Realization
of DBS

©2011 AG DBIS

10. Record-Orientad DB Interface

Theo Harder

Goals
- Design principles for record-oriented processing and
navigation on logical access paths
- Development of a scan technique and a sort operator

Main reference:
Theo Harder, Erhard Rahm: Datenbanksysteme — Konzepte und Techniken der
Implementierung, Springer, 2001, Chapter 10.

Goetz Graefe: Implementing Sorting in Database Systems,
ACM Computing Surveys 38:3, Article 10, 37 pages, Sept. 2006.

.
- m TEcEsoHE LsversnEr
Realization of Database Systems — SS 2011 l m KAISERSLAUTERH

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting
Sorting variable-
length records

DBIS

©2011 AG DBIS

Logjical Access Paths

Characterization of the mapping

STORE <record>
FETCH <record> USING <attrl> = 400 AND <attr2> >=7
CONNECT <record> TO <set>

Mapping functions
- Physical record <-> External record
- External record <-> related access paths
- Search expression -> supporting access paths

Insert <record> at ...

Add <entry> to...

Retrieve <address-list> from...
Retrieve <record> with

Properties of the upper interface

Logical records (dynamic format conversion)

Logical access paths
(content-addressable storage, hierarchical relationships between record types)

One-record-at-a-time access

Application programming interface (API) using navigational access
(e.g. network data model or object-oriented data models) 10-2

Realization
of DBS

Role of
the layer

Scan types

Use of a
sort operator

Sorting variable-
length records

©2011 AG DBIS

Record-oriented
processing

External sorting

Network Data Model - An Exxample

Department Skill

Worksh‘ / Has

Employee

1. Simple content addressability
FETCH Employee USING Eno=12345

2. ...combined with hierarchical access
FETCH Department USING Dept-Name =‘Sales’
FETCH NEXT Employee WITHIN Works-In

3. ... with two hierarchical relationships
FETCH Skill USING Job = ‘Programmer’
FETCH NEXT Employee WITHIN Has
FETCH OWNER WITHIN Works-In

10-3

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting
Sorting variable-
length records

« #* >

©2011 AG DBIS

Mapping of External Records
Description of external records by subschema concept

Tasks of subschema concept
Adjustment of data types
Selective specification of attributes
Mapping of an external record to internal records of one/several record types

Partitioned storage of large record sets:

allocation of disjoint record sets to separate storage units
Performance reasons: 1/0 parallelism
Availability: creation of copies, migration, . . .

Partition is unit of reorganization, backup, archiving, loading, access methods,
etc. in DB2

Specification of partitioning via values (key ranges, hashing) or via procedures
(user exit)

Storage options for internal records
Partition and allocation of fields according to access frequencies
Redundant storage
Compression of fields and records

= Opportunities for adjustment/improvement of performance (tuning)

10-4

Realization
of DBS

Role of
the layer

Record-oriented
processing

Scan types
Use of a
sort operator
External sorting

Sorting variable-
length records

©2011 AG DBIS

Record-Orientad Processing

How is record-oriented processing supported by the storage
structure layer?

- see chapters 5 -9

Processing concepts
Context-free operations
Record-at-a-time navigation via existing access paths
Reordering of a record set, if suitable sequence does not exist

Processing primitives

Direct access (hashing, trees, ...)

Navigational access via scan (on which objects?)

Sorting of a record set and scan on it (which record sets?)
Record-at-a-time modifications (Insert, Delete, Update)

S ON [P

Introduction of a navigation concept

Provision and maintenance of transaction-related processing positions
for the navigation

Use of different scan types

10-5

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types |
Use of a
sort operator
External sorting
Sorting variable-
length records

i

« #* >

©2011 AG DBIS

Spectrum of Scan Types

Scan types
Record-type scan (table scan) to locate all records of a record type (a table)
Index scan to locate records in a value-dependent sequence
Link scan to locate records in a user-defined insertion sequence
k-d scan to locate records via a k-dimensional index*

Implementation of scans
Explicit definition/release: OPEN/CLOSE SCAN
Navigation: NEXT TUPLE
Scans are defined on access paths

Options: start-, stop-, and search condition (Simple Search Argument)
search direction: NEXT/PRIOR, FIRST/LAST, n-th

Scan control block (SCB): information about type, state, position, etc.

type object start stop state

SCB:

SSA direction TA

*

It is desirable but difficult to provide a uniform evaluation model for all multi-dimensional access paths; 106
e.g., via a temporary result structure

Realization
of DBS

Role of
the layer
Record-oriented
processing

Table Scan

Query example:

SELECT * FROM Emp
WHERE Dno BETWEEN ‘K28" AND ‘K67’ AND Job = ‘Programmer’

Scan Options

Start condition (SC): BOS (Begin of S1)
Stop condition (STC): EOS (End of S1)

Scan types I

Search direction: NEXT
Search condition (SSA): Dno > ‘K28’ AND Dno < ‘K67’ AND Job = ‘Programmer’

Use of a
sort operator
External sorting

Sorting variable-
length records

Table scan
OPEN SCAN (Emp, BOS, EOS) /* SCB1 */
WHILE (NOT FINISHED)
DO
FETCH TUPLE (SCB1, NEXT, Dno > ‘K28’ AND Dno < ‘K67' AND Job = ‘Programmer’)

END
CLOSE SCAN (SCB1)

©2011 AG DBIS

Segment S1: P1 p2 Pj Pm
EMP1 [DEPT2 | PROJC
[Emp2 || |[PROJ || ... |[_E™MP || ... PROJK
} [DEPTL | PROJ2 . PROJN 4[
OPEN NNEA CLOSE
SCAN C: FETCH TUPLE SCAN 10-7
Realization o ST)
ofpes | Index Scan
Query example:
SELECT * FROM Emp
tsz';;’; WHERE Dno BETWEEN ‘K28’ AND ‘K67' AND Job = ‘Programmer’
Scan options
Record-oriented e ¢ ,
ST Start condition: Dno > ‘K28
Stop condition: Dno > ‘K67’
Scan types || Search direction: NEXT
Search condition: Job = ‘Programmer’
Uz ciie Index scan
sort operator
OPEN SCAN (Igyp(DNno), Dno > ‘K28', Dno > ‘K67’ /* SCB1 */
External sorting WHILE (NOT FINISHED)
DO
St v FETCH TUPLE (SCB1, NEXT, Job = ‘Programmer’)
length records Boo
END
CLOSE SCAN (SCB1)
[1 Ts5 127 J[15T719728] ﬂ'nl'«nlAll ﬂ45|46| [ﬂm\qqleﬂ vIjl71lsx'«1\99I
a~
4 &> e 0y Uy &
OPEN NEXT CLOSE
cosis SCAN C FETCH TUPLE SCAN

Checking: SC, STC STC, SSA 10-8

Realization
of DBS

Role of
the layer
Record-oriented
processing

Scan types

Use of a
sort operator
External sorting

Sorting variable-
length records

©2011 AG DBIS

Link Scan

NEXT

Query example:
SELECT * FROM EMP
WHERE Dno BETWEEN ‘K28’ AND ‘K67’ AND Job = ‘Programmer’

Location of parent
Start condition already found (Dno is given)
Scanning in Dept required (Dno BETWEEN K28 AND K67)

Single link scan

OPEN SCAN (Lpept.emp(DNno), NONE, EOL) /* SCB1 */
WHILE (NOT FINISHED)
DO

FETCH TUPLE (SCB1, NEXT, Job = ‘Programmer’)

END
CLOSE SCAN (SCB1)

NEXT PRIOR OWNER

TD, [- [- J«ke5] ...] parent record (DEPT)
TID, | TID, [TID, [X173 [K55 [Prog ...] first son record (EMP)
TID, [TID, | TID, [Y248 K55 [... |
(T1D——{TID,,[TID,, | TID, [A333] K55 [Prog..] k-th son record

-~ [TID.. [TID, [CO07] K55 | ... | |astsonrecord 109

FETCH
TUPLE

C

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types |
Use of a
sort operator
External sorting
Sorting variable-
length records

i

« &[>
oBIS.

©2011 AG DBIS

Link Scan (2)

Location of parent
Use of an index structure
Nesting of index scan (Dno BETWEEN K28 AND K67) and link scan

Scan options

index scan link scan

Start condition: Dno > ‘K28 -

Stop condition: Dno > ‘K67’ EOL

Search direction: NEXT NEXT

Search condition: -- Job = ‘Programmer’
Index- and link scan
OPEN SCAN (lp,(Dno), Dno > ‘K28', Dno > ‘K67) /* SCB1 */
WHILE (NOT FINISHED)
DO

FETCH TUPLE (SCB1, NEXT, NONE)

OPEN SCAN (Lpept.emp(DN0), NONE, EOL) /* SCB2 */
WHILE (NOT FINISHED)

FETCH TUPLE (SCB2, NEXT,
Job = ‘Programmer’)

END
CLOSE SCAN (SCB2)

END
CLOSE SCAN (SCB1)

10-10

Realization
of DBS

Role of
the layer
Record-oriented
processing

Scan types

Use of a
sort operator
External sorting

Sorting variable-
length records

©2011 AG DBIS

k-d Scan

Query example:
SELECT * FROM EMP

WHERE Dno BETWEEN ‘K28’ AND ‘K67' AND Age BETWEEN 20 AND 30
AND Job = ‘Programmer’

Scan options Dimension 1 Dimension 2
Start condition: Dno > ‘K28’ Age > 20
Stop condition: Dno > ‘K67’ Age > 30
Search direction: NEXT NEXT
Search condition: Job = ‘Programmer*

(is evaluated on the EMP records)
2-d Scan

OPEN SCAN (Igo(Dno, Age), Dno > ‘K28’ AND Age > 20, Dno > 'K67' AND Age >30) /* SCBL */

WHILE (NOT (Age > 30))

DO
/* saving of SCB1 position in SCANPOS */
WHILE (NOT (Dno > ‘K67"))
DO

FETCH TUPLE (SCB1, NEXT(Dno),
Job = ‘Programmer’)

END
/* reset of SCB1 position to SCANPOS */

MOVE SCB1 TO NEXT(Age)
END
CLOSE SCAN (SCB1) 10-11

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types |
Use of a
sort operator
External sorting
Sorting variable-
length records

i

« &[>
oBIS.

©2011 AG DBIS

Application of Scans

Problem

set-oriented specification <---> record-oriented evaluation:

Navigational evaluation of a declarative SQL statement via a scan can cause
processing problems, especially if the object to be updated (table, access paths)
Is used by the scan (prohibition?)

Example
statement: UPDATE Emp
SET Salary = 1.1 * Salary

execution:
salary increase by 10% is performed by means of a scan via index Salary

lemo(Salary)
R 50K | TID, |«—+10%

52K | TID, —+10%

56 K | TID,

= Halloween problem -

Realization
of DBS

Role of
the layer
Record-oriented
processing

Scan types

Use of a
sort operator

External sorting

Sorting variable-
length records

©2011 AG DBIS

Use of a Sort Operator
Explicit reordering of records according to given search key (ORDER clause)
Reordering and restriction

SELECT * FROM Emp
WHERE Dno > ‘K50’
ORDER BY Salary DESC

Partitioning of record sets

SELECT Dno, AVG (Salary)
FROM Emp

GROUP BY Dno
Duplicate elimination in a record set

SELECT DISTINCT Job
FROM Emp
WHERE Dno > ‘K50’ AND Dno < ‘K56’

Support of set- and join operations
Reordering of pointers to optimize evaluation or access sequence
Dynamic creation of index structures (“bottom-up" construction of B*-trees)

Creation of clustering upon loading and during reorganization

= Reduction of complexity of O(N?) to O(N log N) for set- and join operatjgns

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting
Sorting variable-
length records

« &[>
oBIS.

©2011 AG DBIS

SORT Operator - Options and Applicaiion

table scan

) sorted

index scan SORT (sequential) list
link scan

Scans can be restricted by search conditions (SSAs)
SORT options for duplicate elimination:

N = no elimination
K = duplicate elimination w.r.t. sort criterion
S = STOP as soon as duplicate is detected

SORT OPEN SCAN (R1, SC1, STC1) /* SCB1 */
serves as base operator SORT R1 INTO S1 USING SCAN (SCB1)
for operations at CLOSE SCAN (SCB1)
highePr v OPEN SCAN (R2, SC2, STC2) /* SCB2 */
SORT R2 INTO S2 USING SCAN (SCB2)
. CLOSE SCAN (SCB2)
Example: use of OPEN SCAN (51, BOS, EOS) /* SCB3, sorted */
scan- and sort operator OPEN SCAN (S2, BOS, EOS) /* SCBA4, sorted */

WHILE (NOT FINSHED)

DO
FETCH TUPLE (SCB3, NEXT, NONE)
FETCH TUPLE (SCB4, NEXT, NONE)

END

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting I

Sorting variable-
length records

©2011 AG DBIS

External Sorling

How is to be sorted?

In general, data set (n records) to be sorted is much larger than available memory
for a sort run (q records) (DB buffer or special working memory)

Creation of so-called runs (Ng > 1) with an internal sort method

Which sort algorithms are appropriate?

Repeated execution of sort operator
Decomposition of input into several runs
Sorting and buffering the sorted runs in files

Reading of input data from file D and writing of runs to D;

merging of all Ny initial runs required .

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting |

Sorting variable-
length records

i

« &[>
oBIS.

©2011 AG DBIS

External Sorting (2)
DBS: External Sorting
Successive merging until one sorted run is created

1 pass p passes
Merge (m-way Merge Sort)

—> 0]

m-way merging with disks
Mma + 1 places (pages) are available in memory.
Mpmax determines the maximal merge order.
In general, Ny initial runs are distributed across several disks

Each run is sequentially written, if possible.
It can be randomly read at any time

Typically, the initial runs are of uniform length

10-16

Realization
of DBS

Role of
the layer
Record-oriented
processing

Scan types

Use of a
sort operator

External sorting I

Sorting variable-
length records

©2011 AG DBIS

External Sorting (3)

Optimal merge trees

Optimization of seeks (access arm motions) on disks is very difficult:
it is usually not considered

Goal: minimization of 1/0 and comparisons
Simple in case of ideal numbers Ny = (M;;.,)P

The result is a complete merge tree of height p and degree m,.,

When are incomplete merge trees optimal?
R =8,R =10, M, =3

AN

R1 R2 R3 R4 R5 R6 R7 R8 R1 R2 R3 R4 R5 R6 R7 R8

10-17

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting |

Sorting variable-
length records

i

« &[>
oBIS.

©2011 AG DBIS

Extarnal Sorting (4)
Generally holds: Ng < (m,,)Pmin

Assumptions:
Only 2 files for input/output, unweighted runs

Heuristic 1: Harmonize merge tree
(1) Determine p,,

(2) Find smallest m such that holds:
Ng < mPmin

(3) Apply only merge orders of m and m-1.

Example: Ny = 14, m,,, = 8, R, =10

10-18

of DBS

Realization

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator

External sorting

©2011 AG DBIS

Sorting variable-
length records

External Sorting (5)
Assumptions: no restriction for input/output, weighted runs
Heuristic 2:))
Minimize number of in-/output and comparisons
(1) Ng < (Mpa - 1)*p + 1; determine minimal p
(2) Create additional empty runs such that holds: Ngy = (M, - 1)*p + 1

(3) In each pass, choose the m,,,, shortest runs and use them in a new run
(pass), until a single run remains.

Schema: merge order #runs

Mmax
m

max

./\ NRO'meax+2
Miax /\‘ NRO - Mpypax + 1

‘/1\ . Neo

%(—/

shortest runs
10-19

Realization
of DBS

Role of
the layer
Record-oriented
processing

Scan types

Use of a
sort operator

External sorting

Sorting variable-
length records

i

« #* >

©2011 AG DBIS

Exitarnal Sorting (6)
Assumptions: no restriction for input/output, weighted runs
Example for Heuristic 2:
Ng = 11, My = 4; 2> p =4, Ng =13;
lengths of:

Ry, ... R; = 10; Rg, Ry = 20; Ry = 50

Ryy = 100; Ryp, Ry3 = 0; merge tree R,=260

R12 R13 Rl RZ

10-20

Realization
of DBS

Role of
the layer

Sorting of Variable-Lengih Records

Data records in file are often of variable length
Consisting of fixed (f) and variable-length (v) fields
As a consequence, the sort keys are of variable length

©2011 AG DBIS

“ei,?;‘i;‘;';?nz‘e" How should the sort area be organized in memory?
Scan types
s, . s |
Use of a S4 | SS
sort operator
External sorting
Sorting variable- I TOSORT
length records Adr(K) Adl’(K-)
1 ' K <K
Adr(K,) Adr(Kj)
i —)
Adr(K) Adr(K,)

- When are the data records physically moved into the sort sequence?

10-21

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting

Sorting variable-
length records

« #* >

©2011 AG DBIS

Sorting of Variable-Lengih Records (2)

Further problems
Output format deviates from input format

f \Y \ f \Y
input: | AL [A2 [A3 [m [A5 |
i f \ \

output: | A2 [AL | A5 | A3 |

Sort key consists of several fields which control the sort order: ascending
(+) and/or descending (-) e.g. sort key: A5 +, A3 +, Al —

Sort sequence for variable-length keys

Ascending: "0~ Descending: AAA
| A AA
AA A
AAA S0”

How do we compare two composed keys of variable length?
K be defined by A5+ | A3+:

What is the comparison result of K1 and K2?
K1 = 1234567
K2 = 123|6789

10-22

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting

Sorting variable-
length records

©2011 AG DBIS

Sorting of Variable-Langth Records (3)

How can we exploit a degree of presortedness
(use of a Peerage technique)

Run R; owns HK; (Highkey) and LK; (Lowkey)

1. Comparison of R; with the newly created run R;

HK; HK;

LK; LK;

2. If possible, prolongation of R; by R;

a) HK; < LK;: HK; b) LK; > HK;: HK;

L 1 - LK

3. Otherwise: separate storage of R;

10-23

Realization
of DBS

Role of
the layer
Record-oriented
processing
Scan types
Use of a
sort operator
External sorting
Sorting variable-
length records

©2011 AG DBIS

Surmmirnairy

Purpose of the layer:
Conceptual separation of internal and external records
Top-most layer at runtime

Transaction-related control- and surveillance tasks
They need a layer-crossing information flow
Load control and -balancing is complex research topic

Mapping of external records
Options for the record storage
Separation of internal and external records and flexible mapping concepts required

Scan technique

Scan technique for record-at-a-time navigation on access paths
Flexible use by start-, stop-, and search conditions as well as search direction

Sort component

Important for the implementation of relational operations
Large tables require sort-/merge methods

10-24

