
Realization
of DBS

7. Hash-based Access Paths

Theo Härder
www.haerder.de

Goals and Restrictions
• Use of key transformation as design principle for access paths

to the records of a table, for which a search criterion is supported
• Principles to make hashing dynamic
• Limitation to key access no range search etc

© 2011 AG DBIS

Realization of Database Systems – SS 2011

Main reference:
Theo Härder, Erhard Rahm: Datenbanksysteme – Konzepte und Techniken der
Implementierung, Springer, 2001, Chapter 7.

Jim Gray, Andreas Reuter: Transaction Processing – Concepts and Techniques,
5th printing, Morgan Kaufmann Publ., 1993, Chapter 15.

• Limitation to key access, no range search, etc.

Realization
of DBS

Static hashing

Hashing –
overview

Hash-based Access Paths

 Faster key access requires hashing methods
• Hashing methods on external storage

- Static methods
- Dynamic Hashing

• (Only) direct access
• Ideally a single page access

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

• Ideally a single page access

 Extendible Hashing
• Combination of concepts concerning digital trees and B-trees
• Extendible Hashing supports strongly growing data volumes

(2 page accesses needed)

 External Hashing without overflow areas

 Linear Hashing

© 2011 AG DBIS 7-2

 Linear Hashing

 Important parameters:
• n = #records of a record type
• b = #records/bucket (capacity)
• N = #buckets
• = occupancy factor

Realization
of DBS

Static hashing

Hashing –
overview

Scattered Storage Structures (Hashing Methods)

 Direct computation of record address via key (key transformation)
 Hashing function

h: S {0, 1, ..., N-1} S = key space
N = size of the static hashing area

in pages (buckets)
Dynamic hashing

methods

Extendible
hashing

External hashing
without overflow

Linear hashing

in pages (buckets)

 Ideal case: h is injective (no collisions)
• Application only in exceptional cases possible (’dense’ key set required)
• Each record can be located with a single page access

© 2011 AG DBIS 7-3

Realization
of DBS

Static hashing

Hashing –
overview

Scattered Storage Structures (2)
 Static hashing areas with collision handling

• Existing set of keys K (K S) should be distributed as uniform as possible
onto N buckets

distribution on storageN-1

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing
• Handling of synonyms

A Ki Z

key distribution

randomizing

0

bucket(i)

© 2011 AG DBIS 7-4

- Insertion in the same bucket if possible
- Allocation and chaining of overflow pages, if necessary

• Typical access factor: 1.1 to 1.4

 Multiplicity of hashing functions applicable
e.g. division-remainder method, folding, coding method, ...

Realization
of DBS

Static hashing

Hashing –
overview

Static Hashing Method with Overflow Areas : Example

 Address computation for key K02:

1101 0010
 1111 0000
 1111 0010

1101 0000 = 208

K36
K41
K55
K86

K88 relative
page number

0

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

1101 0000 = 20810

208 mod 5 = 3

K67
K78

K29
K35
K53
K95
K02
K16
K25

K58
K91

1

2

3

© 2011 AG DBIS 7-5

K25
K43
K03
K26
K47
K51

3

4

Realization
of DBS

Static hashing

Hashing –
overview

Occupancy of Hash Areas – Measurement (1)

primary area: 2000 buckets
occupancy factor b: 5
number of keys: 20.000
data type of the key: Integer
ideal hashing function:h(i) = i mod N

1 i 20 000l ti

number of
buckets

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

1 i 20.000

overflow
buckets

population
= 100 %

buckets

2400

1800

1200

© 2011 AG DBIS 7-6

600

5000 10000 15000 20000 number of
records (keys)

empty buckets
in primary area

Realization
of DBS

Static hashing

Hashing –
overview

Occupancy of Hash Areas – Measurement (2)

population
= 100 %

number of
buckets

2400

overflow
buckets

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

for comparison
bad hashing function:
h(Ki) = Ki mod N
Ki is character representation of i

2400

1800

1200

600 empty buckets

© 2011 AG DBIS 7-7

600

5000 10000 15000 20000 number of
records (keys)

empty buckets
in primary area

Realization
of DBS

Static hashing

Hashing –
overview

Analysis of the Hashing Function

 Collision if

Ki mod N = Kj mod N = (Ki + l . N) mod N; l = 1, 2, 3, …

key allocation is assumed to be Kj = Ki + j . k; j = 1, 2, 3, …

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

 critical relationship: j . k = l . N

 Which distance j . k causes a collision?

Example: N = 576, k = 256

j (l N)/ k

© 2011 AG DBIS 7-8

j = (l . N)/ k

Realization
of DBS

Static hashing

Hashing –
overview

Dynamic Hashing Methods

 Growth problem for static methods
• Static allocation of storage areas: storage occupancy?
• In case of address space expansion: Rehashing
 Cost, availability, addressability

S
Dynamic hashing

methods

Extendible
hashing

External hashing
without overflow

Linear hashing

S

A
A

h‘

h

© 2011 AG DBIS 7-9

 All records obtain a new address

 Design goals
• Dynamic structure enables growth and shrinkage of the hash area (file)
• No overflow techniques
• Access factor 2 for direct search

Realization
of DBS

Static hashing

Hashing –
overview

Extendible Hashing

 Principal approach
• The single bits of a keys govern the path through the digital tree used for addressing

• Ki = (b0, b1, b2, …). In principle, it is possible to directly use the bit sequence of Ki for
addressing. Non-uniform key distribution produces an unbalanced digital tree

• Because digital trees have no balancing mechanism for the height,

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

balance must be enforced from “outside”

• h(Ki) = (b0, b1, b2, …). The use of h(Ki) as so-called pseudo key (PK) should guarantee
better uniform distribution

 Uniform distribution of PKs
implies minimal height of the digital tree

non-uniform distribution
f k K

© 2011 AG DBIS 7-10

 . . . PKs are mapped
onto directory

uniform distribution
of PKs

of keys K

h(Ki) PK

buckets

Realization
of DBS

Static hashing

Hashing –
overview

Extendible Hashing* (2)

 Principal mapping of the pseudo keys

h(Ki) = 01100101 …
d

0

0 1

1

depth d

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing buckets

dynamic
border line

0 1

0 1

© 2011 AG DBIS 7-11*Fagin, R., et. al: Extendible hashing – a fast access method for dynamic files. ACM Trans. Database Syst. 4:3. 1979. 315-344

00* 010* 011* 1*

• d bits are required for bucket addressing which results in a dynamic border line of
varying depth, in general

• Digital tree addressing stops as soon as a bucket can accommodate the entire subtree

 Balanced digital tree guarantees minimal dmax

Realization
of DBS

Static hashing

Hashing –
overview

Extendible Hashing (3)
 Method does not need overflow areas, but access occurs via

directory (index)
• Binary digital tree of height d is implemented by a (2d) digital tree of height 1 (Trie of

height 1 with 2d entries)
• d is determined by the longest path in the binary digital tree
• In a bucket, only records are stored whose PK match in the first d’ bits (d’ = local depth)

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

• d = MAX (d’): d bits of PK are used for addressing (d = global depth)
• Directory contains 2d entries

 Storage structure
The Trie can be considered as directory or addressing table. The d bits of h(Ki) refer in the
directory to an entry containing the address of the bucket which carries key Ki. If d’ < d,
(adjacent) entries can refer to the same bucket.

d‘ = 1

d = 2

© 2011 AG DBIS 7-12 Cost of direct search: max. 2 page accesses

buckets

00

01
10
11

directory
d‘ = 2

d‘ = 2
d 2

Realization
of DBS

Static hashing

Hashing –
overview

Extendible Hashing: Splitting of Buckets (1)

 Case 1: overflow of a bucket whose local depth is smaller
than the global depth d

 Allocation of a new bucket (Split) with
• Local redistribution of data

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

• Local redistribution of data
• Increase of local depth
• Local adjustment of the references in the directory

00

01

d‘ = 2

d‘ = 2

h (~) = 00*
d = 2

© 2011 AG DBIS 7-13

01
10
11

directory
d‘ = 2

h (~) = 11*

h (~) = 10*

d‘ = 2

h (~) = 01*
buckets

Realization
of DBS

Static hashing

Hashing –
overview

Extendible Hashing: Splitting of Buckets (2)
 Case 2: overflow of a bucket whose local depth is equal to

the global depth

 Allocation of a new bucket (Split) with
• Local redistribution of the data (increase of local depth)
• Doubling of the directory (increase of global depth)

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

oub g o t e d ecto y (c ease o g oba dept)
• Global adjustment/redistribution of the references in the directory

000
001
010
011 d‘ = 2

d‘ = 2

h (~) = 10*

d‘ = 2

h (~) = 00*
d = 3

100

© 2011 AG DBIS 7-14

directory

h (~) = 11*

d‘ = 3

h (~) = 001*

buckets

100
101
110
111

d‘ = 3

h (~) = 011*

Realization
of DBS

Static hashing

Hashing –
overview

Extendible Hashing: Splitting of Buckets (3)

000

d‘ = 2
h (~) = 00*

d = 3 d‘ = 4
h (~) = 0100*

d‘ = 2
h (~) = 00*

d = 4

0000
0001
0010
0011

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

000
001
010
011

directory

d‘ = 3
h (~) = 011*

d‘ = 3
h (~) = 010*

d‘ = 2
h (~) = 10*

100
101
110
111

d‘ = 2

d‘ = 3
h (~) = 011*

h (~) = 0100*

d‘ = 2
h (~) = 10*

0011

0100
0101
0110
0111

d‘ = 2
h (~) = 11*

1000
1001
1010
1011

1100
1101

© 2011 AG DBIS 7-15

buckets

d = 2
h (~) = 11*

directory

buckets

1110
1111

d‘ = 4
h (~) = 0101*

Realization
of DBS

Static hashing

Hashing –
overview

Extendible Hashing (4)

 Dynamic growth and shrinkage of the hashing area
• Buckets are only allocated on demand
• Nodes in differing depth refer to a bucket

Hi h b k t ibl
Dynamic hashing

methods

Extendible
hashing

External hashing
without overflow

Linear hashing

 High bucket occupancy possible

 Prefix addressing

© 2011 AG DBIS 7-16

 Suffix addressing

Realization
of DBS

Static hashing

Hashing –
overview

External Hashing without Overflow Areas

 Goal
• Each record can be located with exactly one I/O access

 Chained overflow areas cannot be used

 Static Hashing
Dynamic hashing

methods

Extendible
hashing

External hashing
without overflow

Linear hashing

g
• n records, N buckets with capacity b

• Occupancy factor

 Overflow handling
• Open Addressing (without chain or pointer)
• Best known schemata: Linear Probing and Double Hashing

bN

n

© 2011 AG DBIS 7-17

• Probing sequence for a record with key k:
- H(k) = (h1(k), h2(k), …, hN(k))

- determines probing sequence of buckets (pages) for insertions and searches

- is determined by k and a permutation of the set of bucket addresses {0, 1, …, N – 1}

Realization
of DBS

Static hashing

Hashing –
overview

External Hashing without Overflow Areas (2)

 First attempt
• Search or insertion of k = xy

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing • Probing sequence is assumed to be H(xy) = (8, 27, 99, …)
• Many I/O accesses

ab

ij

gh

8

Im

xy

99

.

bucket address

uv

cd

no

27

© 2011 AG DBIS 7-18

• Many I/O accesses
• How do insertions occur?

* Larson, P.-A. and Kajla, A.: File organization: implementation of a method guaranteeing retrieval
in one access, in: Comm. of the ACM 27,7 (1984), 670-677.

 Solution: see External Hashing Using Separators*

Realization
of DBS

Static hashing

Hashing –
overview

Linear Hashing*

 Dynamic growth and shrinking of the (primary) hashing area (file)
• Minimal administration data
• No large directories for hash files

 But: overflow records cannot be completely avoided!
• A high rate of overflow records is considered as an indicator that the file is overloaded

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

A high rate of overflow records is considered as an indicator that the file is overloaded
(is too high) and must therefore be extended

• Buckets are split in a strictly specified sequence

 Only information: next bucket to be split

 Principal approach
• N: initial size of the file in buckets
• Sequence of hashing functions

where h0(k) {0, 1, …, N – 1}

0 1 2 3

© 2011 AG DBIS 7-19

and hj+1(k) = hj(k) or
hj+1(k) = hj(k) + N 2j

holds for all j 0 and all keys k

• Uniform probability desired for both cases of hj+1

 Example
• hj(k) = k (mod N 2j), j = 0, 1, …

* Litwin, W.: Linear hashing: a new tool for files and tables implementation. Proc. 6th Int. Conf. on VLDB, 1980, 212-223.

N N

Realization
of DBS

Static hashing

Hashing –
overview

Linear Hashing – Example
 Principle: LH

h0(ki) {0, . . ., N - 1} {0, 1} for N = 2
h1(ki) = h0(ki) or

j = 0
h1(ki) = h0(ki) + N 20

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

in general:

hj+1(ki) = hj(ki) or

hj+1(ki) = hj(ki) + N 2j displaced by N 2j

 h0(ki) = ki mod (20 * N)

0
p

1

N = 2
b = 3 83.0

5

insertion sequence: 3, 5, 7, 13, 10

© 2011 AG DBIS 7-20

h0 h0

S = 0.8 6

Extension:
• if > s,

redistribution of bucket p: p := p+1
• Address computation: h := hL(k)

if h < p then h := hL+1(k)

(here: L = 0,
number of duplications
so far)

Realization
of DBS

Static hashing

Hashing –
overview

Linear Hashing – Example (2)

 h1(ki) = ki mod (21 * N)

sequence: 12, 14, 15
0

p

3
1 2

10
Dynamic hashing

methods

Extendible
hashing

External hashing
without overflow

Linear hashing

88.0
9

8

13

3

5

7
h1 h0

S = 0.8
10

h1

sequence: 19 24
p

© 2011 AG DBIS 7-21

83.0
12

10

sequence: 19, 24

12
0

5

13

1

h1 h1

2
10

14

h1

3

7

15

3

h1

L = 1 (first duplication)

S = 0.8

Realization
of DBS

Static hashing

Hashing –
overview

Linear Hashing (2)

 h2(ki) = ki mod (22 * N)

sequence: 17, 21, 25

24
0

p

5
1 2

10 3
3

12
4

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing Description of the file state

24 5

13

h2 h1

10

14

h1

3

7

15
h1

12

19

h2

 = 13/15 = 0.87S = 0.8

© 2011 AG DBIS 7-22

• L: number of duplications already done
• p: points to next bucket to be split (0 p < N 2L)
• : occupancy factor

• n: number of records stored
• b: capacity of a bucket

 bpN

n
L 2

Realization
of DBS

Static hashing

Hashing –
overview

Linear Hashing (3)

 Example: principle of linear hashing
• h0 (k) = k mod 5
• h1 (k) = k mod 10, ...
• b = 4, L = 0, N= 5
• Splitting as soon as > = 0 8

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

• Splitting as soon as > s = 0.8

105

790

0

p

111

076

1
primary buckets

2
512

477

837

413

243

888

3
144
4

335

995 002

© 2011 AG DBIS 7-23

h0 h0 h0 h0

117

h0

overflow records055

010

Realization
of DBS

Static hashing

Hashing –
overview

Linear Hashing (4)
 Insertion of 888 increases occupancy to = 17/20 = 0.85 and causes splitting

790

010

0

p

111

076

1
413

243

3
144
42

512

477

5
105

335
Dynamic hashing

methods

Extendible
hashing

External hashing
without overflow

Linear hashing

010 076

h1 h0 h0

243

888

h0

117
h0

477

837

002

335

995

055

h1

• Insertion of 244, 399, and 100. Insertion of 100 causes splitting

0

p

3 42 6

© 2011 AG DBIS 7-24

790

010

0
111
1

h1 h1 h0

413

243

888

3

h0

144
4

117
h0

2
512

477

837

002

5
105

335

995

055

h1

076
6

100

244

399

h1

 = 20/24 = 0.83S = 0.8

Realization
of DBS

Static hashing

Hashing –
overview

Linear Hashing (5)
 Splitting

• Trigger: position: p
• File is increased by 1
• p is increased by 1: p : = (p + 1) mod (N 2L)
• If p is again set to Null (duplication of file completed), L is increased by 1

Address computation
Dynamic hashing

methods

Extendible
hashing

External hashing
without overflow

Linear hashing

 Address computation
• If h0(k) p, then the requested address is h0
• If h0(k) < p, then the bucket was already split. h1(k) delivers the requested

address
• In general: h := hL(k) ;

if h < p then h := hL+1(k) ;

.

0 p-1 p N2L-1 N2L

© 2011 AG DBIS 7-25

 Split strategies
• Uncontrolled splitting

- Splitting as soon as a record enters the overflow area
 ~ 0.6, faster location

• Controlled splitting
- Splitting if a record enters the overflow area and > s
 ~ s, longer overflow chains possible

hL+1 hL hL+1

Realization
of DBS

Static hashing

Hashing –
overview

Comparison of the Most Important Access Methods

access method storage structure direct access sequential
processing

modification
(without location)

sequential
sequential lists O(n) 5 103 O(n) 104 O(1) 2

Dynamic hashing
methods

Extendible
hashing

External hashing
without overflow

Linear hashing

key comparison
chained lists O(n) 5 105 O(n) 106 O(1) 3

tree-based
key comparison

balanced binary trees

multi-way trees

O(log2n) 20

O(logkn) 3 - 4

O(n) 106

O(n) 106*

O(1) = 2

O(1) = 2

constant key
transformation

method

external hashing with
separate overflow area

external hashing with
t

O(1) 1.1 – 1.4

O(1) = 1

O(n log2 n)**

O(n log2 n)**

O(1) 1.1

O(1) = 1 (+D)

© 2011 AG DBIS 7-26

Example costs based on n = 106 (D = domino effect, R = reorganization cost)
* in case of clustering up to a factor of 100 faster
** Physical sequential read, sorting and sequential processing of all records

separators

variable key
transformation

method

extendible Hashing

linear hashing

O(1) = 2

O(1) = 1 +

O(n log2 n)**

O(n log2 n)**

O(1) 1.1 (+R)

O(1) < 2

