Chapter 2 - Concepts and Definitions

Introduction and Requirements

Literatur:

Database Systems

- Usage: management of large sets of data
 - well-structured
 - elimination of redundancies
 - flexible query/search support
 - flexible data usage (open for new applications)
 - concurrent data access by multiple applications
 - high data currency
 - fault tolerance
- Key concepts
 - data model and DB schema
 - data modeling (DB design) is a complex, expensive task
 - requires tight cooperation of developer and user
 - normalization
 - query language (selection, join, aggregation, ...)
 - synchronization of data access operations
 - transactions
 - "all or nothing" behavior for a sequence of operations
 - automatic recovery from inconsistent DB-states due to failure
Multimedia Databases as Content Repositories

- What can databases do for managing multimedia data?
 - data independence
 - data structures and DB schemas are application-independent
 - support for storage, search

- Fundamental service
 - infrastructure for numerous applications
 - focus on APIs, not so much on end-user interfaces

- Storage and retrieval of multimedia objects

- Key concepts (in addition to database concepts discussed above)
 - device- and format-independent access to MM objects
 - representation of relationships
 - among MM objects, between MM objects and structured data
 - used for querying and navigation
 - content-based search
 - descriptive, similarity-based

Multimedia Management and Retrieval: Challenges

- Data volume
 - storage and management of large objects
 - compression
 - efficient resource management and content processing

- Implicit semantics
 - feature extraction
 - similarity search

- Heterogeneity
 - media object types, formats
 - conversion

- Complex multimedia objects
 - combination of various MM object types
 - management of structural information

- Input/Output devices
 - dependencies regarding media object types
 - optimized data/result delivery
 - real-time aspects and requirements

© Prof. Dr.-Ing. Stefan Deßloch
Multimedia Data

- related to input/output devices:

```
keyboard text
mouse, trackball graphics
scanner frame grabber
video camera video
microphone audio
```

Multimedia Data (2)

- comparison:

<table>
<thead>
<tr>
<th>Medium</th>
<th>Elements</th>
<th>Order</th>
<th>Typical size</th>
<th>Time-dependent?</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>printable characters</td>
<td>sequence</td>
<td>10 KB (5 p.)</td>
<td>no</td>
<td>visual/acoustic</td>
</tr>
<tr>
<td>Graphics</td>
<td>vectors, polygons, meshes (3D), textures</td>
<td>set or sequence (z-order)</td>
<td>10-100 KB</td>
<td>no</td>
<td>visual</td>
</tr>
<tr>
<td>Raster Image</td>
<td>pixel</td>
<td>matrix</td>
<td>1 MB (1024x1024)</td>
<td>no</td>
<td>visual</td>
</tr>
<tr>
<td>Audio Recording</td>
<td>amplitude</td>
<td>sequence</td>
<td>600 MB (audio CD)</td>
<td>yes</td>
<td>acoustic</td>
</tr>
<tr>
<td>Video-Clip</td>
<td>Raster Image, Graphics</td>
<td>sequence (script)</td>
<td>2 GB (30 min.)</td>
<td>yes</td>
<td>visual</td>
</tr>
</tbody>
</table>
Multimedia Content - Terminology

- **Media Object**
 - a data object belonging to a *single* media, e.g., a single image or piece of text

- **Multimedia Object**
 - (or "Mixed-Mode Object")
 - aggregation (composition) of media objects having different types, e.g., Video (image + audio)

- **Multimedia Data**
 - generic term for both media objects and multimedia objects

- **Multimedia Document**
 - aggregates media objects and multimedia objects
 - defines a structure and/or layout (spatial and possibly temporal)
 - may include elements for navigation/browsing (e.g., links)

Media Object

- consists of structure *and* unstructured data

- **raw data**
 - unstructured (s. oben)
 - large sequence (set, ...) of small elements
 (bits, characters, pixel, lines, ...)

- **registration data**
 - mandatory
 - required for correct interpretation and identification of raw data
 - interpretation: what is the structure? what do the elements mean?
 - identification: to distinguish among otherwise equal objects
 (e.g., creation/recording timestamp, ...)

- **descriptive data**
 - optional
 - often redundant:
 representation of structure *and/or* content in a different media or form
 - structured *an/or* unstructured
Operations on Media Objects

- Create (insert, capture)
 - from device – in a program – from a file
- Output (show, present)
 - on device – to program – in a file
- Update (modify, edit)
- Compose
 - creation of multi-media objects
- Deliver (send)
- Archive
- Process (aggregate, derive)
 - filter, analyse, extract, create descriptive data
- Search (compare)
 - pattern matching on raw data
 - similarity
 - based on descriptive data

Example: Raster Image

- Raw data
 - pixel matrix (pixel = picture element, or "pel")
- Registration data
 - # of bits/pixel (pixel depth, usually 1, 8, or 24)
 - # of pixels/line (picture width)
 - # of lines (picture height)
 - linearization: by line or column
 - pixel semantics: grayscale, color definition, index into colormap
 - (optional) colormap with specific number of entries, length of entries (e.g., 24 bit)
 - (optional) definition of color space (RGB, IHS, ...)
 - and more
- Descriptive data
 - text, keywords, knowledge representation describing content
 - recognized lines, areas appearing in the image
 - resulting 2-D objects such as circles, ellipses, polygons, ...
Device Independence

- Multimedia data volume requires new storage media/devices
 - optical, video tape, ...
- Devices
 - operation of devices differs from hard disk storage
- Data independence required
 - application should be independent from the storage technology used
 - no program changes required when new devices are introduced
- Goal for content repository (MMDBMS)
 - hide all device-specific properties

Format Independence

- Storage formats for media objects
 - numerous formats exist today
 - various "standards"
 - examples (raster images): GIF, TIFF, JPEG, Sun Rasterfile, FBM, PBM, …
 - format conversion possible (most of the time)
 - additional aspects: compression, container formats (e.g., AVI)
- Goal for content repository (MMDBMS)
 - hide internal storage format from end users and applications
 - provide conversion routines
 - support change of (internal) storage format (e.g., if new compression techniques become available) without impacting the applications
Structured vs. Unstructured Data

- **structured data**

 (NAME = "Miller"; BDATE = "1952-06-23", ...)

 - values of attributes/fields with a fixed name
 - maximal length (= finite value domain)
 - predetermined (known) semantics
 - search: (classical) data retrieval (i.e., query evaluation)

    ```sql
    SELECT * FROM EMPS WHERE NAME = "Miller";
    ```

- **unstructured data**

 "His name is Miller. He was born on June 23rd, 1952."

 - arbitrary length
 - mostly self-describing
 - unknown/weak semantics
 - search: information retrieval

 Find documents about employees with the name 'Miller'.

Information Retrieval

- Index: library catalog on a computer

 - availability of text documents in electronic format allows for full-text search as additional option

 - search for words appearing in the document

 - Builds on methods of library sciences

 - classification (decimal, ACM, ...): strictly hierarchical

 - indexing: assignment of keywords (descriptors), which describe the semantics of the document (may not even appear in the text)

 - descriptors may be weighted

 - Use of a thesaurus (keyword "dictionary")

 - lists all keywords used for indexing

 - defines relationships among keywords

 - synonyms (DBS, database system, ...), preferred term

 - broader and narrower terms

 - Manual thesaurus construction and text indexing

 - expensive, result influenced by human interpretation

 - Automatic indexing

 - input: text document (complete, or abstract/title), thesaurus

 - output: keywords (index terms)

 - challenges

 - handling linguistic variations, use of synonyms

 - recognizing related words in keyword phrases

 - "DB-design"

 - "the design of high-quality database schemes is ..."

 - "... are DBs. Their design is ..."

© Prof. Dr.-Ing. Stefan Deßloch

© Prof. Dr.-Ing. Stefan Deßloch
Information Retrieval (2)

- Query
 - consists of keywords, which may be weighted
- Result documents
 - boolean decision whether a document matches the query or not is often inadequate
 - better: similarity score as a measure for describing the relevance of the document wrt. the query
- Retrieval model defines how relevance values are determined
 - boolean, vector-based, probabilistic, ...
- Presentation of search results
 - ranking (sorted descending based on relevance)
- Improving query results
 - iterative query process
 - relevance feedback

Information Retrieval Process

```
query       media objects
            
  preprocessing
  
query representation   object representation

  comparison (similarity)

result objects

  query refinement and relevance feedback
```
Data Retrieval vs. Information Retrieval

- **DBS**
 - search based on exact match, result always relevant/complete
- **IRS**
 - index terms only provide a partial, ambiguous characterization of a document
 - search based on similarity measures, result may contain irrelevant documents

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Data Retrieval</th>
<th>Information Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>explicit (attribute values)</td>
<td>implicit (interpretation required)</td>
</tr>
<tr>
<td>Results</td>
<td>exact (equality)</td>
<td>approximate/imprecise (similarity)</td>
</tr>
<tr>
<td>Query process</td>
<td>single query</td>
<td>iterative refinement</td>
</tr>
<tr>
<td>Query formulation</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Tolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result collection</td>
<td>set</td>
<td>list (ranked)</td>
</tr>
</tbody>
</table>

Searching for Media Objects

- Specification of search criteria
 - using properties (features, formatted)
 - verbally (unformatted)
 - query-by-example, using a comparison object (pattern)
- Media objects are usually linked to formatted data
 - application-specific (e.g., archiving number)
 - registration data
 - descriptive data (if formatted)
- Search mechanisms initially based on
 - searching formatted data (classic DB techniques)
 - pattern matching
 - using raw data (e.g., full text search), or
 - using descriptive (unformatted) data
Content-based Search

- Search based on media object content at a higher level of abstraction
 - objects, activities, situations, etc. represented or described by the media object
 - requires analysis and interpretation of raw data, content
 - hard to do, can only be partially automated

- Examples
 - search for:
 - entries in criminal database using descriptions by crime scene witnesses
 - symptoms of medical conditions in x-ray images
 - satellite images showing an airport
 - news pictures showing Angela Merkel with George W. Bush
 - text documents about digital libraries
 - radio programs about benefits of highway speed limits
 - almost impossible to do based on pattern matching!

- Application and generalization of information retrieval concepts and approaches!

Content-based Search (2)

- Preselection
 - use categories, classification scheme of a content repository (e.g., relations in an RDBMS)
 - helps reduce the search scope, but usually too coarse-grained

- Content analysis at runtime
 - for a specific query
 - methods and techniques for
 - text analysis and indexing
 - image processing/recognition
 - speech recognition
 - to be applied to a (large) set of media objects
 - too expensive!

- Browsing
 - fast browsing through preselected search scope
 - puts burden of search evaluation on the end user
 - only feasible for small sets of objects
Content-based Search (3)

- Consequence: Content analysis as a pre-processing step
 - creation of content description
 - automatically, if possible (e.g., automatic abstracting)
 - manually: e.g., author or librarian creates a summary, assigns keywords
 - Drawback: search criteria at runtime are restricted to those aspects covered
 by the analysis, cannot be expanded dynamically
 - storage of content description together with the media objects, utilization at query
 processing time

Representation of Metadata / Content Description

- Formatted Data
 - e.g., as tuples in RDBMS tables
 - efficient search
 - may result in "undesirable" entity
 types (e.g., "storm", "night", ...) for
 detailed model of content domain
 - not powerful enough
- Keywords
 - well-known (libraries, IR)
 - easy to create (also automatically)
 - not powerful enough: relationships, dependencies, causalties (e.g., for
 complex description of image
 content) are hard to represent
- Knowledge Representation
 - logic, sem. networks, frames, scripts, ontologies, ...
 - search techniques exist
 - powerful, but required expert user
 (knowledge engineer) to create
- Free text
 - easy to create
 - full text search? dependency on
 formulations used
- Captions
 - restricts natural language syntax
 - still easy to create
 - may internally be translated to a
 formal representation (e.g.,
 knowledge representation)
Alternative Classification of Metadata

- content-describing (interpreting)
 - expresses semantics of media object at a high level of abstraction
 - context-describing (e.g., index vocabulary, ontology, thesaurus)
 - describe context of a collection of objects
 - context-related (e.g., identification, spatial/temporal coordinates)
 - describe object in relation to a collection of objects
 - object-describing, non-textual (e.g., objects, people, activities, title)
 - object-describing, textual (e.g., annotation, subtitles, script, screenplay)

- content-related (non-interpreting)
 - properties at a low semantic level, can be extracted automatically
 - feature (e.g., image color distribution, texture)
 - segment specification (e.g., start/end of video scene, shape of image segment)

- content-independent
 - important for management, correct interpretation
 - presentation-related (e.g., QoS, resolution, layout)
 - recording-related (e.g., copyright owner, recording device)
 - storage-related (e.g., media type, format, storage location)

Deriving Metadata at Various Abstraction Levels

- Automatic steps
 - decomposition into elementary media objects
 - normalization for internal processing
 - segmentation based on semantics (e.g., image segments, video scenes)
 - type-specific feature recognition
 - feature processing for scaling, normalization of features

raw data

structure data

media object

decomposition

multimedia object or document

normalization

media object

segment spec.

segmentation

feature recognition

feature processing

feature

interpretation

metadata

object-describing, non-textual metadata

© Prof. Dr.-Ing. Stefan Deßloch
Multimedia Database Techniques

- Introduction of (elementary) data types
 - TEXT, GRAPHIC, IMAGE, SOUND, VIDEO, with functionality (→ abstract data types, userdefined types)
- Extension of existing data models
 - relational model (as domains)
 - object-relational, object-oriented model (as UDTs, classes)
- Usage of existing modeling constructs
 - relations/classes
 - attributes/instance variables
 - primary keys, object identifiers
 - methods, inheritance, ...
- Extensions of query languages
 - relational algebra, SQL

Interfaces and Functionality

- Compared to traditional DBMS, programming interface differs from interactive interface
 - view image vs. analyze image in an application
 - in traditional DBMS, the query language is the common interface
- Example: RDBMS, extended with new data types IMAGE, TEXT, GRAPHICS, SOUND etc.

```
cREATE TABLE Person
  (Name  char(30),
   ....,
   picture Image,
   fingerprint Image)
```
- Access functions for the data type:
 - dependent on the type of interface
Programming Interface

(using extended SQL)
- Read a fingerprint to analyse it in the application:
  ```sql
  select fingerprint.height(), fingerprint.width()
  into :height, :width
  from Person
  where Name = "Miller";
  ```
- (allocation of memory for the image)
  ```sql
  select fingerprint.pixelmatrix()
  into :pixel
  from Person
  where Name = "Miller";
  ```
- (work on pixel matrix)

Programming Interface (2)

- direct display:
  ```sql
  exec sql
  select fingerprint.display(:window) into :error
  from Person
  where .... ;
  if ( error!= 0 )
  .... ;
  ```
- write to file:
  ```sql
  exec sql
  select fingerprint.toFile(:file) into :error
  from Person
  where .... ;
  if ( error != 0 )
  .... ;
  ```
- "side effects" in SQL statements
Interactive Interface

- Same example:
  ```sql
  select fingerprint
  from Person
  where Name = "Miller";
  ```
- Result is a table displayed on the screen
 - special character or icon to indicate value of type IMAGE
 - mouse-click or special command to display image on separate screen
 - (other approaches are possible)

Summary

- Different types of multimedia data
 - media object, MM object, MM document
 - raw data vs. metadata
- Classification of metadata
 - based on representation
 - based on content aspects
 - registration data vs. content description
 - content-independent, content-related, content-describing
- Requirements for storage and retrieval of multimedia objects
 - handling structured and unstructured data
 - device- and format-independent access to MM objects
 - representation of relationships
 - among MM objects, between MM objects and structured data
 - used for querying and navigation
 - content-based search
 - descriptive, similarity-based
- Overview of information retrieval and content-based search approaches