

Realization of DBS	Tree-Based Access Paths
	■ Goal
Classification	 Design principles for access paths to the records of a table, for which a search criterion is supported Ways to support hierarchical access
Primary key access	 Access paths for primary key Binary search trees?
Digital trees	 Multi-way trees and digital trees, hash methods (chapter 7)
m-ary Trie	B- and B*-trees (repetition)
Binary digital trees	 Digital trees (m-ary Trie, binary digital trees)
	Addressing in trees
Why XDBMSs?	 Important for fine-granular mapping of XML documents
Addressing in trees	 Labeling schemes for nodes should consider structure and order of the document and avoid relabeling in case of arbitrary subtree insertions
DeweyIDs for	 Support of navigation, declarative query evaluation, and locking
node labeling	Important characteristics
	 n = #instances of a record type, b = avg. #records/page (blocking factor) q = #hits of a query, N_S = #page accesses, N_B = #leaf pages, h_B = height of B*-tree
Datesbanken sind Informationssystems © 2011 AG DBIS	6-2

Realization of DBS	Requirements for Access Paths	
	Following types of accesses must be supported	
Classification	 Sequential access to all records of a record type (scan) 	
Classification	Select * From Emp	
Primary key access	Sequential access in sorted sequence of an attribute	
Digital trees	Order by Name	
Digital trees	Direct access via primary key	
m-ary Trie	Where Eno = 0815	
Binary	Direct access via a secondary key	
digital trees	Where Job = 'programmer'	
Why XDBMSs?	 Direct access via composed keys and 	
Addressing	complex search expressions (ranges,)	
in trees	Where Salary Between 50K And 100K	
DeweyIDs for node labeling	 Navigational access from a record to a related set 	
	of records of the same or of another record type	
	Where E.Dno = D.Dno	
Datenbanken und Informationssystem	→ If a suitable access path is missing, sequential search (scan) is needed	6-4

Realization of DBS	Multi-Way Trees
	Base: page = transportation unit to disk (in contrast to binary search trees)
Classification	 Ancestor: ISAM (static, periodic reorganization)
Primary key access Digital trees	 Evolution to B- and B*-tree Referenced and materialized storage of data records Dynamic reorganization by splitting and merging of pages
m-ary Trie	 Functions Direct key access and sorted sequential access (range access)
Binary digital trees	 Balanced structure Independent of set of keys and independent of insertion sequence
Why XDBMSs? Addressing in trees	 Realization of index-organized tables Often ordered according to primary key Clustering by embedded data records
DeweyIDs for node labeling	 Improvement of fan-out Key compression Use of "separator keys" in B*-trees, Prefix-B-trees
	Improvement of occupancy degree
© 2011 AG DBIS	Generalized splitting method 6-6

Realization of DBS	Digital Trees
	So far: always comparison of the entire key
Classification Primary key access	In digital search trees or digital trees, for short, comparisons in tree nodes are performed to determine the search path not according to the entire key, but according to subsequent key fractions. Each differing sequence of key fractions results in a separate search path in the tree; all keys with the same prefix have the same search path for the length of the prefix.
Digital trees	Organization of the digital tree and search in the tree occur according to "key fractions"
m-ary Trie	Digital search trees - principle
Binary digital trees Why XDBMSs? Addressing in trees	 m-ary Trie (detour) General alphabet Trie representation Base operations Improvement of space occupancy Digital tree having a variable node format
DeweyIDs for node labeling	 Binary digital tree Binary alphabet Binary digital search tree PATRICIA tree: avoidance of one-way branching Binary Radix tree: improvement of lookup opportunities

Realization of DBS	Why XML DBMSs?
	 XML defined for message exchange
Classification	Messages are data, too
Classification	 Large volumes of messages and data
Primary key access	Avoid conversion
Digital trees	\rightarrow XDBMSs: unified management for messages and data
m-ary Trie	 Transaction-safe document processing
Binary digital trees	 Support of cooperative and concurrent multi-user operations
	 Example: Financial Application Logging
Why XDBMSs?	 10M to 20M inserts of heterogeneous data in 24h
Addressing in trees	- 500 peak inserts/sec
DeweyIDs for	 Concurrently: > 100 users read the data for troubleshooting
node labeling	and auditing tasks
	- Short response times
	\rightarrow Performance is not everything,
© 2011 AG DBIS	but without performance everything is worth nothing!

Realization of DBS	XML Applications Need DBMS Support
	xml.cover-pages.org
Classification Primary key	OWL, TEI, Bergen MLCD Project, MASTER, GDA, EMELD, ETCSL, XSTAR, METS, IMAGES, EAD, EAC, LEAF, Based on XML, RSS, OCS, DocBook, WebML, PSI, DOM, RDDL, ANZLIC, NCIP, EVA, ATLAS, e-GIF, CTML, GovML, TIGERS, OXCI, XCI, EML, Ballots, Elections, Polls, EPA, PIXIT, University of Washington, OMG, CWMI, MDA, OIM, DCMI, VocML, OAI-PMH, PRISM, PICS, XGMML, SGF, GXL, PNML, OPML, WSP, XMTP, OSD, LOGML, Extensible Log Format, RML, XMPP, CPIM,
access Digital trees	PIDF, IETF, XMSG, Short Message Service, MAXML, XDNL, DRP, MatML, MODL, BSML, BIOML, GEML, GeneXML, GAME, LSID, MAGE-ML, MAML, MSAML, SBML, PROXIML, VHG, OMF, XTHML, OPX, OFX/OFE, IFX, IRML, XFRML, XBRL, VRXML, FpML, TWIST, MDDL, MDML, WeatherML, RIXML, dailML, STPML, tpaML, IOTP, JAXM, JAXR, DRM, DRRL, XML, ODRL, DOI, XACML, EPAL, XMCL, EBX, ITML, EPP, XNS, DMML, IETF/W3C, XKMS, XCBF, SAML, WS-Security, S2ML, XACL, IDMEF, IODEF,
m-ary Trie	IOTP, DOMHASH, SDML, FSML, ECML, BIPS, SML, RETML, Real Estate Listing Markup Language, Real Estate Standards, CRTML, CPEX, STAR, SML, ebXML, UBL, XBDL, DRIVE, PML, GCI, COE, EDXL, MathiML, RDL, SMIL, MPML, DIDL, CPXe, XMP, SVG,
Binary digital trees Why XDBMSs? Addressing in trees DeweyIDs for node labeling	 PGML, VML, IML, Virtual Reality Modeling Language, XML-Based DSL Provisioning, WIDL, GEN, VCML, tXML, TXML, UCC, PML, GUIDE, igML, UDEF, OTA, HITIS, ICE, cXML, mpXML, dpXML, OCP, eCX, Electronic Business Card, HML, ADIS, XNL, XAL, CIML, NAML, HEML, xCal, tML, TCIF/IPI, bcXML, gbXML, PDML, PDX, ECIX, CIDS, TDML, EDA, UXF, JAXB, XLIFF, DESSERT, Bitstream Inc., MPEG-7, CIM, SMLS, DCML, XTND, Bayesian Networks, PMML, MULECO, RDF, OIL, MDL, XML, ORM-ML, DAML, RobML, RuleML, BRML, BPML, AORML, XRML, RFML, IFF, SHOE, DLML, CBML, AIML, PML, PIF-XML, GML, DAML, RobML, RuleML, BRML, BPML, AORML, XRML, SML, RFML, IFF, SHOE, DLML, CBML, AIML, PML, PIF-XML, GML, DNL, CDML, CML, DYB, ADC, XSIL, OODT, OpenDocument, AIML, PhysicsML, NAA, NITF, NML, NFF, CFML, ESI, DCD, DDML, CharMapML, DASL, DITA XML, DTB, XPP, JDF, PPML, PrintML, PCX, IMS, SCORM, LMML, SIF, TML, DML, CCXML, CPL, CPML, VoiceXML, SALT, TML, MATE, CELLAR, ATLAS, XTML, JSML/JSpeech, PMXML, XRL, ADML, HUMML, ML, XSEM, OSIS, 'XML for FAX', XFDL, XFA, EFS, BML, BHTML, OSP, DSML, BEEP, OPES, LOTP, SMI, XCBL, UCLP, NAXML, SOX, XBEL, SODL, WS-I, SOAP, UDDI, WS-Addressing, WSIL, WSCL, WSDL, WSCI, WSIL, WSCH, WSUL, WSRP, WSXL, BPE14WS, DIME, XAML, AML, XER, OOPML, eCTD, NLM, XMLEPR, DTS, TDL, HRMML, SIDE, SML, KBML, JIJXML, Media Object Server - XML, Formal Language for Business Communication, ETD-ML, XUL, XAML, XBL, UIML, PSL, AISI, SML, ETSG, PIDX, POSC, PIPE, MTML, gXML, SM X, ChessML, MRML,
DBIS	ACID properties and XQuery eval. have to be guaranteed!
© 2011 AG DBIS	→ here flexible implementation concepts! 6-22

Realization of DBS	Holistic Support of all Internal XDBMS Operations
Classification Primary key access	 Node Labeling Representation of an XML document: ordered, labeled tree with nodes of type element, attribute, text
Digital trees	 Specific support needed
m-ary Trie	 Declarative query processing All core operations
Binary digital trees	- Indexing support
Why XDBMSs?	 Navigational processing In combination with XML document representation and
Addressing in trees	- Additional access path structures
DeweyIDs for node labeling	 Concurrency control Most operations jump into the document tree
	 Intention locks up to the document root required
Ditembering Ditembering 0 2011 AG DBIS	Without accessing the XML document on disk

Realization of DBS	Node Labeling – New Requirements
Classification Primary key access	 Support of dynamic XML documents All axes relationships should be evaluated without accessing the document
Digital trees	 Internal navigation operations should help to optimize declarative queries
m-ary Trie Binary digital trees	 Multi-lingual XML interfaces require navigational support (e.g., DOM and SAX)
Why XDBMSs?	 Labeling scheme should be insensitive to insertions
Addressing in trees DeweyIDs for	 Most important for intention locking: A node label should allow for the determination of the node labels (IDs) of all its ancestors
node labeling	 Principal Approaches to a Solution
	 Two classes: range-based and prefix-based schemes
Daterbanken und Informationssystems © 2011 AG DBIS	6-30

Realization of DBS	Prefix-Based Schemes										
	 Each node is encoded with a unique string S such that 										
Classification	 S(v) is before S(u) in lexicographic order iff node v is before node u in the document order 										
	• S(v) is a prefix of S(u) iff node v is the ancestor of node u										
Primary key access	Simple example:										
Digital trees	 Assign to the outgoing edges of each node a set of prefix-free binary strings in lexicographical order from left to right 										
m-ary Trie	- The label of each node is the concatenation of the parent's label and the string assigned to its incoming edge										
Binary	- Record the level of a node										
digital trees	- Add the edge string length esl to each node descriptor to derive the										
Why XDBMSs?	ancestor label										
Addressing											
in trees	"O"										
DeweyIDs for	"O" ("00", 1, 1) "O" "1"										
node labeling	(3) (*001", 2, 4)										
	"00 ["] "01" "10"										
DBIS											
© 2011 AG DBIS	$\begin{array}{c} \text{label template (S, Iv, esl)} \\ (5) \\ (6) \\ (7) \\ (00110^{\circ}, 3, 14) \\ (6-32$										

Realization of DBS	DeweyIDs Embody a Special Prefix Labeling Scheme									
	Labels must									
Classification	 be immutable for the lifetime of the nodes 	be immutable for the lifetime of the nodes								
Primary key access	 preserve the document order, when inserting new nodes easily reveal the level and the ID for all ancestor nodes 	preserve the document order, when inserting new houses								
Digital trees	DeweyID consists of several divisions separated by dots									
m-ary Trie		Overflow mechanism: even division values								
Binary digital trees	d ₁ = 1.3.17.2.2.3.4.9 d ₂ = 1.3.17.2.3.7 • Level determination									
Why XDBMSs?	d ₁ = 1.3.17.2.2.3.4.9									
Addressing in trees	• Ancestor IDs: a ₀ = 1; a ₁ = 1.3; a ₂ = 1.3.17; a ₃ = 1.3.17.2.2.3									
DeweyIDs for node labeling	 Ordering d₂ ? d₁ 									
DBIS Detersbankers und Informationssystems	$d_1 < d_2$: 1.3.17.2.2.3.4.9 < 1.3.17.2.3.7	34								
© 2011 AG DBIS	6-	34								

Realization of DBS	Benefits of DeweyID Use
Classification	 Existing DeweyIDs allow the assignment of new IDs without the need to reorganize the IDs of nodes present. Relabeling only in case of violations of implementation restrictions
Primary key access Digital trees	 The DeweyID of each ancestor node can be determined in a very simple way
m-ary Trie	 Comparison of two DeweyIDs delivers the order of the respective nodes in the left-most depth-first stored document.
Binary digital trees Why XDBMSs?	 Checking whether node d1 is an ancestor of d2 only requires to check whether DeweyID of d1 is a prefix of DeweyID of d2.
Addressing in trees	 High distance values reduce the probability of reorganization. They have to be balanced against increased storage space
DeweyIDs for node labeling	But: DeweyIDs may become very long
Detendanters und Informationssystems © 2011 AG DBIS	OrdPaths and DLN schemes have similar properties. We call the generic form SPLIDs (Stable Path Labeling IDs) 6-37

Realization of DBS	Characte	ristics of XI	4L Docu	mənts	Consid	lered				
	file name	description	size (bytes)	number of element nodes	number of text nodes	number of attributes	max. depth	Ø– depth	max. fanout	Ø–fanout of elements
Classification	1) treebank_e.xml	Encoded DB of English records of Wall Street Journal	86,082,517	2,437,666	1,391,845	1	37	8.44	56,385	1.58
Primary key access	2) nasa.xml	Astronomical data	25,050,288	476,646	303,676	56,317	9	6.08	2,435	1,76
Digital trees	3) psd7003.xml	DB of protein sequences	716,853,016	21,305,818	15,955,109	1,290,647	8	5.68	262,529	1.81
m-ary Trie	4) SwissProt.xml	DB of protein sequences	114,820,211	2,977,031	2,013,844	2,189,859	6	4.07	50,000	2.41
Binary digital trees	5) dblp.xml	Computer Science Index	284,994,162	6,662,623	6,013,355	1,375,832	7	3.39	649,080	2.11
Why XDBMSs?	6) customer.xml	Customers from TPC-H benchmark	515,660	13,501	12,000	1	4	3.41	1,501	1.89
Addressing	7) ebay.xml	Ebay auction data	35,562	156	107	0	6	4.26	12	1.90
in trees DewevIDs for	8) lineitem.xml	Line items from TPC-H benchmark	32,295,475	1,022,976	962,800	1	4	3.45	60,176	1.94
node labeling	9) mondial-3.0.xml	Geographical DB of diverse sources	1,784,825	22,423	7,467	47,423	6	4.15	955	3.45
	10) orders.xml	Orders from TPC-H Benchmark	5,378,845	150,001	135,000	1	4	3.42	15,001	1.90
DBIS Deterbanken und Informationssystems	11) uwm.xml	Courses of a University Website	2,337,522	66,729	40,234	6	6	4.37	2,112	1.91 6-41

Realization of DBS	Encoding o	f Dev	weyIDs	
Classification	Huffman code	L	value range of O _i	r
Primary key	0	3	1-7	a n
access	100	4	8-23	g
Digital trees	101	6	24-87	e
	1100	8	88-343	е
m-ary Trie	1101	12	344-4,439	x p
Binary	11100	16	4,440-69,975	a
digital trees	11101	20	69,976-1,118,551	n s
Why XDBMSs?	11110	24	1,118,552-17,895,767	i o
Addressing	11111	31	17,895,768-2,165,379,414	n
in trees DeweyIDs for node labeling	for optimized - Cut prefix 1.	e, if pos Huffmai	ial sible: determine DOM tree parameters n code assignment (even level-wise ap sion to DeweyIDs	

Realization of DBS	DeweyIDs — (Compa	arison o	of Avg. S	dzes t	o Max. S	jres	
		-		-	-			
Classification		Ø-size		max-size				
Primary key	Document	dist(2)	dist(32)	dist(256)	dist(2)	dist(256)	dist(256)	
access	1. treebank	6.67	11.57	15.94	22	46	72	
Digital trees	2. nasa	5.19	8.54	11.30	8	13	18	
m-ary Trie	3. psd7003	5.61	8.84	11.30	8	13	17	
Binary	4. SwissProt	5.10	7.04	8.14	-8	11	13	
digital trees	5. dblp	4.58	6.12	7.16	7	10	13	
Why XDBMSs?	6. customer	3.17	5.04	6.19	4	6	7	
Addressing in trees DeweyIDs for node labeling						-		
DEBIS Detentioned where Detentioned where Detent		Ξ	E	-				6-43

Realization of DBS	Summary	
	Clustering optimizes (sorted) sequential accesses	
Classification	Access behavior of AVL tree with O(log ₂ n) is not good enough	
	Standard access path: B*-tree (the ubiquitous B*-tree)	
Primary key access	 Is not missing in any DBMS Materialized and referenced storage of data records Index-organized table with clustering 	
Digital trees		
	Index structure as B*-trees	
m-ary Trie	 Can be specified with and without clustering Balanced structure independent of set of keys and insertion sequence 	
Binary digital trees	Dynamic reorganization by splitting and merging of pages	
Why XDBMSs?	 Direct key access to an indexed record Sorted sequential access to all records (supports range queries, join operations, etc.) 	
Addressing	→ How many Index structures/tables?	
in trees	Digital trees	
DeweyIDs for node labeling	 No "built-in" balancing criterion Proposed as path indexes for XML documents Mapping onto external storage is difficult for dynamic documents 	
	DeweyIDs (SPLIDs) as preferred node labeling scheme for trees	
DBIS Datechanters and Informationssystems 0 2011 AG DBIS	 Order preserving and stable in case of insertions, but variable-length entries Expressive power with effective support for DB operations 	6-45

Realization of DBS	Access Paths in	Commercial Database Systems
Classification Primary key access	DB2(IBM)	B*tree (clustered, non-clustered), partitioned tables,
Digital trees	Informix	B-tree, static hashing, ISAM, HEAP,
m-ary Trie	Oracle	B*-tree (with prefix-/suffix compression), (join-) clustering,
Binary digital trees	Sybase	B*-tree (clustered, non-clustered),
Why XDBMSs?	RDB (DEC)	B*tree (clustered, non-clustered), hashing, join clustering,
Addressing in trees	NonStop SQL (Tandem)	B*-tree (clustered, non-clustered) with prefix compression,
DeweyIDs for node labeling	UDS (Siemens)	B*tree, static hashing, clustering (LIST), Inverted pointer list (Pointer-Array), CHAIN
COLORIANCE COLORIS		6-46

Realization of DBS	Addressing in Trees Using DeweyIDs
	Initial document loading*
Classification Primary key access	While a new document is loaded—typically bulk-loaded in left-most depth-first order—, the DeweyIDs for its nodes are dynamically assigned which is guided by the following rules: 1. Element root node: It always obtains DeweyID 1.
Digital trees	 Element nodes: The first node at a level receives the DeweyID of its parent node extended by a division of <i>distance</i> + 1. If a node N is inserted after the last node L at a level, DeweyID of L is assigned to N where the value of the last division is increased by <i>distance</i>.
m-ary Trie Binary digital trees Why XDBMSs? Addressing in trees	3. Attribute nodes: A node N having at least one attribute, obtains (in taDOM) an attribute root R for which the DeweyID of N extended by a division with value 1 is assigned. The attribute node yields the DeweyID of R extended by a division. If it is the first attribute node of R, this division has the value 3. Otherwise, the division receives the value of the last division of the last attribute node increased by 2. In this case, the distance value does not matter, because the attribute sequence does not affect the semantics of the document. Therefore, new attributes can always be inserted at the end of the attribute list.
DeweyIDs for node labeling	4. Text nodes: A node containing text is represented in taDOM by a text node and a string node. For text nodes, the same rules apply as for element nodes. The value of an attribute or a text node is stored in a string node. This string node obtains the DeweyID of the text node resp. attribute node, extended by a division with value 1.
DBIS Detentionnen und Informationssystem	* T. Härder, M. Haustein, C. Mathis, M. Wagner: Node Labeling Schemes for Dynamic XML Documents Reconsidered, Data & Knowledge Engineering 60:1, pp. 126-149, Elsevier 2007; http://wwwlgis.informatik.uni-kl.de/cms/index.php?id=9 6-47

Realization of DBS	Addressing in Trees Using DeweyIDs (2)
	DeweyID assignment when new nodes are inserted
Classification	When new nodes are inserted at arbitrary logical positions, their DeweyIDs must reflect the intended Document order as well as position, level, and type of node without enforcing modifications of DeweyIDs already present. For
Primary key access	element nodes and text nodes, the same rules apply. In contrast to them, attribute roots, attribute nodes, and string nodes do not need special consideration by applying rule 3, because order and level properties do not matter.
Digital trees	Assignment of a DeweyID for a new last sibling is similar to the initial loading. Here, the last level only consists of one division. Hence, when inserting element node <i>year</i> after price, addition of the distance value yields 1.9.33. In case, the last level consists of more than one division (indicated by even values), the first division of this level is increased by <i>distance - 1</i> . For example, the successor of 1.3.14.6.5 is 1.3.21.
m-ary Trie	If a sibling is inserted before the first existing sibling, the first division of the last level is halved and, if necessary, ceiled to the next integer or increased by 1 to get an odd division. This measure secures that the "before-and-after
Binary digital trees	gaps" for new nodes remain equal. Hence, inserting a <i>type</i> node before <i>title</i> would result in DeweyID 1.9.5. If the first divisions of the last level are already 2, they have to be adopted unchanged, because smaller division values than 2 are not possible, e.g., the predecessor of 1.9.2.2.8.9 is 1.9.2.2.5. In case the first division of the last level is 3, it will be replaced by <i>2.distance+1</i> . For example, the predecessor of 1.9.3.2 receives 1.9.2.9.
Why XDBMSs?	The remaining case is the insertion of node d_2 between two existing nodes d_1 and d_3 . Hence, for d_2 we must find a new DeweyID which is between the DeweyIDs of d_1 and d_3 . Because they are allocated at the same level and have
Addressing in trees	the same parent node, they only differ at the last level (which may consist of arbitrary many even divisions and one odd division, in case a weird insertion history took place at that position in the tree). All common divisions before the first differing division are also equal for the new DeweyID. The first differing division determines the division are supported by the second sec
DeweyIDs for node labeling	becoming part of DeweyID for d ₂ . If possible, we prefer a median division to keep the before-and-after gaps equal. Assume for example, $d_1 = 1.9.5.7.5$ and $d_3 = 1.9.5.7.16.5$, for which the first differing divisions are 5 and 16. Hence, choosing the median odd division result in $d_2 = 1.9.5.7.11$.
	If $d_4 = 1.5.6.7.5$ and $d_6 = 1.5.6.7.7$, only even division 6 would fit. Remember, we have to recognize the correct level. Hence, having distance value 8, $d_5 = 1.5.6.7.6.9$.
© 2011 AG DBIS	6-48