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Why do we need a new query language? 

n  Relational Data, SQL 
n  flat (rows and columns), use foreign 

keys, structured types for hierarchical 
data 

n  data is uniform, repetitive 
n  info schema for meta data 
 

 
 

n  uniform query results 
 

 

n  rows in a table are unordered 

 
 

n  data is usually dense 
n  NULL for missing/inapplicable data 

n  XML 
n  nested, need to search for something at 

an arbitrary level (//*[@color = "Red"]) 
 

n  data is highly variable, self-describing 
n  meta data distributed throughout doc 
n  queries may need to access data and 

meta data: "tag name equals content" 
//*[name(.) = string(.)] 

n  heterogenous query results 
n  severe structural transformations 

required 
n  e.g., invert a hierarchy 

n  elements in document are ordered 
n  needs to be preserved 
n  query based on order, position 
n  output order specification at multiple 

levels in the hierarchy 

n  data can be sparse 
n  empty or absent elements 
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XQuery 

n  XQuery is a general purpose query language for XML data  
n  Standard developed by the World Wide Web Consortium (W3C) 

n  W3C Recommendation since January 23rd, 2007 
n  current version: XQuery 3.0, Working Draft, Dec. 2011 

n  XQuery is derived from  
n  the Quilt (“Quilt” refers both to the origin of the language and to its use in “knitting ” together heterogeneous 

data sources)  query language, which itself borrows from  
n  XPath: a concise language for navigating in trees 
n  XML-QL: a powerful language for generating new structures  
n  SQL: a database language based on a series of keyword-clauses: SELECT - FROM 

– WHERE  
n  OQL:   a functional language in which many kinds of expressions can be nested 

with full generality 
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Tree Model of XML Data 

n  Query and transformation languages are based on a tree model of XML data 
n  An XML document is modeled as a tree, with nodes corresponding to elements, 

attributes, text, etc. 
n  Example: 

<?xml version = "1.0"?> 
<!-- Requires one trained person --> 
<procedure title = "Removing a light bulb"> 
  <time unit = "sec">15</time> 
  <step>Grip bulb.</step> 
  <step> 

 Rotate it 
 <warning>slowly</warning> 
 counterclockwise. 

  </step> 
</procedure> 
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title="Removing a light bulb" 

time 
unit="sec" 

step 

warning 

counterclockwise. 

step 

Rotate it 

slowly 

Grip bulb. 15 
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XQuery Data Model (XDM) 

n  Builds on a tree-based model, but extends it to support sequences of items 
n  represent collections of documents and complex values 
n  reflect (intermediate) results of query evaluation 
n  closure property 

n  XQuery queries and expressions operate on/produce instances of the XDM 

n  Based on XML Schema for precise type information 
n  XDM instance 

n  ordered sequence of zero or more items 
n  can contain heterogenous values 
n  cannot be nested – all operations on sequences automatically "flatten" sequences 

n  no distinction between an item and a sequence of length 1 

n  may contain duplicate nodes (see below) 

n  An item is a node or an atomic value 
n  Atomic values are typed values 

n  XML Schema simple types 
n  important for representing results of intermediate expressions in the data model 
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XDM - Nodes 

n  There are seven kinds of nodes 
n  Document, Element, Attribute, Text, Namespace, Comment, Processing Instruction 

n  Nodes form a tree  
n  consisting of  

n  root node 
n  nodes directly or indirectly reachable from the root node via accessors 

n  children  
n  only element, processing instruction, comment and text nodes can be children 
n  only document and element nodes have children 

n  attributes 
n  namespace nodes 

n  trees are called 
n  documents, if the root is a document node 
n  fragments, otherwise 

n  trees have exactly one root 
n  a node belongs to exactly one tree 
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XDM – Nodes (cont.) 

n  A node has an identity (preserved by operations on nodes) 
n  Each node has a typed value 

n  sequence of atomic values 
n  type may be unknown (anySimpleType) 

n  Element and attribute nodes have a type annotation 
n  generated by validating the node 

n  Document order of nodes 
n  root < child < namespace < attribute < descendants 
n  children and descendants < following siblings 
n  order of siblings correspond to order in document 



Summer 2012 5 

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models 
9 

General XQuery Rules 

n  XQuery is a case-sensitive language 
n  Keywords are in lower-case 
n  Every expression has a value and no side effects  
n  Expressions are fully composable  
n  Expressions can raise errors  
n  Expressions (usually) propagate lower-level errors  

n  Exception: if-then-else 

n  Comments look like this 
n  (: This is an XQuery comment :) 
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XQuery Expressions 

n  Literals: "Hello" 47 4.7 4.7E-2 
n  Constructed values: true() false() date("2002-03-15") 
n  Variables: $x  
n  Constructed sequences  

n  $a, $b is the same as ($a, $b) 
n  (1, (2, 3), (), (4)) is the same as 1, 2, 3, 4 
n  5 to 8 is the same as 5, 6, 7, 8 



Summer 2012 6 

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models 
11 

Path Expressions in XQuery 

n  An XPath expression maps a node (the context node) into a sequence of 
nodes 

n  consists of one or more steps separated by “/” 
n  e.g.: return the names of all customers in bank 

/child::bank/child::customer/child::name    

n  Evaluation of path expression 
n  step by step, from left to right 
n  starting from an externally provided context node, or from document root  
n  each step works on a sequence of nodes 

n  for each node in the sequence, look up other nodes based on step expression 
n  eliminate duplicates from result sequence 
n  sort nodes in document order 

n  empty result sequence does not result in an error 

D bank 

customer 

customer customer-name 
Joe 

customer-name 
Mary 
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Path Expressions (cont.) 

n  The initial “/” denotes root of the document (above the top-level tag)  
n  In general, a step has three parts: 

n  The axis (direction of movement: child, descendant, parent, ancestor, following, 
preceding, attribute, … - 13 axes in all - )�

n  A node test (type and/or name of qualifying nodes) �
n  Optional predicates �

n  Selection predicates may appear in any step in a path, in [ ] 
n  Evaluated for each node qualified by axis/node test 
n  E.g.    /child::bank-2/child::account[child::balance > 400]  

n  returns account elements with a balance value greater than 400 
 

n  Alternative: filter step 
n  instead of axis::node-test, an expression can be used that locates nodes based 

on the context 
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Axis 

n  Result given in document order (exception: positional predicates) 
n  Axis for attributes and namespaces are available in addition to the ones listed 

below 
n  child axis includes elements, 

text node, pis, comments 

        self:: 

        parent:: 

    ancestor:: 

ancestor-or-self:: 

preceding-sibling::                      following-sibling:: 

           following:: preceding::           

child::   

           descendant::   

  descendant-or-self::   
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XPath Axes Supported in XQuery 

n  Supported: 
n  child 
n  descendant 
n  attribute 
n  self 
n  descendant-or-self 
n  parent 

n  Optionally supported (full axis feature): 
n  ancestor 
n  ancestor-or-self 
n  preceding 
n  preceding-sibling 
n  following 
n  following-sibling 
n  namespace 
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Node Tests 

n  Name test 
n  Element, attribute name 

n  child::name, name – Matches <name> element nodes 
n  child::*, * - Matches any element node 
n  attribute::name, attribute::*, @* for matching based on attribute name 

n  namespace:name – Matches <name> element nodes in the specified namespace 
n  namespace:* - Matches any element node in the specified namespace 

n  child::bank:* - Matches any element node whose name is defined in bank namespace 

n  Node type test to match nodes of a specific type 
n  document-node() 
n  comment() 
n  text() 
n  processing-instruction() 
n  element(), element(name), element(name, type)  
n  attribute(), attribute(name), attribute(name, type) 
n  node() – matches any node 
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Node Test – Examples 

n  Find the names of all customers in bank 
/child::bank/child::customer/child::name    

n  Find all the element children of customers in bank 
 /child::bank/child::customer/child::* 

n  Find all attributes of customer elements anywhere in the document 
/descendant::customer/attribute::* 

n  Find all attributes of customer elements having the type xs:string 
/descendant::customer/attribute::attribute(*, xs:string) 

n  Find all text nodes of the document 
 /descendant::text() 
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Path Expressions – Abbreviated Notation 

n  Abbreviations 
n  "."  

n  current context node 

n  ".." 
n  "parent::node()" 

n  "//" 
n  "/descendant-or-self::node()/" 

n  "@" 
n  "attribute::" 

n  axis missing 
n  "child::"  
n  (or "attribute::" with an attribute node 

type test) 

n  The following examples use the 
abbreviated notation: 

n  Find the names of all customers in bank 
/bank/customer/name    

n  Find all the element children of 
customers in bank 
 /bank/customer/* 

n  Find all attributes of customer elements 
anywhere in the document 
//customer/@* 

n  Find all attributes of customer elements 
having the type xs:string 
//customer/attribute(*, xs:string) 

n  Find all text nodes of the document 
 //text() 
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Predicates 

n  Predicates can be used to apply additional filter conditions for the resulting 
nodes 

n  Boolean expressions: selects all nodes for which expression returns "true" 
 book[author = "Mark Twain"] 

n  Numeric expressions: selects all nodes whose position is equal to the resulting 
value 
 chapter[2] 

n  Existence tests: selects nodes where expression does not result in empty sequence 
 book[appendix] 
person[@married] (Tests existence, not value!) 

n   Predicates can be used in path expressions: 
//book[author = "Mark Twain"]/chapter[2] 

 ...and in other kinds of expressions: 
(1 to 100)[. mod 5 = 0] 



Summer 2012 10 

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models 
19 

Functions 

n  Context functions, e.g. 
n  fn:last() returns the number of items in the current sequence 

n  Find the last paragraph-child of the context node 
  para[fn:last()] 

n  fn:position() returns the position of the current item within the current sequence 
n  Find the last paragraph-child of the context node (alternative query) 

  para[fn:position()=fn:last()] 

n  fn:current-date() returns the current date 
n  Find names of customers who have an order with today’s date 

  //customer[order/date=fn:current-date()]/name 

n  Functions on nodes/items, e.g. 
n  fn:string() returns the string value of an item 

n  element nodes: concatenation of all descendant text nodes, in document order 

n  Functions and operators on sequences, e.g. 
n  concatenation, distinct-values, subsequence 
n  (deep) equal, union, intersect, except 
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Functions (cont.) 

n  IDREFs can be de-referenced using function fn:id()   
n  fn:id() can also be applied to sets of references such as IDREFS and even to 

strings containing multiple references separated by blanks 
n  E.g.  /bank-2/account/fn:id(@owners)  

returns all customers referenced by the owners attribute of account elements 

n  The function fn:doc(name) returns the root of the named document 
n  E.g.   fn:doc(“bank.xml”)/bank/account 

n  The function fn:collection(name) returns a sequence of nodes 
n  E.g.   fn:collection(“myBankCollection”)/bank/account 
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More Expressions 

n  Arithmetic operators: + - * div idiv mod 
n  Extract typed value from node 
n  Multiple values => error 
n  If operand is ( ), return ( ) 
n  Supported for numeric and date/time types 

n  Comparison operators 
n  eq ne gt ge lt le compare single atomic values 
n  = != > >= < <= implied existential semantics 
n  is   is not compare two nodes based on identity 
n  <<   >> compare two nodes based on document order 
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Logical Expressions 

n  Operators: and or 
n  Function: not( ) 
n  Return TRUE or FALSE (2-valued logic) 
n  "Early-out" semantics (need not evaluate both operands) 
n   Result depends on Effective Boolean Value of operands 

n  If operand is of type boolean, it serves as its own EBV 
n  If operand is ( ), zero, or empty string, EBV is FALSE 
n  In any other case, EBV is TRUE 

n  Note that EBV of a node is TRUE, regardless of its content (even if the 
content is FALSE)! 
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Constructors 

n  To construct an element with a known name and content, use XML-like 
syntax: 
<book isbn = "12345"> 
  <title>Huckleberry Finn</title> 
</book> 

n  If the content of an element or attribute must be computed, use a nested 
expression enclosed in { } 
<book isbn = "{$x}"> 

 {$b/title } 
</book> 

n  If both the name and the content must be computed, use a computed 
constructor: 
element {name-expr} {content-expr} 
attribute {name-expr} {content-expr} 
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Validation of Constructed Elements 

n  An element constructor automatically validates the new element against "in-
scope schema definitions" 

n  Results in a type annotation 
n  Can be generic: xs:anyType 

n  Validation mode (default = lax) 
n  Strict: element must be defined in schema 
n  Lax: element must match schema definition if it exists 
n  Skip: ignore this element 
n  Mode is set in Prolog or by explicit Validate expression 

n  Validation context: 
n  Schema path inside which current node is validated 
n  Each constructed element adds its name to the context 
n  Can be overridden by an explicit Validate expression 



Summer 2012 13 

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models 
25 

RETURN_clause FOR_clause 
LET_clause WHERE_clause 

XQuery: The General Syntax Expression FLWOR 

n  FOR clause, LET clause generate list of tuples of bound variables (order preserving) by 
n  iterating over a set of nodes (possibly specified by a path expression), or  
n  binding a variable to the result of an expression 

n  WHERE clause applies a predicate to filter the tuples produced by FOR/LET 
n  ORDER BY clause imposes order on the surviving tuples 
n  RETURN clause is executed for each surviving tuple, generates ordered list of outputs 
n  Associations to SQL query expressions 

     for      ó SQL from 
     where ó SQL where 
     order by ó SQL order by 
     return  ó SQL select 
     let allows temporary variables, and has no equivalent in SQL 

ORDER_BY_clause 
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Evaluating FLWOR Expressions 

… 

$x $y $z 

… … … 

input sequence tuple stream 

$x $y $z 

… … … 

ok! 

ok! 

X 

$x $y $z 

… … … 

… 

ouput sequence 

FOR $X,$Y ..  
LET $Z .. WHERE .. 

ORDER 
BY .. 

RETURN .. 
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FLWOR - Examples  

n  Simple FLWR expression in XQuery  
n  Find all accounts with balance > 400, with each result enclosed in an <account-

number> .. </account-number> tag 
     for      $x in /bank-2/account 
     let      $acctno := $x/@account-number  
     where $x/balance > 400  
     return <account-number> {$acctno} </account-number> 

n  Let and Where clause not really needed in this query, and selection can be 
done in XPath.   

n  Query can be written as: 
    for  $x in /bank-2/account[balance>400] 

   return <account-number> {$x/@account-number}  
                                                           </account-number> 
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Eliminating Duplicates 

n  Equality of elements 
n  element name, attributes, content are identical 
n  example: average price of books per publisher 

 FOR $p IN distinct-values(doc("bib.xml")//publisher) 
LET $a := avg(doc("bib.xml")//book[publisher = $p]/price) 
RETURN  

 <publisher> 
  <name> {$p/text()} </name>  
  <avgprice> {$a} </avgprice> 
 </publisher> 
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Nesting of Expressions 

n  Here: nesting inside the return clause 
n  Example: inversion of a hierarchy 

<book>  
   <title> 
   <author> 
   <author> 
</book> 
<book> 
   <title> 
   <author> 
   <author> 
</book>

<author>  
   <name> 
   <title> 
   <title> 
</author> 
<author> 
   <name> 
   <title> 
   <title> 
</author> 

FOR $a IN distinct-values(//author)  
ORDER BY $a/name 
RETURN  
     <author> 
       <name> { $a/text() } </name>  
       { FOR $b IN //book[author = $a] 
            RETURN $b/title } 

 </author>  
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Sorting of Results 

n  ORDER BY 
n  Example: Sort the expensive books by first author name, book title 

LET $b = doc("bib.xml")//book[price > 100] 
ORDER BY $b/author[1], $b/title 
RETURN <expensive_books> $b </expensive_books> 

n  Ordering at various levels of nesting 
n  Example: For all publishers, sorted by publisher name, list the title and price of all their books, 

sorted by price descending 
<publisher_list> 
{FOR $p IN distinct-values(doc("bib.xml")//publisher) 

 ORDER BY $p/name 
 RETURN 
  <publisher> 
   <name> {$p/text()} </name>  
   {FOR $b IN doc("bib.xml")//book[publisher = $p] 
   ORDER BY $b/price DESCENDING 
   RETURN 
    <book> 
      {$b/title} 
      {$b/price} 
    </book>  
   } 
  </publisher>  
 } 
 </publisher_list> 
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Order Insignificance 

n  Indicate that the document order is insignificant 
n  provides an opportunity for the optimizer 

n  Example: 
fn:unordered( 

 FOR $b IN doc("bib.xml")//book, 
   $a IN doc("authors.xml")//author 
 WHERE $b/author_id = $a/id 
 RETURN 
  <ps> 
   { $b/titel, $a/name } 
  </ps>) 

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models 
32 

Nesting and Aggregation 

n  Aggregation 
n  Function over a sequence of elements 

n  count(), avg(), min(), max(), sum() 

n  Example: List all publishers with more than 100 books 
<BIG_PUBLISHERS> 
 { 
  FOR $p IN distinct(doc("bib.xml")//publisher) 
  LET $b := doc("bib.xml")//book[publisher = $p] 
  WHERE count($b) > 100 
  RETURN $p 
 } 

</BIG_PUBLISHERS> 
n  LET clause binds $b to a sequence of books 
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XQuery: Joins  

n  Joins are specified in a manner very similar to SQL 
for  $a  in  /bank/account, 

 $c  in  /bank/customer, 
 $d  in  /bank/depositor 

where $a/account-number = $d/account-number  
and $c/customer-name = $d/customer-name 

return <cust-acct>{ $c $a }</cust-acct> 

n  The same query can be expressed with the selections specified as XPath 
selections: 
for  $a in /bank/account 

  $c in /bank/customer 
  $d in /bank/depositor[ 
                     account-number =$a/account-number and 
                     customer-name = $c/customer-name] 

return <cust-acct>{ $c $a }</cust-acct> 
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XQuery: Outer Join 

n  Example: List all suppliers. If a supplier offers medical items, list the 
descriptions of the items 

FOR $s IN doc("suppliers.xml")//supplier 
ORDER BY $s/name 
RETURN 
   <supplier> 
      { $s/name, 
        FOR $ci IN doc("catalog.xml")//item[supp_no = $s/number], 
            $mi IN doc("medical_items.xml")//item[number = $ci/item_no] 

     RETURN $mi/description 
      } 
   </supplier> 

n  Problem with full outer join: nesting forces asymmetric representation 
n  produce a two-part document, enclosed by a <master_list> element 
n  query needs a separate expression for computing the "orphan" items 
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Quantified Expressions 

n  Existential Quantification 
n  Give me all books where "Sailing" and "Windsurfing" appear at least once in the 

same paragraph 

 FOR $b IN //book 
WHERE SOME $p IN $b//para SATISFIES (contains($p, "Sailing")  
   AND contains($p, "Windsurfing")) 

RETURN $b/title 

n  Universal Quantification 
n  Give me all books where "Sailing" appears in every paragraph 

 FOR $b IN //book 
WHERE EVERY $p IN $b//para SATISFIES contains($p, "Sailing") 
RETURN $b/title 
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Defining and Using Functions 

n  Predefined Functions 
n  XPath/XQuery function library, e.g., doc( ) 
n  aggregation functions: avg, sum, count, max, min 
n  additional functions: distinct-values( ), empty( ), … 

n  User-defined Functions 
n  Example: compute maximal path length in "bib.xml" 

 DECLARE FUNCTION local:depth($e AS node()) AS xs:integer 
{ 
 (: A node with no children has depth 1 :) 
 (: Otherwise, add 1 to max depth of children :) 
 IF (empty($e/*)) 
  THEN 1  
  ELSE 1 + fn:max( FOR $c IN $e/* RETURN local:depth($c) ) 
 }; 

 LET $h := doc("bib.xml") 
RETURN 
  <depth>{ local:depth($h) }</depth> 
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Function Definitions 

n  Function definitions may not be overloaded in Version 1 
n  Much XML data is untyped 
n  XQuery attempts to cast arguments to the expected type 
n  Example: abs($x) expects a numeric argument 

n  If $x is a number, return its absolute value 
n  If $x is untyped, cast it to a number 
n  If $x is a node, extract its value and treat as above 

n  This "argument conditioning" conflicts with function overloading 
n  XML Schema substitution rules are already very complex 

n  two kinds of inheritance; substitution groups; etc. 

n  A function can simulate overloading by branching on the type of its argument, 
using a typeswitch expression 
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Two Phases in Query Processing 

n  Static analysis (compile-time; optional) 
n  Depends only on the query itself 
n  Infers result type of each expression, based on types of operands 
n  Raises error if operand types don't match operators 
n  Purpose: catch errors early, guarantee result type 
n  May be helpful in query optimization 

n  Dynamic evaluation (run-time) 
n  Depends on input data 
n  Computes the result value based on the operand values 

n  If a query passes static analysis, it may still raise an error at evaluation time 
n  It may divide by zero 
n  Casts may fail. Example: 

 cast as integer($x) where value of $x is "garbage" 

n  If a query fails static type checking, it may still evaluate successfully and return a useful 
result. 

n  Example (with no schema):  
 $emp/salary + 1000 

n  Static semantics says this is a type error 
n  Dynamic semantics executes it successfully if $emp has exactly one salary subelement with a 

numeric value 
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XQuery API for JavaTM (XQJ) 

n  Similar to JDBC, but for XQuery statements 
n  data source, connection, (prepared) XQuery expression (statement) 

n  XQuery variable identifier instead of parameter markers ("?") 

n  Query result is a sequence (XQSequence) 
n  iterate through sequence items using  XQSequence.next() 
n  retrieve Java DOM objects using XQSequence.getObject() 
n  retrieve atomic values as character string or mapped to Java data types 
n  individual items or the complete stream can be "written" to the SAX API 

n  Support for "serializing" an XQuery result 
n  to file, Java writer, string 
n  as (X)HTML 

Recent Developments for Data Models 
39 

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models 
40 

XQuery Update Facility 

n  Introduces so-called updating expressions 
n  potentially modify the state of an existing node 
n  may occur on their own or nested inside other expressions 

n  e.g., in the return clause of a FLWOR expression 

n  Update model: snapshot semantics 
n  during query evaluation, updates are collected in a pending update list 

n  contains update primitives, which have not been applied yet 
n  update primitive identifies a target node, update operation 

n  is returned by an XQuery expression, in addition to an XDM instance 

n  only after the outermost expression has been evaluated, the updates in the list are 
applied 
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Insert and Delete Expression 

n  Insert copies of one or more nodes into designated position wrt. the target 
node 

n  Syntax: insert <source-expression> 
          ([as (first | last)] into | after | before) <target-expression> 
n  target expression identifies a single element (or document) node 
n  attribute nodes in source-expression result sequence have to appear before other nodes 

n  before/after cause insertion as a preceding/following sibling of the target 
n  into causes insertion as a child (or children) of the target 
n  order of nodes in source-expression result sequence is preserved 
n  Example: insert a year element after the publisher of the first book  

insert <year>2005</year> after fn:doc("bib.xml")/books/book[1]/publisher 

n  Delete zero or more nodes 
n  Syntax: delete <target-expression> 
n  Example: delete the last author of the first book 

delete fn:doc("bib.xml")/books/book[1]/author[last()] 
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Replace and Rename Expressions 

n  Replacing nodes or values 
n  Syntax: replace [value of] <target-expression> with <new-expression> 
n  can replace a node with a new sequence of nodes 

n  node types must match (e.g., attribute can only be replaced by attribute(s)) 
n  Example: replace publisher of first book with publisher of second book 

replace fn:doc("bib.xml")/books/book[1]/publisher 
with fn:doc("bib.xml")/books/book[2]/publisher 

n  can replace the value of a node using the 'value of' clause 
n  replace attribute value or element content (text node) 
n  Example: increase the price of the first book by 10 percent 

replace value of fn:doc("bib.xml")/books/book[1]/price 
with fn:doc("bib.xml")/books/book[1]/price * 1.1 

n  Rename an XDM node 
n  Syntax: rename <target-expression> as <new-name-expr> 

n  new-name-expr has to return an XML qualified name 

n  Example: rename the first author element of the first book to 'principal-author‘ 
rename fn:doc("bib.xml")/books/book[1]/author[1] as "principal-author" 
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Transform Expression 

n  Creates modified copy of existing nodes 
n  Syntax: transform 

  copy <var> := <expr> {, <var> := <expr>}* 
  modify <updating-expression> 
  return <return-expression> 
n  copy clause binds variable(s) to copied node sequence(s) 
n  modify clause specifies updates to be performed on the copied nodes 
n  return clause defines the result fo the transform expression 

n  updates specified in the update clause have been performed, are visible 

n  Example: return copies of all XML books with their price deleted  
for $b in fn:doc("bib.xml")/books/book[contains(title, "XQuery")] 
return 
 transform 
  copy $xb := $b 
  modify do delete $xb/price 
  return $xb 

n  Transform does not modify any existing nodes, is not an updating expression! 
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Evaluating Multiple Updating Expressions 

n  Compatibility 
n  Within a given snapshot, a node may not be the target of  

n  more than one rename expression 
n  more than one replace expression 
n  more than one replace value of expression 

n  A replace value of $a expression wins over replace expressions of children of $a 

n  Update primitives in the pending update list identify nodes by their id 
n  Well-defined order of performing update primitives 

1.  insertInto, insertAttributes, replaceValue, rename, delete (mark for deletion only!) 
2.  insertBefore, insertAfter, insertIntoAsFirst, insertIntoAsLast 
3.  replaceNode 
4.  replaceElementContent 
5.  delete (remove marked nodes) 
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XQuery - Status 

n  XQuery 1.0 is a w3c recommendation since January 2007 
n  XQuery API for JavaTM (XQJ) is final (JSR) since 2009 
n  XQuery Update Facility 1.0 is a w3c recommendation since March 2011 
n  XQuery 3.0 is in the making (working draft), work items include 

n  value-based and positional grouping  
n  outer join support 
n  windowing 
n  date and numeric value formatting 

n  Additional work 
n  XQuery and XPath Full Text 1.0 (recommendation since March 2011) 

n  adds support for text retrieval in XQuery  

n  XQuery Scripting Extensions 1.0 (working draft)  
n  adds procedural features 

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models 
46 

Summary 

n  Characteristics of XML (from a data modeling perspective) 
n  data/meta-data integration, schema flexibility, heterogeneity, nesting, ordering, … 

n  XQuery provides a powerful initial step towards an XML query language that 
reflect the above characteristics 

n  XQuery Data Model (XDM) 
n  builds on XML tree structure, introduces sequences and atomic values 
n  basis for XQuery processing, supports closure property 

n  Major query language constructs 
n  path expressions 
n  constructors 
n  FLWOR expressions 

n  Problem: lack of an algebraic foundation 


