
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

 Chapter 7 - Multimedia Documents

© Prof.Dr.-Ing. Stefan Deßloch

Outline

n  Special document structures
n  presentation and authoring tools
n  electronic forms
n  compound documents

n  Generalized document structures
n  SGML (XML)
n  ODA

n  Hypertext and hypermedia

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Presentation and Authoring Tools

n  Used to create MM presentations, composition of MM elements
n  presentation software (editor & viewer/presenter)

n  presentation charts that include MM elements (audio, image, video)
n  examples: Microsoft PowerPoint, Asymmetrix Compel

n  icon-based authoring tools
n  creation of graphical screenplays/scripts for describing complex control flow and interactions in

presentations, e-learning applications, etc.
n  examples: Macromedia Authorware, AimTech Iconauthor

n  timeline-based systems
n  arranging MM elements along presentation time axis, sequential or parallel presentation

n  examples: Asymmetrix MediaBlitz, Real Presentation Maker

n  hypercard, hypermedia systems (see discussion later in this chapter)

n  Result
n  file that contains the complete presentation
n  MM elements may be shared across multiple presentations (e.g., SMIL, discussed later)

n  element stored in separate file, referenced by multiple presentations

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

(Electronic) Forms

n  Consist of named fields (in a layout) for efficiently processing specific tasks
n  Application areas

n  document imaging systems
n  form enhances the document "image"
n  field entries provided manually or extracted from document

n  database systems
n  user interface for search, result presentation, editing of records ("query by forms") – may include

MM elements (e.g., QBIC)

n  groupware systems
n  includes form editing/authoring
n  e.g., based on email, workflow support (example: Lotus Notes)

n  Design and Creation
n  elements: fields, buttons, graphics, tables
n  linkage to stored data objects, computations
n  similarity to database schema: completeness, uniformity, search capabilities

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Compound Documents

n  Files
n  usually typed in modern OS
n  associated with application for viewing, printing, editing

n  Compound Documents
n  composition of files ("objects") that require different applications

n  e.g., table/spreadsheet within text

n  Interoperability of applications
n  invocation of functionality, exchange of data

n  Support of "component software"
n  not just standalone, but also reusable as a component (subroutine) in another program

n  Examples: file compression, file conversion, spell-checking, spreadsheet capabilities
n  Document components may be stored in a distributed manner (-> cooperation)
n  Standards

n  OLE 2.0 by Microsoft
n  OpenDoc by CILabs (consortium of Microsoft competitors)

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Generic Document Structures

n  So far: no separation of abstract structures and technical solutions
n  "black box" for content repository, DBMS

n  Generic document models and structures
n  independent of systems, platforms
n  meta-level

n  data model for documents
n  definition of document types

n  here:
n  SGML
n  XML
n  ODA

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

SGML

n  "Standard Generalized Markup Language"
n  Description of document structure
n  language for defining a syntax (meta-language)
n  data description for data exchange

n  History
n  GML originated in the late 60's at IBM (Charles Goldfarb)
n  used as a basis for developing SGML

n  American National Standards Institute (ANSI – today NIST, National Institute for Standards)
n  led by Charles Goldfarb

n  published as ISO-Standard 8879 in 1986
n  No layout – only content/structure

n  useful if layout is not important, or document needs to be published with multiple layouts
n  examples: archiving, document exchange, technical manuals (e.g., DocBook)

n  Markups for describing the logical document structure
n  not predefined, can be defined separately

n  "generalized" markup language

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

SGML (2)

n  Document type: vocabulary and rules for specific markup
n  document type definition – DTD
n  what elements does the document consist of?
n  mandatory vs. optional elements?
n  possible order and hierarchical structure (nesting)
n  example: HTML, HyTime (for multimedia)

n  Tools
n  parser for checking syntactic correctness (validity) of documents
n  converter

n  into other SGML document type, TeX, …

n  XML has "taken over"
n  simplified version of SGML
n  XHTML: redesign of HTML
n  SMIL: Synchronized Multimedia Integration Language

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Synchronized Multimedia Integration Language

n  Creations of multi-media presentations, declarative description of
n  presentation layout
n  objects involved
n  timing aspects

n  SMIL is not a container format
n  multi-media objects (pictures, audio, video, …) are not included, only referenced via a URI

n  same object can be included in multiple presentations
n  integration of "remote" objects (e.g., weather chart)

n  Object alternatives in SMIL
n  same object in different resolutions, dynamically selected based on available bandwidth
n  text or audio stored in different languages, selected based on user language preferences

n  Interactive capabilities (limited)
n  follow presentation links

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

SMIL Documents

n  XML documents following the SMIL DTD or Schema
n  document header

n  general presentation properties, such as layout, position of regions, …
n  based on a layout language close to cascading style sheets (CSS)

n  document body
n  actual definition of the presentation (incl. timing aspects)
n  number of XML element tags for different types of MM-objects

n  <audio>, , <video>, <textstream>
n  Attributes for representing object URI, presentation region, MIME-type, presentation duration

n  objects can be "hyperlinked" to other resources on the web
n  timing aspects

n  parallel presentation (i.e., at the same time)
n  sequential presentation
n  duration attribute

Example:
<seq>

</seq>

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

ODA

n  "Open Document Architecture" (ODA)
n  goal: enable/facilitate exchange of documents among arbitrary programs/systems
n  "architecture": generic model for document structure
n  derived from generic architecture: family of document exchange formats (Open Document

Interchange Format – ODIF)
n  Sept. 1985: ECMA Standard 101,

April 1986: ISO Draft International Standard 8613
n  not successful as a standard, but strong influence on other efforts

n  HTML/CSS, XML/XSL, OpenDocument (OASIS Open Document Format for Office Applications)

n  Document architecture model – goals
n  capture arbitrary operations for document manipulation
n  enable ease of manipulation
n  enable document format transformation without losing information

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

ODA (2)

n  Logical structure
n  chapter, section, paragraph, figure, …

n  Layout structure
n  page, block (rectangle), …

n  Content portions
n  text, image, graphics etc.

n  Separation of structure and content
n  structure is made explicit using a

hierarchy of objects (i.e., not using
embedded special characters)

n  every logical or layout object is an
instance of an object class

Digital Libraries & Content Management

Layout

Process Layout-

Structure

Document
Content

Document
Structure

Content
(e.g. text, graphics, image)

Logical
Structure

© Prof.Dr.-Ing. Stefan Deßloch

ODA (3)

n  Document itself: document class
n  definition of object classes ("rules")
n  generic content, e.g., company logo, standard paragraph

n  Object types
n  defined by the standard
n  with a set of applicable attributes

n  Logical structure
n  Document Logical Root: root of logical object tree
n  Basic Logical Object: leaves with "content portions"
n  Composite Logical Object: intermediate nodes

n  Layout structure
n  Document Layout Root: root of layout object tree
n  Page Set: group of pages
n  Page: 2D area
n  Frame: rectangular area within page
n  Block: formatted content of a single media type

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

ODA (4)

n  Object classes
n  defined in document class definition based on object types
n  e.g., paragraph, footnote, figure title of type "basic logical object"

header frame, column frame, footer frame of type "frame"

n  Content portions
n  components of the document
n  defined through logical and layout structure

n  content portion belongs to one logical and one layout object (if layout is defined)

n  Content architecture
n  machine-independent format for every type of content (text, graphics, image)

n  Document exchange includes
n  logical structure, layout structure, content portions
n  class description (generic logical structure, generic layout structure)
n  i.e., schema information is included, document is "self-describing"

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Hypertext

n  Departure from (sequential) paper form
n  Primary form of "mechanical" document organization (libraries, archives)
n  Starting point: Memex-System [Bush45a] based on micro-film
n  Computer-based (early 60s)

n  D. Engelbart: NLS/Augment
n  T. Nelson: Xanadu project

n  Became popular through
n  Apple’s HyperCard on Macintosh (1987)
n  and of course the World-Wide Web (1991)

n  What is hypertext?
n  collection of text fragments (articles, notes, …)
n  system-supported connections among them (reference, cross-reference, link)
n  users are following the connections/links and keep building new ones: "non-linear text",

"information web"

Digital Libraries & Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Hypertext (2)

n  User interface:
n  windows on the screen (one for each

node), showing fragments of text
n  link or anchor is distinguished visually

(icon, bold, color, underlined, …)
n  mouse-click on link opens new window

with the referenced text fragment

n  Data organized as a network of nodes
(text fragments)

n  nodes have unique names
n  arbitrary number of "link icons" per

window
n  different link types: link icon labels
n  flexible creation of new nodes and links

(annotations, comments)

Digital Libraries & Content Management

text fragment A

text fragment B

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Hypertext (3)

n  Search
n  follow the links (browse, navigate)
n  search hypertext network based on text (keywords, attribute values)
n  graphical representation of the network, with clickable node "miniatures"

n  Importance of a browser
n  network of text fragments may become very large ("lost in hyperspace")
n  graphical network representation
n  keeping track of search/navigation path ("where was I?")
n  today, "browser" has a different/more restrictive meaning

n  web client, less functionality

n  Hypertext can be seen as
n  method for data organization (similar to data model), even for storage (links as references

or pointers)
n  presentation method and information model (similar to semantic networks, ER), requiring a

mapping to a data/storage model
n  user interaction model, operating on underlying data/storage structures

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Hypermedia

n  Extension of the hypertext model
n  Nodes

n  may contain graphics, images, sound, videos
n  "Dynamic" media (time dependency)

n  indirect representation using "placeholder" nodes
n  showing symbol or icon for media object (speaker, display, …)

n  short summary as text
n  remarks by xyz regarding topic …", "film about the history of …"

n  information about duration!
n  key pad:

<< PLAY >> PAUSE STOP

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Hypermedia – Important Systems

n  Intermedia
n  Brown University (Providence, Rhode Island)
n  support for teaching and research in a

university setting
n  NoteCards

n  Xerox PARC
n  "index cards" for (technical) reports

n  Neptune / HAM
n  Tektronix
n  frontend – backend, transaction concept

n  Hyperties
n  University of Maryland
n  IBM PC
n  education and teaching, kiosks, museums

n  KMS
n  Knowledge Systems
n  successor of ZOG (Carnegie-Mellon

University)
n  no windows! 1-2 nodes per screen

n  HyperCard
n  Apple
n  direct support for graphics/images on the

cards
n  audio recording as a "resource", i.e.,

separate file
n  HyperTalk command "play filename"

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Dexter Reference Model

n  Purpose of the Dexter reference model:
n  system comparison
n  exchange, interoperability

n  Three layers:
n  storage layer: network of nodes and links
n  within-component layer: content and structure of nodes
n  run-time layer: interaction of users with the system

n  Storage layer: core of the reference model
n  includes mechanisms for the specification of anchors and presentation, which represent

the interfaces to the other layers
n  data base, consisting of (atomic) components, connected via links
n  components correspond to nodes

n  deliberate choice of a different, system-neutral terminology
n  generic data containers, not concerned with inner structure

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Simple Storage Layer Model

n  Hypertext =
n  finite set of components
n  with two functions: resolver and accessor for finding components

n  mapping of a component specification to the component itself

n  Components:
n  atomic components:

n  correspond to nodes in most systems
n  links:

n  relationships/connections between other components
n  sequence of one or mode "endpoint specifications", referring to parts of components

n  composite components:
n  contain other components
n  structure is a directed, acyclic graph, i.e., there may be shared components but no

cycles

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Storage Layer Model (2)

n  Globally unique identification: unique identifier (UID)
n  beyond single hyper documents
n  accessor has to support returning the associated component for every UID

n  UIDs are foundation for addressing, but UIDs alone are not sufficient
n  references to other components should also be supported based on their properties, e.g.,

text containing a specific word – may result in zero or multiple components
n  requires component specifications within the links, which need to be handled by the

resolver function
n  UID is permitted, too – resolver is equivalent to identity in that case

n  Links between parts of components:
n  UID alone is not sufficient → anchor consisting of ID and value
n  ID is unique within the component
n  value specifies location, region, entry, etc. within a component in an arbitrary manner,

interpreted by the application, may change

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Storage Layer Model (3)

n  Specifier
n  Anchor-ID is associated with a component specification
n  contains

n  direction: FROM, TO, BIDIRECT, NONE
n  NONE is used, if the anchor is actually not a part of the component, but a program or script

n  presentation specification (see discussion below)

n  Link
n  sequence of 2 or more specifiers
n  very generic: n-way links
n  only restriction: at least one specifier with direction TO or BIDIRECT has to exist

n  Component
n  represented by its content
n  and component information:

n  sequence of anchors
n  presentation specification
n  set of attribute-value-pairs

n  attributes are arbitrary, e.g., keyword(s) or type

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Storage Layer Model (4)
Atom Nr. 3346
component information

attribute
presentation-

:
anchor

content

ID 1
value

text representing the
of this component

Link Nr. 9981
component information

....

component spec..: 3346
anchor-ID: 1
direction: FROM
presentation spec:.:

component spec..: 4112
anchor-ID: 1
direction: TO
presentation spec.:

Composite Nr. 4112
component information

attribute
presentation

:
anchor ID 1

value
content

some
Atom Nr. 332 Atom Nr. 4099

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Storage Layer Model (5)

n  Operations:
n  Add, delete a component
n  Modify anchor or attribute value
n  Retrieve component based on UID or specifier
n  LinksTo: maps UID of a component to the UIDs of all links that specify this component
n  LinksToAnchor: maps an anchor to the UIDs of all links that specify this anchor

n  Integrity constraints (invariants):
n  accessor function (UID → component) has to have an inverse function, i.e., all

components have a UID
n  resolver function needs to be able to potentially return all valid UIDs
n  no cycles in the composition structure, i.e., no component contains itself
n  link consistency: component specification has to reference an existing component (i.e.,

referential integrity)

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Within-Component Layer

n  no details defined in the Dexter model, could be anything
n  other reference models could be used, combined with the Dexter model

n  e.g., ODA, IGES (www.nist.gov/iges/) usw.
n  requires interface between hypermedia network and component content: addressing

of locations and elements inside the component – anchoring
n  links between parts of nodes, both for source and target of the link

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Run-Time Layer

n  Hypermedia systems do not only provide passive structures, but also tools for
access, viewing, modification

n  Dexter model supports this aspect only in a very basic manner
n  Interface required: presentation specification
n  Include information about the presentation of components and networks in the

storage layer
n  Presentation is not only determined by the presentation tool, but also by the

component itself and/or the link that led to it
n  example: reference to an animation in a teaching environment

n  start a viewer for regular users
n  start an editor for author/teacher

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Simple Runtime Layer Model

n  Presentation for an end user
n  corresponds to a component instantiation

n  Run-time cache
n  manages a copy of the component for viewing, modifications, to be later written back to

the storage layer
n  there may be multiple instantiations of the same component
n  every instantiation has a unique ID (IID)
n  together with the component, its anchors are instantiated: link marker – visual

representation of an anchor in the presentation
n  Session

n  management unit of runtime layer, keeps association of components and instantiations
n  user starts a session on a hypertext
n  operation present component performs instantiations, which may be modified
n  operation realize modifications updates the corresponding component
n  finally, unpresent instantiation destroys the instantiation
n  deleting a component through its instantiation will remove all existing instantiations
n  user ends/closes the session

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Runtime Layer Model (2)

Information related to a session:
n  hypertext used in the session
n  relationship of IIDs of current instantiations to their components
n  history

n  sequence of operations carried out since the start of the session
n  currently used in the Dexter model to define the concept of a read-only session
n  should be available to any operation whose effects may depend on the session history

n  runtime resolver function
n  runtime version of the resolver function of the storage layer
n  maps specifiers to UIDs
n  specifier can now refer to the history: "last accessed component with name X"
n  has to be consistent with the resolver of the storage layer: a specifier that can be resolved

by the storage layer has to be resolved to the same UID by the runtime layer

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Runtime Layer Model (3)

n  Instantiator function
n  receives UID of a component and a presentation specification, creates a corresponding

instantiation in a session
n  needs to combine the input presentation specification with the one contained in the

component (select, combine, …)
n  called through operation presentComponent after specifier is resolved
n  is in turn called by followLink

for all components that can be determined based on the link marker (direction TO or
BIDIRECT)

n  Realizer function
n  returns a (new) component that reflects the current state of the instantiation (including all

edits), can be handed to the storage layer using the modifyComponent operation

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries & Content Management

Dexter Reference Model - Summary

n  more powerful than any existing hypermedia system
n  multi-way links, composite components

n  some concepts declared/regarded as "optional"
n  family of related models, supporting different subsets of optional concepts

n  includes a formal specification (in Z)
n  useful for the definition of hypermedia exchange formats
n  example

n  exchange between HyperCard and NoteCards; directly represent Dexter concepts as SGML
elements

n  useful foundation for standards

