Chapter 5 - Audio

Audio Recording

- Usually speech or music, possibly arbitrary sound
- Digitization: Pulse Code Modulation - PCM
- sampling, i.e. amplitude measurements, quantization at fixed time intervals
- Sampling theorem (Nyquist-Shannon theorem)

- fundamental result in information theory
- sampling of energy levels has to occur with at least double the frequency of the highest frequency occurring in the signal
- phone: 3000 Hz, AM-radio: 4000 Hz, FM-radio: 8000 Hz Hifi: 22000 Hz (\sim maximum frequency recognized by the human ear)
- Example Audio-CD:
- 44100 sampling points per second and per stereo channel: 176,4 KB per second, approx. 10 MB per minute, 635 MB per hour
- Encoding/Compression
- Waveform Encoding (based on PCM)
- Parameter Encoding

Waveform Encoding

- Logarithmic PCM
- quantization intervals are not constant, but smaller for lower amplitude values
- noise reduction in softer passages
- e.g., μ-LAW (phone in North America and Japan),

A-LAW (phone in Europe, rest of the world and international phone lines)

- fewer bits are sufficient to cover the same amplitude
- μ-LAW with 8 bit roughly equivalent to linear quantization with 12 bit, μ-LAW with 12 bit roughly equivalent to linear with 16 bit
- Differential PCM (DPCM)
- subsequent sample values are often correlated
- for each value, first compute a predicted value, then store the difference between the predicted and the actual value
- $p(x i)=a 1 x i-1+a 2 x i-2+\ldots$
- or simply: $p(x i)=x i-1$

Waveform Encoding (2)

- Differential PCM (cont.)
- with 256 quantization levels, differences between subsequent sample values of more than 32 levels rarely occur
$\rightarrow 6$ bits are sufficient

uncompressed	112	114	117	115	111	109
differences		+2	+3	-2	-4	-2

- Delta Modulation (DM)
- number of quantization levels required for recording differences becomes smaller for shorter sampling intervals
- \rightarrow reduce sampling intervals until 1 bit is sufficient for recording the difference
- for low bitrates (32 kbits/s, phone line quality) improvements over other approaches
- Adaptive DPCM (ADPCM) provides further improvement
- prediction based on multiple preceding sample values
- adaptive: resolution can vary
- high for strong variations, low for weak variations
© Prof.Dr--Ing. Stefan DeBloch

Waveform Encoding (3)

- MPEG-1 Audio
- Layers I, II and III (MP3)
- Bitrates [kbps]
- 384 (1:4)
- 256-192
- 128-112 (CD quality)
- psychoacoustic model
- redundancy of second channel
- variable bitrate (Layer III only)

Parameter Encoding

- Parameter encoding (only for speech)
- based on a model of the human vocal tract:
- pitch of the voice based on oscillation frequency of vocal chords
- position of tongue, lips, mouth, ...
- described by parameters
- determined using spectral analysis of short audio segments
- window of a few miliseconds
- e.g., using Linear Predictive Coding (LPC)
- for the next window, only store difference to previous ("frequency x increased by y ")
- both, wave form and parameter encoding realized by special hardware
© Prof.Dr--Ing. Stefan DeBloch

Music: MIDI

- "Music Instrument Digital Interface"
- used by music industry since 1983
- defines an interface among (electronic) musical instruments (or computers)
- Representation based on instruments
- type of instrument (e.g., grand piano), start/end of note, pitch, volume, etc.
- 10 octaves, i.e., 128 notes
- requires $\sim 200 \mathrm{~KB}$ of MIDI-data for 10 minutes of music - a lot less than sampling
- Keyboard \rightarrow Computer: input, Computer \rightarrow Synthesizer: output
- Sequencer: device for storing/editing MIDI data - often a PC with sequencer software
- MIDI-Standard („General MIDI"):
- 16 channels with one synthesizer instrument each
- 128 instruments (e.g., $0=$ "Acoustic Grand Piano")
- 3-16 polyphonic notes per channel

Audio Media Object

- Raw data
- sequence of energy levels (amplitude) or frequency components (Fourier analysis of a time window)
- always in compressed format due to data volume
- Registration data:
- resolution (bit depth): number of different energy levels often 256 (8 bits)
- recording frequency (sampling rate)
- number of channels (1 for mono, 2 for stereo, ...)
- Description data:
- for speech: transcription as text
- for music: transcription into musical notation or MIDI
- structural information: pauses/silence

Audio Media Object (2)

- Operations:
- Input - from a file in a specific format, or from a device (in real time!)
- Output - to a file or a device (real time!)
- Modification
- cut/edit, similar to a recording studio; audio position based on time, sequence number of sampled value
- adjust volume (difficult: non-linear)
- Analysis, aggregation
- statistics for sample value distributions
- finding pauses/silence (based on amplitude threshold)
- speech recognition
- Comparison (search)
- pattern matching
- equality is too restrictive, similarity measures?!
- based on description data (e.g., text)
- Subtypes
- spoken language (most important), music, nature sounds, machine sounds (vehicle motor), ...

Indexing and Retrieval of Audio

- easiest method: using title, file name ...
- most popular
- but names may be incomplete, subjective - hard to find
- does not support searching for audio that "sounds like" another audio
- Content-based audio retrieval
- query by example, query by humming
- comparison of (sub-)sequence of sample values
- not promising, does not account for differences in sample rate, resolution
- extraction and comparison of features
- average amplitude
- frequency distribution

General Approach to Audio-Retrieval

- Classification
- most common types: speech, music, sound, ...
- classes usually are of different importance for the application
- class information itself may be useful for application
- Specialized treatment of each class
- each class requires different processing and indexing techniques
- speech is the most important class, and a number of successful speech recognition techniques/ systems exist today
- e.g., speech: speech recognition and indexing of resulting text
- Queries
- need to be classified, processed, indexed
- Retrieval
- based on similarity of query features and stored audio document features
- search space can be reduced to a specific class

Audio Properties and Features

- Basis for classification and retrieval
- Two forms of representation
- time-domain (amplitude over time)
- frequency-domain (signal strength over frequency)
with different properties/features
- Additional features
- subjective, e.g. timbre

Features in the Time Domain

- Amplitude
- represents pressure level compared to normal pressure of a medium
- silence = amplitude is zero
- Average energy
- charcterizes the loudness of the audio signal

$$
E=\left(\sum_{n=0}^{N-1} x(n)^{2}\right) / N
$$

with E as average energy, N as total number of sample values, $x(n)$ as n-th sample

Features in the Time Domain (2)

- Zero-crossing rate
- number of signal sign changes, in some sense the average dominating frequency of the signal

$$
Z C=\left(\sum_{n=1}^{N}|\operatorname{sgn} x(n)-\operatorname{sgn} x(n-1)|\right) / 2 N
$$

- with $\operatorname{sgn} x(n)$ as the sign of $x(n) ; 1$ if $x(n)$ positive, -1 otherwise
- Silence ratio
- percentage of sample values that are part of a period (!) of silence
- two threshold values:
- amplitude threshold, below which a signal is regarded as silent
- number of subsequent silent sample values defining a period (or interval) of silence
© Prof.Dr--Ing. Stefan Deßloch

Features in the Frequency Domain

- Every stable signal (i.e., periodic, without frequency changes) is the sum of sinoidal signals of different frequencies
- Fourier-transformation of the signal
- decomposes signal into frequency components with factors (coefficients)
- presentation: factors over frequencies (energy per frequency in decibel dB)
- also called spectrum of the signal
- Bandwidth
- interval of the frequencies appearing in the signal
- difference of highest and lowest frequency in the spectrum
- only frequencies with energy > 3dB are considered
- larger for music than for speech

Features in the Frequency Domain (2)

- Energy distribution
- is directly apparent from the spectrum
- frequencies with high energy level: useful for classification
- e.g., music has more frequencies with high energy levels than speech
- computed based on bands of frequencies with high or low levels of energy
- energy per band: sum of energies of all frequencies in the band
- e.g., frequencies above/below 7 kHz to classify speech (which rarely shows frequencies above the threshold)
- centroid (or median) frequency: the mean of the spectrum
- lower for speech than for music
- also called brightness
© Prof.Dr--Ing. Stefan DeBloch

Features in the Frequency Domain (3)

- Harmony
- spectral components are often multiples of the lowest and loudest frequency ("fundamental frequency")
- music is usually more harmonic than sounds
- determining whether a recording is harmonic: is the dominant component a multiple of the fundamental frequency?
- example: flute plays note G4;
- peaks are at frequencies $400 \mathrm{~Hz}, 800 \mathrm{~Hz}, 1200 \mathrm{~Hz}, 1600 \mathrm{~Hz}$
- $f, 2 f, 3 f, 4 f$ etc. are harmonics of the note
- Pitch
- defined for periodic (stable) signals (instruments, voice, ...)
- not defined for percussion, noise, etc
- is subjective to human perception
- usually close to, but not necessarily identical to the fundamental frequency)

Spectrogram

- Simple presentation has its limitations
- time domain doesn't show frequency-related information
- frequency domain doesn't show when the frequencies occur
- Combined presentation
- raster image, matrix
- x-axis: time
- y-axis: frequency
- blackness/intensity or color of pixel: energy of frequency at the specific time
- Analysis
- regularity of occurrence of frequencies
- music is more regular than speech

Spectrogram (2)

- Example
- femal speaker, (english "Electroacoustics"), signal duration 1,5 s
- source: http://www.mmk.ei.tum.de/~rue/mum/eurospeech99/demo/

Classification

- Based on features
- here only for music and speech
- could be further differentiated:
- types of music, male or femal speech
- Speech
- bandwidth relatively small, $100-7000 \mathrm{~Hz}$
- Centroid is lower than for music
- frequent pauses (between words, sentences) - high silence ratio
- characteristic structure: sequence of syllables, consisting of short periods of friction (consonants) followed by longer periods of vowels - frictions show high zero crossing rate
- Music
- high bandwidth, $16-20.000 \mathrm{~Hz}$
- centroid is higher
- low silence ratio
- except: solo instrument, a-capella singing
- zero crossing rate does not show strong variations
- regular beat
© Prof.Dr--Ing. Stefan DeBloch

Classification System

- Step by step, feature by feature
- e.g., first consider centroid - if high: music
- then silence ratio - if low: music
- then zero-crossing variability
- low: solo music
- otherwise: speech
- Order is important
- algorithmic complexity, effectiveness of classification
- A single feature is already useful:
- only zero crossing rate: up to 90% correctness
- only silence ration: up to 80% correctness
- Feature vector
- combines values of a set of features
- training: compute average vector (reference vector) of each class
- for new audio, compute feature vector and determine distance to all reference vectors (using, e.g., euclidean distance)
© Prof.Dr.-Ing. Stefan Deßloch

Speech Recognition

- Performed after classification
- Techniques
- Time Warping (speed of speech)
- Hidden Markov Models
- neural networks
- Performance

domain	type	vocabulary	error rate in \%
digits	read	10	$<0,3$
flight reservation system	spontaneous	2500	2
Wall Street Journal	read	64000	7
radio news	read / spontaneous	64000	30
phone call	spontaneous	10000	50

Music Indexing

- Structured music (MIDI)
- no extraction of features required
- exact match is a valid search option
- but maybe the instrument is different for some tracks
- similarity is hard to define
- one option: only consider change of pitch
- Up, Down, Repeat - U, D, R

Parsons, D., The Directory of Tunes and Musical Themes, Spencer Brown, 1975

- Melodyhound: http://name-this-tune.com/ (Uni Karlsruhe)
retrieval reduced to character string comparison
- Recorded music (sample-based)
- Query: singing, humming
- Set of features to consider
- e.g., volume, pitch, brightness, bandwidth, harmony
- vector and distance computation
- Pitch
- extract/guess for each note ("pitch tracking")
- representation as a series of pitches, or pitch changes (see above)
- similarity: sequences may differ in k pitches
© Prof.Dr-Ing. Stefan Deßloc

Summary

- Audio Digitization
- PCM
- Audio Encoding
- Waveform Encoding
- Parameter Encoding
- Music: MIDI
- Audio Media Object
- Indexing and Retrieval of Audio
- general approach: classification-based
- features in the time domain: energy, zero-crossing rate, silence ratio
- features in the frequency domain: bandwidth, energy distribution, brightness, fundamental frequency, harmony, pitch
- spectrogram combines time and frequency domains
- Classification
- Music Indexing: still not mature enough
© Prof.Dr--Ing. Stefan DeBloch

