 6.12 7.16 7 10 13

6. customer 3.17 5.04 6.19 4 6 7

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-43

Realization
of DBS

Primary key
access

Classification

Native XML Document Storage (XTC Approach)

1

1.3.3.3

m
en

t
in

d
ex

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?
1.3.1.3
1.3.1
1.3
1

1.3.3
1.3.1.5.1
1.3.1.5
1.3.1.3.1

1.3.5.3
1.3.5
1.3.3.3.1
1.3.3.3

1.3.5.5.3
1.3.5.5
1.3.5.3.3.1
1.3.5.3.3

1.3.7.3.1
1.3.7.3
1.3.7
1.3.5.5.3.1

1.3.1.3.1

1 1.3.5.3.3

1.3.5.5.3.1

d
o

cu
m

en
t

co
n

ta
in

er

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-44prefix compression works!

Document index is a B-tree for the document(s) stored in the doubly-chained pages
of the document container
Text values exceeding a given threshold are stored in referenced mode

DeweyID node data (byte representation)

d
o

cu
m

e

Realization
of DBS

Primary key
access

Classification

Summary
 Clustering optimizes (sorted) sequential accesses

 Access behavior of AVL tree with O(log2n) is not good enough

 Standard access path: B*-tree (the ubiquitous B*-tree)
• Is not missing in any DBMS
• Materialized and referenced storage of data records

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

• Materialized and referenced storage of data records
• Index-organized table with clustering

 Index structure as B*-trees
• Can be specified with and without clustering
• Balanced structure independent of set of keys and insertion sequence
 Dynamic reorganization by splitting and merging of pages

• Direct key access to an indexed record
• Sorted sequential access to all records

(supports range queries, join operations, etc.)
 How many Index structures/tables?

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-45

 How many Index structures/tables?

 Digital trees
• No “built-in” balancing criterion
• Proposed as path indexes for XML documents
• Mapping onto external storage is difficult for dynamic documents

 DeweyIDs (SPLIDs) as preferred node labeling scheme for trees
• Order preserving and stable in case of insertions, but variable-length entries
• Expressive power with effective support for DB operations

Realization
of DBS

Primary key
access

Classification

Access Paths in Commercial Database Systems

DB2(IBM) B*tree (clustered, non-clustered), partitioned tables, …

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

Informix B-tree, static hashing, ISAM, HEAP, …

Oracle B*-tree (with prefix-/suffix compression), (join-) clustering, …

Sybase B*-tree (clustered, non-clustered), …

RDB (DEC) B*tree (clustered, non-clustered), hashing, join clustering, …

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-46

NonStop SQL (Tandem) B*-tree (clustered, non-clustered) with prefix compression, …

UDS (Siemens)
B*tree, static hashing, clustering (LIST), Inverted pointer list
(Pointer-Array), CHAIN

Realization
of DBS

Primary key
access

Classification

Addressing in Trees Using DeweyIDs

 Initial document loading*

While a new document is loaded—typically bulk-loaded in left-most depth-first order—, the
DeweyIDs for its nodes are dynamically assigned which is guided by the following rules:

1. Element root node: It always obtains DeweyID 1.

2 El d Th fi d l l i h D ID f i d

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

2. Element nodes: The first node at a level receives the DeweyID of its parent node
extended by a division of distance + 1. If a node N is inserted after the last node L at a
level, DeweyID of L is assigned to N where the value of the last division is increased by
distance.

3. Attribute nodes: A node N having at least one attribute, obtains (in taDOM) an attribute
root R for which the DeweyID of N extended by a division with value 1 is assigned. The
attribute node yields the DeweyID of R extended by a division. If it is the first attribute
node of R, this division has the value 3. Otherwise, the division receives the value of
the last division of the last attribute node increased by 2. In this case, the distance
value does not matter, because the attribute sequence does not affect the semantics of
the document Therefore new attributes can always be inserted at the end of the

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-47

the document. Therefore, new attributes can always be inserted at the end of the
attribute list.

4. Text nodes: A node containing text is represented in taDOM by a text node and a string
node. For text nodes, the same rules apply as for element nodes. The value of an
attribute or a text node is stored in a string node. This string node obtains the DeweyID
of the text node resp. attribute node, extended by a division with value 1.

* T. Härder, M. Haustein, C. Mathis, M. Wagner: Node Labeling Schemes for Dynamic XML Documents Reconsidered, Data &
Knowledge Engineering 60:1, pp. 126-149, Elsevier 2007; http://wwwlgis.informatik.uni-kl.de/cms/index.php?id=9

Realization
of DBS

Primary key
access

Classification

Addressing in Trees Using DeweyIDs (2)

 DeweyID assignment when new nodes are inserted
When new nodes are inserted at arbitrary logical positions, their DeweyIDs must reflect the intended Document
order as well as position, level, and type of node without enforcing modifications of DeweyIDs already present. For
element nodes and text nodes, the same rules apply. In contrast to them, attribute roots, attribute nodes, and
string nodes do not need special consideration by applying rule 3, because order and level properties do not matter.

Binary
digital trees

Digital trees

m-ary Trie

Why XDBMSs?

Assignment of a DeweyID for a new last sibling is similar to the initial loading. Here, the last level only consists of
one division. Hence, when inserting element node year after price, addition of the distance value yields 1.9.33. In
case, the last level consists of more than one division (indicated by even values), the first division of this level is
increased by distance - 1. For example, the successor of 1.3.14.6.5 is 1.3.21.

If a sibling is inserted before the first existing sibling, the first division of the last level is halved and, if necessary,
ceiled to the next integer or increased by 1 to get an odd division. This measure secures that the “before-and-after
gaps” for new nodes remain equal. Hence, inserting a type node before title would result in DeweyID 1.9.5. If the
first divisions of the last level are already 2, they have to be adopted unchanged, because smaller division values
than 2 are not possible, e.g., the predecessor of 1.9.2.2.8.9 is 1.9.2.2.5. In case the first division of the last level is
3, it will be replaced by 2.distance+1. For example, the predecessor of 1.9.3 receives 1.9.2.9.

The remaining case is the insertion of node d2 between two existing nodes d1 and d3. Hence, for d2 we must find a
new DeweyID which is between the DeweyIDs of d and d Because they are allocated at the same level and have

© 2011 AG DBIS

DeweyIDs for
node labeling

Addressing
in trees

6-48

new DeweyID which is between the DeweyIDs of d1 and d3. Because they are allocated at the same level and have
the same parent node, they only differ at the last level (which may consist of arbitrary many even divisions and one
odd division, in case a weird insertion history took place at that position in the tree). All common divisions before
the first differing division are also equal for the new DeweyID. The first differing division determines the division
becoming part of DeweyID for d2. If possible, we prefer a median division to keep the before-and-after gaps equal.
Assume for example, d1 = 1.9.5.7.5 and d3 = 1.9.5.7.16.5, for which the first differing divisions are 5 and 16.
Hence, choosing the median odd division result in d2 = 1.9.5.7.11.

If d4 = 1.5.6.7.5 and d6 = 1.5.6.7.7, only even division 6 would fit. Remember, we have to recognize the correct
level. Hence, having distance value 8, d5 = 1.5.6.7.6.9.

