
Recent Developments for Data Models 1

AG Heterogene Informationssysteme

Prof . Dr.-Ing. Stefan Deßloch

Fachbereich Informatik

Technische Universität Kaiserslautern

Recent Developments for Data Models –
Solution to Exercise 2
Monday, May 21, 2012 – 15:30 to 17:00 – Room 36-336

1) User-defined Ordering

Reconsider the typed table hierarchy introduced by the first exercise sheet. Say, the

following instances appear in the hierarchy tables (some attributes omitted).

Article

pubkey title pdate source_title

4 aaa 2000 bbb

6 aaa 2002 TechReport

Book

pubkey title pdate

2 aaa 2000

5 bbb aaa 2000

TechReport

pubkey title pdate

1 aaa 2002

3 aaa 2002

a. Assume that the following user-defined ordering is specified.

CREATE ORDERING FOR ArticleT EQUALS ONLY BY STATE;

CREATE ORDERING FOR BookT EQUALS ONLY BY STATE;

CREATE ORDERING FOR TechReportT EQUALS ONLY BY STATE;

Perform a pairwise comparison of the tuples! Which tuples are considered to

be equal?

Recent Developments for Data Models 2

Only the tuples with OID 1 and 3 are considered to be equal. Note that the implicitly

generated STATE function compares not only the attribute values but also the most-

specific types.

b. Assume that the following user-defined ordering is specified.

CREATE FUNCTION publicationMap(pub PublicationT)
RETURNS VARCHAR(255)
RETURN pub.title || CAST(YEAR(pub.pdate) AS CHAR(4))

CREATE FUNCTION containedPublMap (pub ContainedPublT)
RETURNS VARCHAR(255)
RETURN pub.source_title || ' ' || pub.title ||
CAST(YEAR(pub.pdate) AS CHAR(4));

CREATE FUNCTION techReportMap (pub TechReportT)
RETURNS VARCHAR(255)
RETURN 'TechReport ' || pub.title ||
CAST(YEAR(pub.pdate) AS CHAR(4));

CREATE ORDERING FOR PublicationT ORDER FULL BY MAP WITH
FUNCTION publicationMap(PublicationT);

CREATE ORDERING FOR ContainedPublT ORDER FULL BY MAP WITH
FUNCTION containedPublMap(ContainedPublT);

CREATE ORDERING FOR TechReportT ORDER FULL BY MAP WITH
FUNCTION techReportMap(TechReportT);

Perform a pairwise comparison of the tuples! Which tuples are considered to

be equal?

The tuples with the following OIDs are considered to be equal: 1 and 3, 1 and 6, 3

and 6, 4 and 5.

c. Specify an ordering function using the RELATIVE ordering category that

mimics the user-defined ordering specified in b) above.

Recent Developments for Data Models 3

CREATE FUNCTION helper(p PublicationT)

RETURNS VARCHAR(255)

BEGIN ATOMIC

 IF p IS OF (TechReportT) THEN

 RETURN 'TechReport' || p..title ||
 CAST(YEAR(p..pdate) AS CHAR(4));

 ELSEIF p IS OF (ContainedPublT) THEN

 RETURN TREAT(p AS ContainedPublT)..source_title || ' ' ||
 p..title || CAST(YEAR(p..pdate) AS CHAR(4));

 ELSE

 RETURN p..title || CAST(YEAR(p..pdate) AS CHAR(4));

 END IF;

END@

CREATE FUNCTION publicationRelative(a PublicationT, b Publica-
tionT)

RETURNS INTEGER

BEGIN ATOMIC

 IF helper(a) < helper(b) THEN RETURN -1;

 ELSEIF helper(a) > helper(b) THEN RETURN 1;

 ELSE RETURN 0;

 END IF;

END@

CREATE ORDERING FOR PublicationT ORDER FULL BY RELATIVE WITH
FUNCTION publicationRelative(PublicationT, PublicationT);

Recent Developments for Data Models 4

2) Object-relational Views

Reconsider the publication database’s schema as introduced by the first exercise

sheet. Create views to provide the following information.

a. Create a (non-typed) view to provide access statistics of publications. Include

the authors’ self-referencing column, the total number of accesses (local and

remote) to papers of the respective author, and the average number of accesses

(local and remote) per paper!

1) Specify the required view definition. Choose authorstats as view

name.

create view authorstats

(author, sumLocal, sumRemote, avgLocal, avgRemote) as (

 select author as author,

 sum (publication->accesscnt.localAccesses) as sumLocal,

 sum (publication->accesscnt.remoteAccesses) as sumRemote,

 avg (publication->accesscnt.localAccesses) as avgLocal,

 avg (publication->accesscnt.remoteAccesses) as avgRemote

 from publauthors

 group by author

);

2) Retrieve the name and access statistics for all authors from the view.

select author->name, sumLocal, sumRemote, avgLocal, avgRemote

from authorstats;

3) Retrieve the name of the author with the greatest number of accesses

(local and remote).

select author->name, sumLocal + sumRemote AS sumTotal

from authorstats

where (sumRemote + sumLocal) = (

 select max (sumRemote + sumLocal) from authorstats

);

Recent Developments for Data Models 5

b. Create a (typed) view hierarchy based on the user-defined structured type

PublicationT and its subtypes (cf. exercise 1) to provide publications that

are available electronically. A publication is assumed to be available electroni-

cally if its URL attribute is neither null nor empty.

Specify the required view definitions for electronically available publications

and books (called EPublication and EBook, respectively)!

create view EPublication of PublicationT

(ref is publkey user generated) as (

 select publkey, title, url, pdate,

 accessCntT(accessCnt.localAccesses,

 accessCnt.remoteAccesses)

 from only(publication)

 where url is not null and url <> ''

);

create view EBook of BookT under EPublication as (

 select publkey, title, url, pdate,

 accessCntT(accessCnt.localAccesses,

 accessCnt.remoteAccesses),

 publisher

 from only(book)

 where url is not null and url <> ''

);

c. Create a restricted (typed) view hierarchy based on the views defined in b) that

does not provide access statistics for publications. Create suitable user-defined

structured types (ResPublicationT and ResBookT)! Then specify the re-

quired view definitions (ResPublication and ResBook)!

create type ResPublicationT as (

 title varchar(150),

 url varchar(150),

 pdate date

)

ref using varchar(20);

Recent Developments for Data Models 6

create type ResBookT under ResPublicationT as (

 publisher ref(PublisherT)

);

create view ResPublication of ResPublicationT

 (ref is publkey user generated) as (

 select CAST (Varchar(publkey) AS REF(ResPublicationT)),

 title, url, pdate

 from only (EPublication)

);

create view ResBook of ResBookT

under ResPublication as (

 select CAST (varchar(publkey) AS REF(ResBookT)),

 title, url, pdate, publisher

 from only (EBook)

);

d. The SQL-Standard does not allow for typed view hierarchies over untyped ta-

bles. What is the reason for this restriction?

Instances of typed views have an identity (an OID) just like instances in typed tables.

Similarly, the uniqueness of OIDs is required in typed view hierarchies. Therefore the

SQL-standard places restrictions on the FROM clause of the view definition. First, only

a single typed table or view may be specified. Second, the ONLY keyword must be used

to prevent tuples from subtables or subviews from being returned.

Recent Developments for Data Models 7

e. Nevertheless, database vendors developed extensions to address these limita-

tions. Consider the following untyped legacy table.

create table legacyPubl (

 publkey integer not null primary key,

 title varchar(150),

 url varchar(150),

 pdate date,

 publisher integer references legacyPublisher(pid),

 first_page integer,

 last_page integer

);

This table shall be exposed in a typed view hierarchy (using DB2 object view

extensions) based on the user-defined types ContainedPublT (as root view),

ArticleT, and BookChapterT. Assume that articles do not have more than

20 pages while book chapters are longer. Specify the required view definitions

(VContainedPubl, VArticle, and VBookChapter)!

create view VContainedPubl of ContainedPublT

mode db2sql

(ref is publkey user generated)

as (

 select CAST (publkey AS REF(ContainedPublT)),

 title, url, pdate, AccessCntT() as accesscnt,

 CAST (NULL as VARCHAR(200)) AS source_title,

 CAST (NULL as VARCHAR(300)) AS source_url,

 first_page, last_page,

 CAST (publisher AS REF(PublisherT))

 from legacyPubl

 where 1 = 0 -- evaluates to FALSE

);

Recent Developments for Data Models 8

create view VArticle of ArticleT

mode db2sql

under VContainedPubl

inherit select privileges

as (

 select CAST (publkey AS REF(ArticleT)),

 title, url, pdate, AccessCntT() as accesscnt,

 CAST (NULL as VARCHAR(200)) AS source_title,

 CAST (NULL as VARCHAR(300)) AS source_url,

 first_page, last_page,

 CAST (publisher AS REF(PublisherT)),

 CAST (NULL as INTEGER) AS volume,

 CAST (NULL as INTEGER) AS number

 from legacyPubl

 where (last_page - first_page + 1) <= 20

);

create view VBookChapter of BookChapterT

mode db2sql

under VContainedPubl

inherit select privileges

as (

 select CAST (publkey AS REF(BookChapterT)),

 title, url, pdate, AccessCntT() as accesscnt,

 CAST (NULL as VARCHAR(200)) AS source_title,

 CAST (NULL as VARCHAR(300)) AS source_url,

 first_page, last_page,

 CAST (publisher AS REF(PublisherT)),

 CAST (NULL as VARCHAR(15)) AS chapter

 from legacyPubl

 where (last_page - first_page + 1) > 20

);

Recent Developments for Data Models 9

f. The DB2 database manager cannot always decide whether OIDs are distinct

for each view in a hierarchy. Why not? Is it possible to define typed view hier-

archies even in such situations?

When a view is defined, local uniqueness of object id is ensured by verifying that the

view body mentions only one table (or view) in its from clause and selects as the

view’s object id a unique key (possibly with a type cast) of that table. Global unique-

ness across a hierarchy is checked through a conservative static analyses of the pred-

icates in the user’s view definitions each time a create view statement is issued.

(Michael Carey, Serge Rielau, Bennet Vance: Object View Hierarchies in DB2 UDB,

EDBT, 2000, 478-492)

The UNCHECKED option defines the object identifier column of the typed view defi-

nition to assume uniqueness even though the system cannot prove this uniqueness.

This is intended for use with tables or views that are being defined into a typed view

hierarchy where the user knows that the data conforms to this uniqueness rule but it

does not comply with the rules that allow the system to prove uniqueness. UN-

CHECKED option is mandatory for view hierarchies that range over multiple hierar-

chies or legacy tables or views By specifying UNCHECKED, the user takes responsi-

bility for ensuring that each row of the view has a unique OID. If the user fails to en-

sure this property, and a view contains duplicate OID values, then a path-expression

or DEREF operator involving one of the non-unique OID values may result in an er-

ror.

(IBM DB2 Database for Linux, UNIX, and Windows Information Center)

Recent Developments for Data Models 10

3) Composite Types and Collection Types

Consider the following table definition.

create table publication (

 title varchar(150),

 year char(4),

 author ROW(name varchar(35), firstname varchar(25))

 ARRAY[10],

 keyword varchar(50) MULTISET

);

Specify SQL queries to retrieve the following information.

a. All publications (title, year) where Jim Melton appears as first author.

select title, year

from publications

where author[1].name = 'Melton' and

 author[1].firstname = 'Jim'

b. Triples of publications (title), the authors (name), and the authors’ positions.

select p.title, a.name, a.position

from publication as p, UNNEST(p.author)

 WITH ORDINALITY AS a (name, firstname, position)

c. All keywords together with the associated publications (as MULTISET).

select k.topic, COLLECT(p.title)

from publication p, UNNEST(p.keyword) AS k (topic)

group by k.topic

d. All publications with XQuery as a keyword.

select title

from publication

where 'XQuery' MEMBER OF keyword

Recent Developments for Data Models 11

e. All publications (title) with more than two keywords.

select title

from publication

where CARDINALITY(keyword) > 2

f. All publications (title) with duplicate keywords.

select title

from publication

where NOT keyword IS A SET

g. All distinct keywords used in 2008.

select DISTINCT k.topic

from publication p, UNNEST(p.keyword) AS k (topic)

where p.year = '2008'

select SET(FUSION(keyword))

from publication

where p.year = '2008'

h. All keywords and the number of times they have been used.

select k.topic, count(*) as number

from publication p, UNNEST(p.keyword) AS k (topic)

group by k.topic

i. Keywords used by all publications of Jim Melton.

select INTERSECTION(keyword)

from publication

where ROW('Melton', 'JIM') MEMBER CAST (author)
 AS ROW(name varchar(35), firstname varchar(25)) MULTISET

j. Pairs of publications (title) of the same authors.

select a.title, b.title

from publication a, publication b

where a.author = b.author

Recent Developments for Data Models 12

k. Authors with their publications (as ARRAY) ordered by publication date.

select a.name, a.firstname, ARRAY(

 select p2.title

 from publication p2

 UNNEST (p2.author) AS a2 (name, firstname)

 where a.name = a2.name AND a.firstname = a2.firstname

 order by p2.year desc) as publication

from publication p UNNEST (p.author) AS a (name, firstname)

l. Publications (title) that have no other keywords than Understanding SQL and

Java Together

select p1.title

from publications p1, publications p2

where p2.title = 'Understanding SQL and Java Together' and

 p1.keyword SUBMULTISET p2.keyword

m. Keywords that have not been used before 2004.

select DISTINCT topic

from publications p UNNEST(p.keyword) AS k (topic)

where date >= 2004

EXCEPT

select DISTINCT topic

from publications p UNNEST(p.keyword) AS k (topic)

where date < 2004

n. All authors and the keywords they used (as MULTISET).

select a.name, a.firstname, COLLECT(k.topic) as keyword

from publication p, UNNEST(p.author) AS a (name, firstname),

 UNNEST(p.keyword) AS k (topic)

group by a.name, a.firstname

Recent Developments for Data Models 13

o. Insert a publication named "Understanding SQL and Java Together" by Jim

Melton and Andrew Eisenberg published in 2000 with the keywords "SQLJ"

and "JDBC".

insert into publication values

('Understanding SQL and Java Together', '2000',

 ARRAY[ROW('Melton', 'Jim'), ROW('Eisenberg', 'Andrew')],

 MULTISET['SQLJ', 'JDBC']);

