
Realization
of DBS

12. Set-Oriented DB-Interface

Theo Härder
www.haerder.de

Goals
- Derivation of concepts for translation of descriptive queries and their
- Optimization and access module creation

© 2011 AG DBIS

Realization of Database Systems – SS 2011

Main references:
Theo Härder, Erhard Rahm: Datenbanksysteme – Konzepte und Techniken der
Implementierung, Springer, 2001, Chapter 12.

Mitschang, B.: Anfrageverarbeitung in Datenbanksystemen – Entwurfs- und
Implementierungskonzepte, Reihe Datenbanksysteme, Vieweg-Verlag, 1995

Goetz Graefe: Query Evaluation Techniques for Large Databases,
ACM Computing Surveys 25:2, June 1993, pp. 73-170.

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Logical Data Structures

 Characterization of the mapping
SELECT Emp.Eno, Dept.Name
FROM Dept, Emp, Skill
WHERE Emp.Job = ‘Programmer’ &

Skill.Sno = Emp.Sno &

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

Emp.Dno = Dept.Dno

Mapping functions
- views <-> base relations
- relational expressions <-> logical access paths
- record sets <-> single records, currency indicators

FETCH Skill USING ...
FETCH NEXT Emp

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-2

FETCH NEXT Emp ...
FETCH OWNER WITHIN ...

 Properties of the upper interface
• Access-path-independent (relational) data model
• All facts and relationships are represented by values
• Non-procedural (descriptive) query languages
• Access to record sets

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Examples of Descriptive SQL Queries

 Simple query
SELECT Eno, EName, Salary/12
FROM Emp
WHERE Job = W

AND B S l

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

AND Bonus > Salary

Replaced by
DECLARE C1 CURSOR FOR SELECT Eno, EName, Salary/12
INTO :X, :Y, :Z
FROM Emp
WHERE Job = :W

AND Bonus > Salary

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-3

With operators
OPEN C1
FETCH C1 INTO :X, :Y, :Z
CLOSE C1

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Evaluation of DB Statements

 Processing steps for the evaluation of DB statements:

1. Lexical and syntactical analysis
• Creation of a query graph (QG) as reference structure for the subsequent

compilation steps

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

• Checking for correct syntax (parsing)

2. Semantic analysis
• Checking for the existence and validity of referenced tables,

views, and attributes
• Replacement of views in the QG by their view definitions
• Replacement of external by internal names (name resolution)
• Conversion of external formats into internal representations

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-4

3. Access control and integrity control
should already be done for performance reasons, if possible, at compile time
• Access control requires generation of runtime actions in case of value

dependencies
• Execution of simple integrity controls

(control of formats and conversion of data types)
• Generation of runtime actions for more complex controls

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Evaluation of DB Statements (2)
4. Standardization and simplification

serve for more effective compilation and early error detection
• Transformation of the QG into a normal form
• Elimination of redundancies

5. Restructuring and transformation

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

• Restructuring aims at global improvement of the QG; transformation inserts

executable operations

• Application of heuristic rules (algebraic optimization for QG restructuring)

• Transformation leads to replacement and aggregation of logical operators by

plan operators (non-algebraic optimization): In most cases, there are

several plan operators available for the implementation of a logical operator

• Determination of alternative access plans: Frequently, many execution

th b h

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-5

sequences or access paths can be chosen

• Cost estimation and selection of the cheapest execution plans

 Steps 4 + 5 summarized as query optimization

6. Code generation
• Generation of a tailor-made program for the given (SQL) statement
• Creation of an executable access module
• Management of access modules in a DBMS library

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Embedding of a Set-Oriented Interface

 Specification of the desired record set (qualification operator)
SELECT Eno, EName, Salary/12 DECLARE C1 CURSOR FOR
FROM Emp SELECT Eno, EName, Salary/12
WHERE Job=‘Operator’ FROM Emp

AND Bonus>Salary WHERE Job=:W AND Bonus>Salary

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

 Successive provision of qualified records (fetch operator)
OPEN C1;  binding of W, e.g. ‘Operator’,

activation of the cursor
FETCH C1 INTO :X, :Y, :Z;  fetching of a record
CLOSE C1;  deactivation of the cursor

 Possible solution: replacement by pre-compiler
DECLARE C1  comment

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-6

DECLARE C1 ...  comment
OPEN C1  DCL T(3) POINTER;

T(1) = ADDR(W)
CALL XDBS (AM1, 2, OPEN, ADDR(T))

FETCH C1 INTO ...  T(1) = ADDR(X);
T(2) = ADDR(Y);
T(3) = ADDR(Z);
CALL XDBS (AM1, 2, FETCH, ADDR(T));

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Preparation and Execution of DB Statements
using System R as example

Analysis

Optimization

System R
pre-compiler

XPREP

...
SELECT …
FROM …
WHERE …...

source program AP

modified source
program AP

in-/output

call

access

data

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

Code
generation

...
CALL XDBS...

object module
of AP

standard
compiler
(PL/1)

program AP

access module
for AP with

relative addressing

using calls to the
access system

co
m

pi
le

 t
im

e program

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-7

binder/
loader

executable
AP

System R
runtime syst.

XDBS

loading

ex
ec

ut
io

n
tim

e

access/
storage
system

DB

access module
for AP with

absolute addressing

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Query Optimization*

 From query (what?) to evaluation (how?)
 Goal: cost-effective evaluation plan

 Use of a large number of methods and strategies
• Logical transformation of queries

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

Logical transformation of queries
• Selection of access paths
• Optimized storage of data on external memory

 Key problem
• Exact optimization is not ‘computable’, in general
• Lack of accurate statistical information
• Broad use heuristics (rules of thumb)

 Optimization goal
“either maximization of output with given resources

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-8

either maximization of output with given resources
or minimization of resource usage for given output

throughput maximization?

response time minimization for given query language, mix of
queries of different types and given system environment!

* Jarke, M., Koch, J.: Query Optimization in Database Systems, in: ACM Comp. Surveys 16:2, 1984, pp. 111-152

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Query Optimization (2)
 Which costs are to be considered?

• Communication cost (# of messages, set of data to be transmitted)
 Distributed DBMS!

• Computation cost (CPU cost, path lengths)

• I/O cost (# of physical references)

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

I/O cost (# of physical references)

• Storage cost (temporary storage occupancy in DB buffer and on disk)

 Variety of costs are not independent of one another

 In centralized DBMS often “weighted function of computation- and
I/O-costs”

 What is the best approach?

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-9

Step 1: After compilation, find appropriate internal representation
for the query (QG)

Step 2: Apply logical restructuring to the query graph

Step 3: Map restructured query onto alternative sequences of
plan operators (transformation) ( set of execution plans)

Step 4: Compute cost estimates for each QEP and select the cheapest one

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Query Processing – Cost Issues

How are the costs divided up for transaction processing?
DB system : communication system : application
When do costs incur for the query processing?

syntactic analysis

query

run time

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

syntactic analysis
semantic analysis (access-

and integrity control)

standardization
simplification

query restructuring
query transformation

query graph

execution plan

without any preparationAnalysis

Optimization

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-10

Code
Generation

execution control

allocation in
program environment

execution plan

query result

run time

compilation time

for maximal preparation

Code generation
Execution

Provision of
result data

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Standardization of a Query

 Standardization
• Choice of a normal form
• E.g., conjunctive normal form
• (A11 OR ... OR A1n) AND ... AND (Am1 OR ... OR Amn)
• Displacement of quantors

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

 Transformation rules for
Boolean expressions

Commutative rules
A OR B  B OR A
A AND B  B AND A
Associative rules
(A OR B) OR C  A OR (B OR C)
(A AND B) AND C  A AND (B AND C)
Distributive rules

 Itempotence rules for
Boolean expressions

A OR A  A
A AND A  A
A OR NOT (A)  TRUE
A AND NOT (A)  FALSE
A AND (A OR B)  A
A OR (A AND B)  A
A OR FALSE  A

O

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-11

Distributive rules
A OR (B AND C)  (A OR B) AND (A OR C)
A AND (B OR C)  (A AND B) OR (A AND C)
De Morgan rules
NOT (A AND B)  NOT (A) OR NOT (B)
NOT (A OR B)  NOT (A) AND NOT (B)
Double negation rule
NOT (NOT (A))  A

A OR TRUE  TRUE
A AND FALSE  FALSE

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Simplification of a Query

 Equivalent expressions
• Can have a varying degree of redundancy
• Usage/elimination of common sub-expressions

(A1 = a11 OR A1 = a12) AND (A1 = a12 OR A1 = a11)
(Age > 25 OR (Age > 30 AND Job = ’Programmer’))

Si lifi ti f i f i t “ t t bl ”

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

• Simplification of expressions referring to an “empty table”

 Constant propagation
A op B AND B = const.  A op const.

 Non-satisfiable expressions
A  B AND B > C AND C  A  A > A  false

 Use of integrity constraints (IC)
• ICs are true for all records of the related table

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-12

ICs are true for all records of the related table
• A is primary key: A  no duplicate elimination required
• Rule: Family-Status = ‘married’ AND Tax-Class  3
 Expression: (Family-Status = ‘married’ AND Tax-Class = 1)  false

 Improvement of evaluation
• Adding of an IC to the WHERE clause does not change its truth value
• Simpler evaluation structure, however more efficient heuristics needed

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Query Restructuring
 Most important rules for restructuring and transformation

• Early execution of Selection () and Projection () without duplicate elimination
• Aggregation of unary operator sequences (as  and ) to a single operation
• Evaluation of equal subtrees in the QG only once
• Binary operator sequences (as , , –, x,): minimization of intermediate results

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

 Selective operations (, ) before constructive operations (x,)

 Aggregation of operator sequences
- R1: An(...A2(A1(Tab))...)  An … A1(Tab)
- R2: pn(...p2(p1(Tab))...)...)  p1 AND p2 ... AND pn(Tab)

 Restructuring algorithm
(1) Decompose complex join predicates such that they can be assigned to binary joins

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-13

(1) Decompose complex join predicates such that they can be assigned to binary joins

(2) Divide Selections with several predicate terms in separate Selections
with a single predicate term each.

(3) Execute Selections as early as possible, i.e., push down Selections to the leaves of the QG

(4) Aggregate simple Selections such that subsequent Selections (of the same table) are
executed at a time

(5) Execute Projections without duplicate elimination as early as possible,
i.e., push down Projections to the leaves as far as possible

(6) Aggregate simple projections (on a table) to a single operation

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Query Transformation

 Task
aggregation of logical operators (one- and two-variable expressions)
and their replacement by plan operators

 Typical plan operators in relational systems

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

 Typical plan operators in relational systems
• On a single table:

Selection, Projection, Sorting, Aggregation, Update operations
(IUD) and ACCESS to base tables
+
Extensions: recursion, grouping . . .

• On two tables:
Join- and set-operations, Cartesian product

 Adjustments in QG for the effective use of plan operators

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-14

 Adjustments in QG for the effective use of plan operators
(1) Grouping of adjacent operators (if possible);

(2) Determination of processing sequence for binary operations;
(minimize the size of intermediate tables)

(3) Detection of common subtrees (compute them only once).

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Estimation of Execution Plans – Fundamental Problems

 Query optimization rests on “fatal” assumptions, in general
(1) All data elements and all attribute values are uniformly distributed

(2) Independence of Predicates:

• sel(X = a and Y = b) = sel(X = a) * sel (Y= b)

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

(3) Principle of Inclusion
• sel(T1.X = T2.Y) = 1/max{|X|, |Y|}

 These assumptions are wrong (in the general case)

 Example

(Family_Status = ‘Married’) AND (Age < 20)

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-15

 Linear interpolation, multiplication of probabilities

Although cost estimates are mostly wrong . . .

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

What is the Major Problem?

 Correlation in predicates!

 EXAMPLE:

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

• Assume a query with the following WHERE clause:
WHERE make = 'Honda' AND model = 'Accord',
suppose

- 10 makes ==> selectivity(make) = 1/10
- 100 models ==> selectivity(model) = 1/100

• So selectivity of both = 1/10 * 1/100 = 1/1000
- But only Honda makes an Accord model!

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-16

But only Honda makes an Accord model!
- We assumed the predicates were independent by multiplying the

selectivities!
- In fact, model and make are heavily correlated (predicate on make really

adds no information)!

• Effect: We underestimate cardinality by an order of magnitude!

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Estimation of Execution Plans – Fundamental Problems

 Solution?
• Improvement of statistics/heuristics
• Histograms, Sampling

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

 Random samplings
• Speed: large data set, complex algorithms
• Example: estimation “Sales in Europe” in a TPC-H application:

1%: 8.46 Mio. in 4 sec.
10%: 8.51 Mio. in 52 sec.
100%: 8.54 Mio. in 200 sec.

 Areas of sampling usage

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-17

• Approximate query evaluation, estimation of response time
• Query optimization
• Load balancing
• Data mining
• Interactive query design

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Use of Histograms

fr
eq

ue
nc

y

90

80

70

60

50

40

Equi-width
histogram of T.a

Query 1:
SELECT *
FROM T
WHERE T.a <= 50

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

 Cardinality of result for Query 1?
sum of bucket values for T.a <= 50 : 20 + 30 + 50 + 40 = 140

Ca dinalit of es lt fo Q e 2?

value10 20 30 40 50 60 70 80 90 100

20
30

50
40

70
50

20
30

40

30

20

10

0

Query 2:
SELECT *
FROM T
WHERE T.a <= 52

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-18

 Cardinality of result for Query 2?

• Cardinality for T.a <= 50 : 140

• Cardinality for 50 < T.a <= 52 :
uniform distribution assumption within buckets:
((52-50) / (60-50)) * 70 = 1/5 * 70 = 14

 140 + 14 = 154

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Cost Model - Problems
 Optimizer task

• Obtains cost estimate for each “promising” execution plan
• Use of a weighted cost formula:

C = #physical page accesses + W *(#calls of the access system)

- Desired: weighted measure for I/O- and CPU utilization

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

Desired: weighted measure for I/O and CPU utilization
- W is the cost ratio of AS call to page access

 Permanent problem
• In 1985, SQL was not standardized
• SQL2 and SQL3 are essentially more complex

- UDTs
- Type and table hierarchies
- Recursion, Constraints, Triggers, …

Compilation and optimization

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-19

 Compilation and optimization
• Cost-based optimizer

- Histograms
- but: UDTs need their own cost model
- “Optimizing the XXX optimizer”

• Dynamic QEPs
- alternative plans depending on resource availability
- “reduce the braking distance”

• Seduction to gambling

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Cost Model – Statistical Quantities

 Statistical quantities for segments
• MS number of data pages of segment S
• LS number of empty pages in S

 Statistical quantities for tables
• NR number of records of table R (Card(R))

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

• TR,S number of pages in S with records of R
• CR clustering factor (number of records per page)

 Statistical quantities per index I on attributes A of a table R:
• jI number of attribute values / key values in the index

(=Card (A(R))
• BI number of leaf pages (B*-tree)

. . .

Statistics must be maintained in the DB catalog

π

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-20

 Updating for each modification very expensive
• Additional write- and log operations
• DB catalog would be the lock bottleneck

 Alternative
• Initialization of statistical quantities at load- or generation time of tables and

index structures
• Periodical re-calculation of statistics by special command/service program

(DB2: RUNSTATS)

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Cost Model – Computational Basis

 Selectivity Factor SF for
1/ji if index on Ai

Ai = ai SF =
1/10 otherwise

1 / Max(ji, jk) if index on Ai, AkAi = Ak SF = 1 / ji if index on Ai

Selectivity factor SF (0  SF  1)
 Card (σp(R)) = SF(p) · Card (R)

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

Ai Ak SF 1 / ji if index on Ai1 / jk if index on Ak1/10 otherwise

(amax - ai) / (amax- amin) if index on Ai and interpolatable
Ai  ai (or Ai > ai) SF = 1/3 otherwise

(ak-ai) / (amax- amin) if index on Ai and interpolatable
Ai BETWEEN ai AND ak SF =

1/4 otherwise

r / ji if index on Ai and SF < 0.5
Ai IN (a1, a2, ..., ar) SF =

1/2 h i

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-21

1/2 otherwise

 Computation of expressions
• SF (p(A)  p(B)) = SF (p(A)) · SF (p(B))
• SF (p(A)  p(B)) = SF (p(A)) + SF (p(B)) - SF (p(A)) · SF (p(B))
• SF ( p(A)) = 1 - SF (p(A))

 Join Selectivity Factor (JSF)
• Card (R S) = JSF * Card(R) * Card(S)
• for (N:1)-joins (loss-free): Card (R S) = Max(Card(R), Card(S))

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Creation and Selection of Execution Plans

 Input:
• Optimized query graph (QG)
• Existing storage structures and access paths
• Cost model

 Output: optimal execution plan (or at least “good”)

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

 Approach:
1. Generate all “reasonable” logical execution plans for the evaluation of the query
2. Make the execution plans complete by adding information for physical data

representation (sort sequence, access path properties, statistical information)
3. Select the cheapest execution plan corresponding to the given cost model

 Alternative execution plans for a QG primarily emerge, because various methods
(implementations) exist for each plan operator and because operation sequences (e g in case

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-22

(implementations) exist for each plan operator and because operation sequences (e.g. in case
of multi-joins) can be varied. In case of complex queries, very large search spaces with
alternatives are formed (e.g. 1070 possible execution plans for a query with 15 joins).

 Generation by the query optimizer
 Small set plans containing the optimal plan
 Confinement by heuristics
• Hierarchical generation based on the concept of nesting of SQL
• Decomposition in a set of subqueries with at most two-variable expressions

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Creation and Selection of Execution Plans (2)*
 Interplay of components

plan
generation

cost
estimation

rules for
plan generation cost model

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

search
space best

plan

generation estimation

reductioncontinue
with search

Sact

{pi, …, pj}

{p1, …, pn}

optimized
QG

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-23
* Mitschang, B.: Anfrageverarbeitung in Datenbanksystemen: Entwurfs- und Implementierungskonzepte,

Reihe Datenbanksysteme, Vieweg, 1995

terminationNo

Yessearch strategy

query execution
plan QEP

search
strategy

parameter

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Creation and Selection of Execution Plans (3)
 Plan generation should

• Always and as fast as possible find the “optimal” Plan

• Get along with an as small as possible number of generated plans

 Search strategies
• Fully enumerative

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

y
• Restricted enumerative
• Randomized

 Reduction: certain search paths are not considered further (pruning)
 Cost estimate

• Requires sufficiently accurate cost model

• Is incrementally performed for all search methods

 Problem representation – example related query graph

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-24

p p
SQL:
SELECT E.Eno, E.Job, J.PName
FROM Emp E, Dept D, Proj J
WHERE D.In > 1000000

AND J.Loc = ‘KL’
AND D.Dno = E.Dno
AND D.Dno = J.Dno;

related query graph

Name, Dno, PName







 Proj

Dept

Emp In > 1 Mio

Dno Loc = ‘KL’

Dno, PName,
PJNo

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Creation and Selection of Execution Plans (4)

IE(Job)

N2

e Scan(E)

N2

f

D

ID(Dno)

N1

a ID(In)

N1

b Scan(D)

N1

c

E

IE(Dno)

N2

d

cost
estimate: C (D.Dno) . . . C (E.Dno) . . .

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

a) Possible access path for the single tables

J

IJ(Dno)

N3

g Ij(Loc)

N3

h Scan(J)

N3

i IJ(PName)

N3

j

cost
estimate: C (J.Dno) . . .

QEP

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-25

QEP

D E J

N1

a b c d e f g h i j

N1 N1 N2 N2 N2 N3 N3 N3 N3

b) Solution tree for single tables: reduction by pruning of subtrees

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Creation and Selection of Execution Plans (5)
QEP

D E J

N

a b d e g h

N N N N N

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

b) Solution tree for single tables: after pruning

N1 N1 N2 N2 N3 N3

QEP

(D, E)

a b

N N

(J, D)

g h

N N

(D, J)

a b

N N

(E, D)

d e

N N

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-26

c) Extended solution tree for the Nested-Loop join with the second table
cost estimate per path: e.g. by C(C(D.Dno) + c(E.Dno) + join cost)

N4 N4 N4 N4

d e d e

N1 N1

N5 N5 N5 N5

a b a b

N3 N3

N5 N5 N5 N5

g h g h

N1 N1

N4 N4 N4 N4

a b a b

N2 N2

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Code Creation

 Optimized query graph
• Result of optimization phase
• Input data structure for code generator

 Use of the operations of the access system
• Direct operations (e g INSERT <record>)

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

• Direct operations (e.g. INSERT <record>)
• Scan operations (example SYSTEM R)

- CALL RSS (OPEN, SCAN_STRUCTURE, RETURN_CODE)
- CALL RSS (NEXT, SCAN_STRUCTURE, RETURN_CODE)
- SCAN_STRUCTURE is complex data structure for the handing-over

of in-/output values, search arguments, etc.

These operations are base operations for the code generation

 Classification of SQL statements

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-27

• Each class is described by a base process (e.g., by means of a cursor)
• Skeleton of a base process is called ‘model’
• Processing step in the model is called ‘fragment’ (as code stored in a library)

Classification happens according to the kind of access actions

 Provision of models and fragments
• 4 models for simple queries (query blocks)
• In total: 30 models with 5-10 fragments each (<100 fragments)

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Flow Diagram for an Access Module

Prolog

OPEN or FETCH

M
odel for the

FETCH

OPEN
binding of input variables

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

e selection of a record set

N

N

Y

Y

RSS call for OPEN

OK?

RSS call for NEXT

OK?

evaluation of the WHERE clause

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-28back jump

by m
eans of a cursor

T
computation of the output record

result

assignment to output variables

setting of the RETURN code

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Structure of an Access Module

AP Y ADDR(AM)

Program
name

Author Date Valid Address

Descriptor in the
DB catalog

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

table of contents

COMPILESECT1

INTERPSECT2
PARSEDSECT3

pointersection-# type

...
Section 1

machine code
+

relocation address table
+

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-29

+
original SQL statement

Section 2
query graph

+
relocation address table

+
original SQL statement

query graph
+

relocation address table
+

original SQL statement

Section 3

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Preparation, Compilation and Execution of
Ad-hoc Queries

Analysis
System R

pre-compiler
XPREP

...
PREPARE…..
EXECUTE…...

...
CALL XDBS

source program UFI

m
e

modified source
program UFI

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

INDEFSECT

access module
for UFI

O
pt

im
iz

at
io

n

An
al

ys
is

Co
de

ge
ne

ra
tio

n

loading and compilation
at PREPARE

CALL XDBS…..
CALL XDBS…...

co
m

pi
la

tio
n

tim

object
module
of UFI

binder/

standard
compiler
(PL/1)

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-30

System R
runtime

Syst. XDBS
Input-/output
call

access

data

program

SELECT …
FROM …
WHERE …

at PREPARE

UFI

ex
ec

ut
io

n
tim

e

loader

DB

access
system RSS

COMPILESECT
or INTERPSECT

access module for UFI

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Spectrum of Binding Times in System R

Statement type Section type Analysis Optimization Code generation Execution

normal operations

(Query, Insert, COMPILESECT compile time run time

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

(Query, Insert,

Delete, Update)

COMPILESECT p

non-optimizable

operations (Create/

Drop Table, etc.)

INTERPSECT compile time run time

operations on
S S C

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-31

dynamically defined

statements

(Prepare, Execute)

INDEFSECT run time

p

temporary objects
PARSEDSECT run timecompile time

Realization
of DBS

Evaluation of
DB statements

Descriptive
DB languages

Summary

 Interpretation of a DB statement
• General program (Interpreter) accepts statements of the DB language as

input and creates result by means of calls to the access system
• High overhead at run time (esp. for repeated statement executions)

 Compilation, code creation, and execution of a DB statement

Estimation of
execution plans

Host language
embedding

Query
optimization

Creation of
execution plans

• For each DB statement, a tailor-made program is created (compile time)
which is evaluated at run time and thereby derives the result by means of
calls to the access system

• Compilation overhead is avoided as far as possible at run time

 Query optimization: core problem
of compilation of set-oriented DB languages
• “Fatal” assumptions

- uniform distribution of all attribute values
- independence of predicates principle of inclusion

© 2011 AG DBIS

Code creation

Ad-hoc queries

12-32

independence of predicates, principle of inclusion
• Cost estimates for execution plans

- CPU time and I/O overhead
- no. of messages and data volumes to be transmitted (distributed case)

• Good heuristics for the selection of execution plans is very important

 Cost model
• Minimization of cost in dependency of the system state
• Problem: Update of statistical quantities

