
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Recent Developments for Data Models

Chapter 3 – User-defined Routines and
Object Behavior

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
2

Outline

 Overview
I. Object-Relational Database Concepts
1.  User-defined Data Types and Typed Tables
2.  Object-relational Views and Collection Types
3.  User-defined Routines and Object Behavior
4.  Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5.  Data Analysis in SQL
6.  Windows and Query Functions in SQL
III. XML
7.  XML and Databases
8.  SQL/XML
9.  XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
3

stored procedures
user-defined functions

structured types
subtyping
methods

advanced datatypes SQL Routines
PSM
External Routines
SQL/JRT

The "Big Picture"

SQL99

ISO

2.0 SQL92

JDBC

SQL OLB
ANSI

dynamic SQL

static SQL

Client DB Server Server-side
Logic

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
4

User-defined Routines

n  Named persistent code to be invoked from SQL
n  Can be implemented using

n  procedural SQL extensions (PSM)
n  external programming language

n  Created directly in a schema
n  Have schema-qualified names

n  Supported DDL
n  CREATE and DROP statements
n  ALTER statement (limited in functionality)

n  Privileges
n  EXECUTE privilege controlled through GRANT and REVOKE statements

n  Described by corresponding information schema views

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
5

Procedures, Functions and Methods

n  Procedure
n  invoked exclusively using the SQL CALL statement

 CALL getPropertiesCloseTo ('1234 Cherry Lane …', 50, :number);
n  may return additional results in form of result sets

n  Functions
n  invoked in an expressions within other SQL statements (e.g., a SELECT or UPDATE statement)

using function invocation syntax
 SELECT price, location, distance(location, address('1234 Cherry Lane', …)) AS dist
 FROM properties
 ORDER BY dist

n  Methods
n  are regarded as a "special kind of function", associated with structured types
n  invocation similar to function, but using method invocation syntax

 SELECT price, location, location.longitude(), location.latitude()
 FROM properties

n  Reflected in additional differences in terms of
n  routine signature (header)

n  parameter mode, result

n  overloading, overriding
n  routine resolution/dispatch

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
6

Routines – General Structure

n  Routine header (SQL)
n  consists of a name and a (possibly empty) list of parameters.
n  parameters of procedures may specify parameter mode

n  IN
n  OUT
n  INOUT

n  parameters of functions/methods are always IN
n  functions/methods return a single value (which may be complex)

n  header must specify data type of return value via RETURNS clause

n  Routine body, specified in
n  SQL (SQL routines), using SQL procedural language extensions (PSM)
n  a host programming language (external routines)

n  may contain SQL by embedding SQL statements in host language programs or using CLI

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
7

SQL Procedural Language Extensions

n  Compound statement
n  SQL variable declaration
n  If statement
n  Case statement

n  Loop statement
n  While statement
n  Repeat statement
n  For statement
n  Leave statement
n  Return statement
n  Call statement
n  Assignment statement
n  Signal/resignal statement

BEGIN ... END;
DECLARE var CHAR (6);
IF subject (var <> 'urgent') THEN ... ELSE ...;
CASE subject (var)

 WHEN 'SQL' THEN ...
 WHEN ...;

LOOP < SQL statement list> END LOOP;
WHILE i<100 DO END WHILE;
REPEAT ... UNTIL i>=100 END REPEAT;
FOR result AS ... DO ... END FOR;
LEAVE ...;
RETURN 'urgent';
CALL procedure_x (1,3,5);
SET x = 'abc';
SIGNAL division_by_zero

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
8

Procedures

n  Creating a stored procedure
n  Parameter modes OUT, INOUT designate parameters that

n  are set/modified by the procedure itself
n  are accessible by the calling application after the CALL invocation

n  mechanism depends on programming language binding

 CREATE PROCEDURE getPropertiesCloseTo
 (IN addr VARCHAR(50),

 IN distance INTEGER,
 OUT results INTEGER)

… -- additional routine characteristics
DYNAMIC RESULT SETS 1;

n  A procedure can return one or more result sets to a calling application
n  specified using the DYNAMIC RESULT SETS clause
n  procedure body can

n  declare cursors, indicating WITH RESULTS
n  open the cursor (to execute a SELECT statement), and leave the cursor open

n  calling application can process the results sets after invocation is completed

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
9

User-defined Functions

n  Creating a user-defined function
n  parameter mode must be IN (optional)
n  must specify a result data type (RETURNS)

 CREATE FUNCTION distance
 (loc1 VARCHAR(50),
 loc2 VARCHAR (50))

RETURNS INTEGER …;

n  Cannot return result sets, but may issue SQL statements

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
10

User-defined Table Functions

n  Motivation
n  Transform non-relational data into a relational table "on-the-fly" for further SQL

processing
n  semi-structured, …
n  stored as BLOB, external file, …
n  provided by external service

n  search engine, web service, …

n  Function returns a "multiset of rows"
n  Example: "docmatch" access an external search service, returns document ids

 CREATE FUNCTION docmatch(idx VARCHAR(30), pattern VARCHAR(255))
 RETURNS TABLE(doc_id CHAR(16)) …;

n  Function is used in the FROM clause of a query
n  Example: join the ids of matching documents with the DOCS table

 SELECT T.AUTHOR, T.DOCTEXT
 FROM DOCS AS T,
 TABLE(docmatch('MATHEMATICS', 'ZORN''S LEMMA')) AS F
 WHERE T.DOCID = F.DOC_ID

Agenda slide

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
11

Table Functions vs. Views

n  View definitions don't support parameters
n  Alternative: use SQL table functions

 CREATE FUNCTION propertiesCloseTo (loc VARCHAR(40), dist INTEGER)
 RETURNS TABLE (price INTEGER, owner REF(person))
 …
 RETURN TABLE(SELECT price, owner
 FROM properties p
 WHERE distance(p.location, loc) < dist)

n  Use table function invocation in the FROM clause, instead of a view reference
 SELECT *
FROM TABLE(propertiesCloseTo('1234 Cherry Lane …', 50)) AS props
WHERE props.price < 500000

Agenda slide

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
12

Privilege Requirements

n  Routine invocation requires EXECUTE privilege
n  Whose privileges are used when the routine itself invokes SQL statements?

n  security characteristic can be specified when creating a routine
n  INVOKER

n  the invoker (user/role) must have the privileges to execute the statements in the routine
body

n  DEFINER
n  the definer or creator must have the required privileges
n  routine is dropped, if the definer loses any of these privileges at a later point
n  the definer also has to possess these privileges WITH GRANT OPTION in order to grant

the EXECUTE privilege to other users

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
13

Routine Overloading

n  Overloading -- multiple routines with the same unqualified name
S1.F (p1 INT, p2 REAL)
S1.F (p1 REAL, p2 INT)
S2.F (p1 INT, p2 REAL)

n  Within the same schema
n  Every overloaded routine must have a unique signature, i.e., different number of

parameters or different types for the same parameters
S1.F (p1 INT, p2 REAL)
S1.F (p1 REAL, p2 INT)

n  Across schemas
n  Overloaded routines may have the same signature
S1.F (p1 INT, p2 REAL)
S2.F (p1 INT, p2 REAL)

n  Functions can be overloaded by type. Procedures can only be overloaded
based on number of parameters.

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
14

Subject Routine Determination

n  Decides the function to invoke for a given invocation based on the
n  Compile-time data types of all arguments
n  Type precedence list of the data types of the arguments
n  SQL path

n  Always succeeds in finding a unique subject function, if one exists.
n  Type precedence list is a list of data type names

n  Predefined types -- defined by the standard based on increasing precision/length

SMALLINT: SMALLINT, INTEGER, DECIMAL, NUMERIC, REAL, FLOAT, DOUBLE
CHAR: CHAR, VARCHAR, CLOB

n  User-defined types -- determined by the subtype-supertype relationship
n  if B is a subtype of A and C is a subtype of B, then the type precedence list for C is (C, B,

A).

n  Invocation requires the invoker to have EXECUTE privilege on the routine --
otherwise no routine will be found for the invocation
It is not an authorization violation!!!

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
15

Subject Routine Determination - Path

n  Path is a list of schema names.
n  Can be specified during the creation of a schema, SQL-client module, or a SQL-

server module

CREATE SCHEMA schema5
PATH schema1,schema3
...;

n  Every session has a default path, which can be changed using the SET statement.

SET PATH 'schema1, schema2'

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
16

Subject Routine Determination Algorithm

1.  Determine the set of candidate functions for a given function invocation,
F(a1, a2, ..., an):

n  Every function contained in S1 that has name F and has n parameters if the function name is
fully qualified, i.e., the function invocation is of the form S1.F(a1, a2, ..., an), where S1 is a
schema name.

n  Every function in every schema of the applicable path that has name F and has n parameters if
the function name is not fully qualified.

2.  Eliminate unsuitable candidate functions
n  The invoker has no EXECUTE privilege
n  The data type of i-th parameter of the function is not in the type precedence list of the static

type of the i-th argument (for parameter)

3.  Select the best match from the remaining functions
n  Examine the type of the 1st parameter of each function and keep only those functions such

that the type of their 1st parameter matches best the static type of the 1st argument (i.e.,
occurs earliest in the type precedence list of the static type of the argument), and eliminate
the rest.

n  Repeat Step b for the 2nd and subsequent parameters. Stop whenever there is only one
function remaining or all parameters are considered.

4.  Select the "subject function"
n  From the remaining functions take the one whose schema appears first in the applicable path

(if there is only one function, then it is the "subject function")

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
17

Subject Routine Determination - Example

n  Assume Y is a subtype of X. Assume the following three functions (with
specific names F1, F2, and F3):
F1: F(p1 X, p2 Y)
F2: F(p1 Y, p2 Y)
F3: F(p1 X, p2 REAL)

n  The subject function for F(y,y) where the static type of y is Y is F2.
n  Now, assume the following three functions (with specific names F4, F5, and

F6):
F4: F(p1 X, p2 Y)
F5: F(p1 X, p2 X)
F6: F(p1 X, p2 REAL)

n  The subject function for F(y,y) where the static type of y is Y is F4.

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
18

Methods

n  What are methods?
n  SQL-invoked functions "attached" to user-defined types

n  How are they different from functions?
n  Implicit SELF parameter (called subject parameter)
n  Two-step creation process: signature and body specified separately.
n  Must be created in the type's schema
n  Different style of invocation, using dot-notation (e.g., UDT-value.method(...))

CREATE TYPE employee AS
(name CHAR(40),
base_salary DECIMAL(9,2),
bonus DECIMAL(9,2))
INSTANTIABLE NOT FINAL
METHOD salary() RETURNS DECIMAL(9,2);

CREATE METHOD salary() FOR employee
BEGIN
....
END;

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
19

Methods (cont.)

n  Three kinds of methods: instance, constructor, static methods
n  Two types of instance methods:

n  Original methods: methods attached to (super) type
n  Overriding methods: methods attached to subtypes, redefining original behavior

n  Signature must match with the signature of an original method, except for the subject parameter

CREATE TYPE employee AS
(name CHAR(40),
base_salary DECIMAL(9,2),
bonus DECIMAL(9,2))
INSTANTIABLE NOT FINAL
METHOD salary() RETURNS DECIMAL(9,2);

CREATE TYPE manager UNDER employee AS
(stock_option INTEGER)
INSTANTIABLE NOT FINAL
OVERRIDING METHOD salary() RETURNS DECIMAL(9,2), -- overriding
METHOD vested() RETURNS INTEGER -- original;

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
20

Instance Methods

n  Invoked using dot syntax (assume dept table has mgr column):
SELECT mgr.salary() FROM dept;

n  Subject routine determination picks the "best" method to invoke.
n  Same algorithm as used for regular functions
n  SQL path is temporarily set to a list with the schemas of the supertypes of the

static type of the self argument.

n  Dynamic dispatch executed at runtime
n  Overriding methods considered at execution time
n  Overriding method with the best match for the dynamic type of the self argument

is selected.
n  Schema evolution affects the actual method that gets invoked. If there is a new

overriding method defined it may be picked for execution.

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
21

Method Reference

n  References can be used to invoke methods on the corresponding structured
type

n  assumption: type 'person' has a method 'income' with the appropriate signature
 SELECT prop.price, prop.owner->income(1998)
FROM properties prop
 SELECT name, DEREF(oid).income(1998)
FROM people

n  Invocation of methods given a reference value require select privilege on the
method for the target typed table
GRANT SELECT (METHOD income FOR person) ON TABLE people TO PUBLIC
n  Allows the table owner to control who is authorized to invoke methods on the rows

of his/her table

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
22

Manipulating Structured Type Attributes

n  Attributes of structured types are implicitly associated with a pair of instance
methods

n  Observer and mutator methods are used to access and modify attributes
n  Automatically generated when type is defined

CREATE TYPE address AS (street CHAR (30), city CHAR (20), state CHAR (2), zip
INTEGER) NOT FINAL

address_expression.street () -> CHAR (30)
address_expression.city () -> CHAR (20)
address_expression.state () -> CHAR (2)
address_expression.zip () -> INTEGER
address_expression.street (CHAR (30)) -> address
address_expression.city (CHAR (20)) -> address
address_expression.state (CHAR (2)) -> address
address_expression.zip (INTEGER) -> address

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
23

Dot Notation

n  "Dot'' notation must be used to invoke methods (e.g., to access attributes)
n  Methods without parameters do not require use of "()"

n  SELECT location.street, location.city(), location.state, location.zip()
FROM properties
WHERE price < 100000

n  Support for several 'levels' of dot notation (a.b.c.d.e)
n  Allow "navigational" access to structured types
n  Support for "user-friendly" assignment syntax

n  DECLARE r real_estate;
n  ...
n  SET r.size = 2540.50; -- same as r.size (2540.50)
n  ...
n  SET ... = r.location.state; -- same as r.location().state()
n  SET r.location.city = `LA'; -- same as r.location(r.location.city(`LA'))

n  Dot notation does not 'reveal' physical representation
n  allows the definition of 'derived' attributes

n  method 'longitude' is indistinguishable from attribute 'city' from an invocation perspective

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
24

Encapsulation

n  An object should encapsulate its state to the outside world
n  only the methods of an object may access the object state directly
n  other objects must invoke interface methods, cannot directly access the state
n  separate interface from implementation

n  Encapsulation through public interface definition (not supported by SQL!)
n  strict

n  all attributes are encapsulated
n  all or subset of methods are part of the interface

n  flexible
n  individual attributes and methods may be designated as private, public, protected

n  Encapsulation implemented through privileges (supported by SQL)
n  use authorization concepts to achieve arbitrary 'levels' of encapsulation
n  EXECUTE privilege may be granted/revoked on observer/mutator methods as well

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
25

Static Methods

n  Static Methods
n  have no subject (SELF) parameter
n  behavior associated with type, not instance
n  no overriding, dynamic dispatch

n  Created using keyword STATIC
CREATE TYPE employee ...
STATIC METHOD totalSalary(base DECIMAL(9,2), bonus DECIMAL(9,2))

 RETURNS DECIMAL(9,2);

n  Invocation uses structured type name, "::"
n  syntax 'borrowed' from C++
VALUES (employee::totalSalary(70000, 10000));

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
26

Initializing Instances: Constructor

n  Instances are generated by the system-provided constructor function
n  Attributes are initialized with their default values

n  Attributes are modified (further initialized) by invoking the mutator functions

BEGIN

 DECLARE re real_estate;
 SET re = real_estate(); -- generation of a new instance
 SET re.rooms = 12; -- initialization of attribute rooms
 SET re.size = 2500; -- initialization of attribute size

END

BEGIN
 DECLARE re real_estate;
 SET re = real_estate().rooms (12).size (2500); -- same as above

END

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
27

User-defined Constructor Methods

n  Users can define any number of constructor methods and invoke them with NEW
operator

CREATE TYPE real_estate AS (....)
CONSTRUCTOR METHOD real_estate (r INTEGER, s DECIMAL(8,2)) RETURNS real_estate

CREATE CONSTRUCTOR METHOD real_estate

 (r INTEGER, s DECIMAL(8,2)) RETURNS real_estate FOR real_estate
BEGIN

 SET self.rooms = r;
 SET self.size = s;
 RETURN self;

END

BEGIN

 DECLARE re real_estate;
 SET re = NEW real_estate(12, 2500); -- same as previously

END

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
28

Methods That Modify Object State

n  In OO-programming
n  a method that wants to modify the state of its object simply assigns new values to

an attribute
n  changes are reflected in the identical object

n  In SQL
n  value-based operations

n  expressions (including method invocations) always return (copies of) values
n  persistent data can only be updated by the respective DML operations (e.g., UPDATE),

assigning the results of expressions to the columns to be modified

n  a method will always operate on a copy of a complex value (i.e., instance of a
structured type)

n  modification of state as a pure side-effect of a method is not possible

n  modifying the object state will require an UPDATE statement
n  method returns a modified copy of the original complex value
n  separate UPDATE replaces old value with the new copy

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
29

Value-based Model in SQL

n  SQL functions/methods operate on a value-based model
n  method needs to return a modified copy of the SELF object

n  return type must be the ST

CREATE TYPE employee AS
(…)
INSTANTIABLE NOT FINAL
METHOD salary (DECIMAL(9, 2)) RETURNS employee;

CREATE METHOD salary (newsal DECIMAL(9, 2)) FOR employee
BEGIN

 SET self.base_salary = newsal;
 RETURN self;

END;

UPDATE Employees -- assumes the table has an emp column of type employee!

SET emp = emp.salary(80000)
WHERE emp.name = 'Smith';

UPDATE Employees

SET emp.salary = 80000 -- same as above
WHERE emp.name = 'Smith'

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
30

Substitutability and Value-based Model

n  Problems with static type checking
CREATE TYPE employee AS (…)

INSTANTIABLE NOT FINAL
METHOD salary (DECIMAL(9, 2)) RETURNS employee;

CREATE TYPE manager UNDER employee AS (…)
INSTANTIABLE NOT FINAL;

CREATE TABLE departments
(…, mgr manager, …)

UPDATE departments

SET mgr = mgr.salary(80000)
WHERE depno = 'K55';

manager inherts method
salary

method salary has static result
type 'employee';

but department.mgr has type
'manager'!

=> static type error!

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
31

Type-Preserving Functions/Methods

n  SQL-invoked function, one of whose parameters is a result SQL parameter.
n  The most specific type of the value returned by an invocation of a type-preserving

function is identical to the most specific type of the SQL argument value
substituted for the result SQL parameter

n  This can be the SELF parameter for methods

n  Example:
CREATE TYPE employee AS
(…)
INSTANTIABLE NOT FINAL
METHOD salary (DECIMAL(9, 2)) RETURNS employee SELF AS RESULT;

UPDATE departments

SET mgr = mgr.salary(80000)
WHERE depno = 'K55';

Type-checking succeeds, although the return type of manager.salary() is employee!

n  All system-generated mutator methods are type-preserving

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
32

Additional Routine Characteristics

n  DETERMINISTIC or NOT DETERMINISTIC
n  DETERMINISTIC (default)

n  Routine is expected to return the same result/output values for a given list of input
values. (However, no checks are done at run time.)

n  Gives the SQL query engine full flexibility for rewrite and optimization purposes

n  NOT DETERMINISTIC routines not allowed in
n  Constraint definitions
n  Assertions
n  In the condition part of CASE expressions
n  CASE statements

n  RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT (default)
n  RETURNS NULL ON NULL INPUT

n  An invocation returns null result/output value if any of the input values is null without
executing the routine body

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
33

Additional Routine Characteristics (cont.)

n  CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA
n  External routines may in addition specify NO SQL
n  Implementation-defined default
n  For SQL routines -- check may be done at routine creation time
n  For both SQL and external routines -- exception raised if a routine attempts to

perform actions that violate the specified characteristic
n  Routines with MODIFIES SQL DATA not allowed in

n  Constraint definitions
n  Assertions
n  Query expressions (SELECT …)
n  Triggered actions of BEFORE triggers
n  Condition part of CASE expressions
n  CASE statements
n  searched delete statements
n  search condition of searched update statements (are allowed in SET clause)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
34

External Routines

n  Motivation
n  external programming language may have better performance for computationally

extensive tasks
n  leverage existing program libraries

n  CREATE statement does not contain a method body
n  LANGUAGE clause

n  Identifies the host language in which the body is written

n  NAME clause
n  Identifies the host language code, e.g., file path in Unix

 CREATE FUNCTION get_balance(IN INTEGER) RETURNS DECIMAL(15,2))
LANGUAGE C EXTERNAL NAME 'usr/McKnight/banking/balance'

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
35

External Routine Parameters and Implementation

n  Parameters
n  Names are optional

n  are not used in the routine body

n  Permissible data types depend on the host language of the body

n  RETURNS clause may specify CAST FROM clause
CREATE FUNCTION get_balance(IN INT)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C
n  C program returns a REAL value, which is then cast to DECIMAL(15,2) before

returning to the caller.

n  Parameter Styles
n  Define the signature of the corresponding programming language routine
n  Special provisions to handle null indicators and the status of execution

(SQLSTATE)
n  PARAMETER STYLE SQL (is the default)
n  PARAMETER STYLE GENERAL

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
36

void balance (int* acct_id,
float* rtn_val,
int* acct_id_ind,
int* rtn_ind,
char* sqlstate[6],
char* rtn_name [512],
char* spc_name [512],
char* msg_text[512])
{
...
}

PARAMETER STYLE SQL

n  Additional parameters necessary for null indicators and routine name, and for
returning a function result, error message, and SQLSTATE value

n  External language program (i.e., the body) has 2n+4 parameters for
procedures and 2n+6 parameters for functions where n is the number of
parameters of the external routine

CREATE FUNCTION get_balance(IN INTEGER)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C
EXTERNAL NAME 'bank\balance'
PARAMETER STYLE SQL

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
37

PARAMETER STYLE GENERAL

n  No additional parameters
n  External language program (i.e., the body) must have exactly the same

number of parameters
n  Cannot handle null values

n  Exception is raised if any of the arguments evaluate to null

n  Value is returned in an implementation-dependent manner

CREATE FUNCTION get_balance(IN INTEGER)
RETURNS DECIMAL(15,2)) CAST FROM REAL
LANGUAGE C
EXTERNAL NAME 'bank\balance'
PARAMETER STYLE GENERAL

float* balance (int* acct_id)
{
...
}

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
38

SQLJ Part 1

n  SQL Routines using the Java™ Programming Language
n  LANGUAGE JAVA PARAMETER STYLE JAVA

n  no additional parameters on Java method signatures required to handle null values,
errors, etc.

n  Java static methods used to implement SQL stored procedures and user-defined
functions

n  parameter type conversion, error/exception handling
n  stored procedures: output parameters, returning result sets
n  body can contain JDBC, SQLJ

n  SQL DDL statement changes
n  create procedure, create function

n  JAR file becomes a database "object"
n  built-in procedures to install, replace, remove JAR file in DB
n  usage privilege on JAR files

n  Accepted ANSI standard
n  ANSI NCITS 331.1:1999

n  Has been folded into SQL:2003 as SQL/JRT

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
39

Installing Java Classes in the DB

n  Installation
n  New install_jar procedure

sqlj.install_jar ('file:~/classes/
routines.jar', 'routines_jar')

n  Parameters: URL of JAR file with Java
class and string to identify the JAR in
SQL

n  Install all classes in the JAR file
n  Uses Java reflection to determine

names, methods, signatures
n  Optionally uses deployment

descriptor file found in JAR to
create SQL routines

n  Removal
n  sqlj.remove_jar ('routines_jar')

n  Replacement
n  sqlj.replace_jar

 ('file:~/classes/routines.jar',
'routines_jar')

 JAR file
class 1

method 11 (...)
method 12 (...)

class 2
method 21 (...)
method 22 (...)

class 3
method 31
method 32

class 4
method 41

class 5
class 6

method 61 (...)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
40

Creating Procedures and UDFs

routines.jar"public class addr{"
public static void 

modifyaddr (...)"
public static integer  

zip (string s) ..."

sqlj.install_jar ('file:~/classes/routines.jar', 'routines_jar')

Java return type 'void' -> stored procedure
otherwise -> user-defined function

CREATE PROCEDURE modify_address (ssn INTEGER, addr CHAR (40))
 MODIFIES SQL DATA
 EXTERNAL NAME 'routines_jar:addr.modifyaddr'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA

CREATE FUNCTION zip (addr CHAR (40)) RETURNS INTEGER
 NO SQL

 DETERMINISTIC
 EXTERNAL NAME 'routines_jar:addr.zip'
 LANGUAGE JAVA
 PARAMETER STYLE JAVA

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
41

Stored Procedures

n  OUT and INOUT parameters
 CREATE PROCEDURE

 avgSal (IN dept VARCHAR(30), OUT avg DECIMAL(10, 2)) ...
n  Java method declares them as arrays
n  Array acts as container that can be filled/replaced by the method implementation

to return a value
 public static void averageSalary (String dept, BigDecimal[] avg) ...

n  Returning result set(s)
 CREATE PROCEDURE ranked_emps (region INTEGER)

 DYNAMIC RESULT SETS 1
n  Java method declares explicit parameters for returned result sets of type

n  array of (JDBC) ResultSet
n  array of (SQLJ) iterator class, prev. declared in "#sql iterator ..."

 public static void ranked_emps (int region, ResultSet[] rs) ...
n  Java method body assigns (open) result sets as array elements of result set

parameters
n  Multiple result sets can be returned

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
42

Error Handling

n  Java method throws an SQLException to indicate error to the SQL engine
n  ... throws new SQLException ("Invalid input parameter", "38001");
n  SQLSTATE value provided has to be in the "38xxx" range

n  Any other uncaught Java exception is turned into a SQLException "Uncaught
Java exception" with SQLSTATE "38000" by the SQL engine

n  Java exceptions that are caught within an SQLJ routine are internal and do
not affect SQL processing

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
43

Additional Features

n  Java "main" methods
n  Java signature has to have single parameter of type String[]
n  Corresponding SQL routine has

n  Either 0 or more CHAR/VARCHAR parameters,
n  or a single parameter of type array of CHAR/VARCHAR

n  NULL value treatment
n  Use Java object types as parameters (see JDBC)

n  SQL NULL turned into Java null

n  Specify SQL routine to return NULL if an input parameter is NULL
CREATE FUNCTION foo(integer p) RETURNS INTEGER

RETURNS NULL ON NULL INPUT
n  Otherwise run-time exception will be thrown

n  Static Java variables
n  Can be read inside SQL routine
n  Should not be modified (result is implementation-defined)

n  Overloading
n  SQL rules may be more restrictive
n  Map Java methods with same name to different SQL routine names

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
44

SQLJ Part 2

n  SQL Types using the Java™ Programming Language
n  Use of Java classes to define SQL structured types
n  Mapping of object state and behavior

n  Java methods become SQL methods on SQL type
n  Java methods can be invoked in SQL statements

n  Automatic mapping to Java object on fetch and method invocation
n  Java Serialization
n  JDBC 2.0 SQLData interface

n  Uses the procedures introduced in SQLJ Part 1 to install, remove, and replace
SQLJ JAR files

n  Approved ANSI standard
n  ANSI/NCITS 331.2-2000

n  Folded into SQL:2003 as SQL/JRT

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
45

Mapping Java Classes to SQL

n  Described using extended CREATE TYPE syntax
n  DDL statement, or
n  Mapping description in the deployment descriptor

n  Supported Mapping

n  SQL constructor methods
n  Have the same name as the type for which they are defined
n  Are invoked using the NEW operator (just like in Java)

n  SQL does not know static member variables
n  Mapped to a static SQL method that returns the value of the static variable
n  No support for modifying the static variable

Java SQL
class user-defined (structured) type
member variable attribute
method method
constructor constructor method
static method static method
static variable static observer method

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
46

Mapping Example

n  Java class
 public class Residence implements Serializable, SQLData {

 public int door;
 public String street;
 public String city;
 public static String country = "USA";
 public String printAddress() { ...};
 public void changeResidence(String adr) { ... // parse and update fields ...}
 // SQLData methods
 public void readSQL(SQLInput in, String type) { ... };
 public void writeSQL(SQLOutput out) { ... };

 }

n  SQL DDL/descriptor statement
 CREATE TYPE Address EXTERNAL NAME 'residence_jar:Residence' LANGUAGE JAVA (

 number INTEGER EXTERNAL NAME 'door',
 street VARCHAR(100) EXTERNAL NAME 'street',
 city VARCHAR(50) EXTERNAL NAME 'city',
 STATIC METHOD country() RETURNS CHAR(3)
 EXTERNAL VARIABLE NAME 'country',
 METHOD print() RETURNS VARCHAR(200) EXTERNAL NAME 'printAddress',
 METHOD changeAddress (varchar(200)) RETURNS Address
 SELF AS RESULT EXTERNAL NAME 'changeResidence'

)

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
47

Instance Update Methods

n  Remember: Java and SQL have different object update models
n  Java model is object-based
n  SQL model is value-based

n  SQLJ permits mapping without requiring modification of Java methods
n  SELF AS RESULT identifies an instance update method
n  Java class

 public class Residence implements Serializable, SQLData {
 ...
 public void changeResidence(String adr) { ... // parse and update fields ...}

 }
n  SQL type

 CREATE TYPE Address EXTERNAL NAME 'Residence' LANGUAGE JAVA (
 ...
 METHOD changeAddress(varchar(200)) RETURNS Address SELF AS RESULT
 EXTERNAL NAME 'changeResidence'

)

n  At runtime, the SQL system
n  Invokes the original Java method (returning void) on (a copy of) the object
n  Is responsible for returning the modified object

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
48

Object "Conversion" between SQL and Java

n  Serializable vs. SQLData
n  Can be specified in CREATE TYPE statement (optional clause)

CREATE TYPE Address ... LANGUAGE JAVA USING SERIALIZABLE ...
CREATE TYPE Address ... LANGUAGE JAVA USING SQLDATA ...

n  default is implementation-defined
n  implementation may only support one of the mechanisms

n  does not impact the application program itself
n  USING SERIALIZABLE

n  persistent object state entirely defined by Java serialization
n  SQL attributes have to correspond to Java public fields

n  Java field names have to be listed in the external name clauses
n  Java serialization is used for materializing the object in Java

n  attribute access, method invocation

n  USING SQLDATA
n  persistent state is defined by the attributes in the CREATE TYPE statement
n  external attribute names do not have to be specified
n  SQLData interface is used for materializing objects in Java

n  read/writeSQL methods have to read/write attributes in the order defined
n  Java fields might be different then the SQL attributes

n  Recommendations for portability
n  have Java class implement both Serializable and SQLData
n  Java class should define the complete persistent state as public fields
n  CREATE TYPE statement should have external names, omit USING

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models
49

Summary

n  OODBMS features
n  Extensibility

n  user-defined types (structure and
operations) as first class citizens

n  Computational completeness
n  use DML to express any computable

function (-> method implementation)

n  Encapsulation
n  separate specification (interface) from

implementation

n  Overloading, overriding, late binding
n  same name for different operations or

implementations

n  SQL
n  User-defined routines

n  procedures, functions,
methods (instance, static, constructor)

n  SQL routines and external routines
n  use SQL/PSM procedural extensions or

external PL to implement routine

n  Encapsulation
n  observer/mutator methods and EXECUTE

privilege to achieve encapsulation

n  Overloading
n  full support for functions, methods
n  limited support for procedures

n  Overriding, late binding
n  supported for methods

