
Recent Developments for Data Models 1

AG Heterogene Informationssysteme

Prof . Dr.-Ing. Stefan Deßloch

Fachbereich Informatik

Technische Universität Kaiserslautern

Recent Developments for Data Models –
Solution to Exercise 3
Monday, June 4, 2012 – 15:30 to 17:00 – Room 36-336

1) SQL-invoked Routines Characteristics

SQL-invoked routines fall into three principle classes: procedures, functions and

methods. Fill in the following table to summarize the more important differences!

 Procedures Functions Methods

Routine

invocation

CALL statement Functional notation Dot notation

Associated

with specif-

ic type?

No No Yes

Schema of

residence

Any schema Any schema Schema of associated

user-defined type

Routine

resolution

Fully resolved at

compile time.

Fully resolved at

compile time.

Compilations resolves

to set of candidate

methods; final resolu-

tion at runtime.

Input

parameters?

Yes

Yes Yes; additional implicit

subject parameter (in-

stance of the associated

user-defined structured

type)

Output

parameters?

Yes. Result can also

be returned in dy-

namic result sets.

Only as return value

of function.

Only as return value of

method.

Recent Developments for Data Models 2

2) SQL-invoked Routines

Reconsider the user-defined structured type hierarchy introduced by the first exercise

sheet. Specify SQL-invoked routines for the following purposes.

a. A user-defined constructor method for the type PublicationT that takes the

title, the URL, and the publication date as input parameters.

ALTER TYPE PublicationT
ADD CONSTRUCTOR METHOD PublicationT(title varchar(150),
 url varchar(150), pdate date)
RETURNS PublicationT

CREATE CONSTRUCTOR METHOD PublicationT(title varchar(150),
 url varchar(150), pdate date)
RETURNS PublicationT
FOR PublicationT
BEGIN
 SET self.title = title;
 SET self.url = url;
 SET self.pdate = pdate;
 RETURN self;
END

b. A method called citeStr for the type PublicationT that returns a character

string of the following format: <title>, <year of publication>

ALTER TYPE PublicationT
ADD METHOD citeStr() RETURNS varchar(255);

CREATE METHOD citeStr()
RETURNS varchar(255)
FOR publicationT
RETURN self.title || ', ' ||
 CAST(year(self.pdate) AS CHAR(4));

Recent Developments for Data Models 3

c. A method called citeStr for the type ContainedPublT that overrides the

method of its supertype and returns a character string of the following format:

<title>, <first_page> - <last_page>, <year of publication>

ALTER TYPE ContainedPublT
ADD OVERRIDING METHOD citeStr() RETURNS varchar(255);

CREATE METHOD citeStr()
RETURNS varchar(255)
FOR ContainedPublT
RETURN self.title || ', ' ||
 TRIM(CHAR(self.first_page)) || ' - ' ||
 TRIM(CHAR(self.last_page)) || ', ' ||
 CAST(year(self.pdate) AS CHAR(4));

d. A function called citeStr that takes a parameter of the type PublicationT

and returns a character string of the format described in b.

CREATE FUNCTION citeStr(publication publicationT)
RETURNS varchar(255)
RETURN publication.title || ', ' ||
 CAST(year(publication.pdate) AS CHAR(4));

e. A function called citeStr that takes a parameter of the type Contained-
PublT and returns a character string of the format described in c.

CREATE FUNCTION citeStr(publication ContainedPublT)
RETURNS varchar(255)
RETURN publication.title || ', ' ||
 TRIM(CHAR(publication.first_page)) || ' - ' ||
 TRIM(CHAR(publication.last_page)) || ', ' ||
 CAST(year(publication.pdate) AS CHAR(4));

f. A function called publishedBetween that takes two Date parameters and re-

turns those publications that have been published in the indicated time range.

CREATE FUNCTION publishedBetween(start date, end date)
RETURNS TABLE(publkey REF(PublicationT), title varchar(150),
 url varchar(150), pdate date)

RETURN SELECT publkey, title, url, pdate
 FROM Publication
 WHERE pdate >= start AND pdate <= end;

Recent Developments for Data Models 4

g. A procedure called addAuthor to add an author to a publication. The proce-

dure shall take takes three input parameters of type AuthorT, PublicationT,

and Integer to indicate the position of the author in the list.

CREATE PROCEDURE addAuthor(IN newAuid integer, IN newPublKey
 varchar(20), IN newPosition integer)
MODIFIES SQL DATA
LANGUAGE SQL
BEGIN

 UPDATE publauthors SET position = position + 1
 WHERE publication = PublicationT(newPublKey)
 AND position >= newPosition;

 INSERT INTO publauthors
 VALUES (PublicationT(newPublKey), AuthorT(newAuid),
 newPosition);

END;

h. A procedure called publAuthorsKeywords that takes a publication key as

parameter and returns the associated authors and keywords (in two result sets).

CREATE PROCEDURE publAuthorsKeywords(IN lkey varchar(20))
DYNAMIC RESULT SETS 2
LANGUAGE SQL
READS SQL DATA
BEGIN ATOMIC

 DECLARE acurs CURSOR WITH RETURN TO CLIENT FOR
 SELECT author->name, author->firstName
 FROM publauthors
 WHERE publication = PublicationT(lkey)
 ORDER BY position;

 DECLARE kcurs CURSOR WITH RETURN TO CLIENT FOR
 SELECT DISTINCT keyw->topic
 FROM publkeywords
 WHERE publication = PublicationT(lkey);

 OPEN acurs;

 OPEN kcurs;

END

Recent Developments for Data Models 5

3) Subject Routine Determination

Function overloading allows creating multiple functions with equal names. After a

function invocation, the database manager must decide which of the equally named

functions “fits best”. This function is referred to as subject function.

Assume that the function func is invoked with three parameters of the types Arti-
cleT, INTEGER, and CHAR(50). Further assume that the current session PATH is set

to 'A, B' and that execute privileges are granted for all functions.

a. Consider the following function signatures.

1 FUNCTION A.foo (ArticleT, SMALLINT, CHAR(50))

2 FUNCTION A.func(BookT, INTEGER, VARCHAR(50))

3 FUNCTION A.func(PublicationT, REAL, INTEGER)

4 FUNCTION C.func(ArticleT, INTEGER, CHAR(50))

5 FUNCTION B.func(ContainedPublT, INTEGER)

6 FUNCTION A.func(ArticleT, DECIMAL(5, 2), VARCHAR(50))

7 FUNCTION A.func(ContainedPublT, INTEGER, CHAR(50))

8 FUNCTION B.func(ArticleT, DECIMAL(5,2), DATE)

9 FUNCTION B.func(PublicationT, INTEGER, CHAR(50))

10 FUNCTION B.func(ArticleT, DOUBLE, CLOB)

Which steps are performed to determine the subject function? Which functions

are eliminated in each of these steps? Which function is eventually determined

to be the subject function?

In the first step functions 1, 4, and 5 are eliminated. Function 1 is not named func,

function 4 is neither in schema A nor B, and function 5 has not the required num-

ber of parameters.

In the second step functions 2, 3, and 8 are eliminated. The type of the first pa-

rameter of function 2 (BookT) is not in the type precedence list of ArticleT. The

type of the third parameter of function 3 (INTEGER) is not in the type precedence

list of CHAR. The type of the third parameter of function 8 (DATE) is not in the type

precedence list of CHAR.

In the third step the types of the parameters of the remaining functions are exam-

ined left-to-right. Looking at the first parameter, functions 7 and 9 are eliminated,

because ContainedPublT and PublicationT appear later in the type prece-

dence list of ArticleT than ArticleT itself. The remaining functions are thus 6

and 10. Looking at the second parameter, function 10 is eliminated, because DOU-
BLE appears later in the type precedence list of INTEGER than DECIMAL. At this

point only function 6 remains and is thus selected as the subject function.

Recent Developments for Data Models 6

b. Consider the following function signatures.

1 FUNCTION A.func(AuthorT, REAL, CHAR(50))

2 FUNCTION A.func(ArticleT, DECIMAL(5, 2), CHAR(50))

3 FUNCTION B.func(ArticleT, FLOAT, VARCHAR(50))

4 FUNCTION A.func(ArticleT, INTEGER, VARCHAR(50))

5 FUNCTION A.func(TechReportT, INTEGER)

6 FUNCTION B.func(ArticleT, INTEGER, CLOB)

7 FUNCTION B.func(ArticleT, SMALLINT, CHAR(50))

8 FUNCTION A.func(ContainedPublT, INTEGER, INTEGER)

9 FUNCTION B.func(ArticleT, INTEGER, VARCHAR(50))

10 FUNCTION A.func(PublicationT, INTEGER, CHAR(50))

Which function is determined to be the subject function?

In the first step function 5 is eliminated, because it does not have the required

number of parameters.

In the second step functions 1,7 and 8 are eliminated. The type of the first param-

eter of function 1 (AuthorT) is not in the type precedence list of ArticleT. The

type of the second parameter of function 7 (SMALLINT) is not in the type prece-

dence list of INTEGER. The type of the third parameter of function 8 (INTEGER) is

not in the type precedence list of CHAR.

 In the third step the types of the parameters of the remaining functions are exam-

ined left-to-right. Looking at the first parameter, functions 10 is eliminated, be-

cause PublicationT appears later in the type precedence list of ArticleT than

ArticleT itself. Looking at the second parameter, functions 2 and 3 are elimi-

nated, because DECIMAL and FLOAT appear later in the type precedence list of

INTEGER than INTEGER itself. Looking at the third parameter, functions 6 is

eliminated, because CLOB appears later in the type precedence list of CHAR than

VARCHAR. At this point the functions 4 and 9 remain. Because schema A appears

first in the current path, function 4 is selected as the subject function.

c. What are the major differences between subject function resolution and subject

method resolution?

Subject function resolution and subject method resolution are preformed in a simi-

lar way with one important exception. If multiple methods qualify as subject meth-

ods, the current path is NOT considered to make a final choice. In fact, the deci-

sion which method is to be invoked is made at runtime based on the most-specific

type of the instance value.

Recent Developments for Data Models 7

4) External SQL-invoked Routines

SQL-invoked routines can either be written in SQL or in any of several general-

purpose programming languages, such as C or Java. These routines are referred to as

external routines. Discuss the advantages and drawbacks of external routines as com-

pared to SQL routines!

Advantages:

 You may already own routines written in a host language that were created for

a different purpose.

 External routines may perform computationally intensive tasks more efficient-

ly than SQL routines.

 External routines provide the ability to invoke identical program code within

the database and in other parts of your application.

 External routines are usually able to access services provided by the underly-

ing operating system.

Disadvantages:

 Moving data between an external routine and the database system involves the

well-known impedance mismatch with regard to both, data types and set-

orientation versus single-datum orientation.

 Creation of new SQL sessions for the execution of external routines that con-

tain SQL code may be expensive (context switching overhead).

5) SQLJ-1

SQLJ-1 allows for the implementation of external routines using the Java Program-

ming language. The Java application may read and modify database data system using

JDBC or SQLJ.

Create a java class containing a method that takes a publication key as input parame-

ter and returns the number of keywords assigned to the publication! What steps are

required to create an external function based on this method using DB2?

Recent Developments for Data Models 8

1. Create a Java class that contains the required method. Note that a JDBC connec-

tion to the database is obtained using the URL jdbc:default:connection.

package extJavaFunc;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

public class myFunctions {

 public static int keywCnt(String keyword) throws SQLException {

 Connection connection = null;

 int cnt = 0;

 String url = "jdbc:default:connection";

 connection = DriverManager.getConnection(url);

 String query = "select count (*) " +

 "from publkeywords " +

 "where publication = PublicationT(?)";

 PreparedStatement preparedStatement = connection

 .prepareStatement(query);

 preparedStatement.setString(1, keyword);

 ResultSet resultSet = preparedStatement.executeQuery();

 if (resultSet.next()) {

 cnt = resultSet.getInt(1);

 }

 resultSet.close();

 preparedStatement.close();

 return cnt;

 }

}

2. Compile the Java class and generate a JAR archive.

jar cf extJavaFunc.jar extJavaFunc\myFunctions.class

3. Install the JAR file to the database server using a system-defined routine.

call sqlj.install_jar('file:///.../extJavaFunc.jar', 'extJava-
FuncJAR');

4. Create an external function based on the Java method.

create function javaKeywCnt(keyword varchar(25))
returns integer
reads sql data
external name 'extJavaFuncJAR:extJavaFunc.myFunctions!keywCnt'
language java
parameter style java;

Recent Developments for Data Models 9

6) User-defined Transforms

Transform functions are used to exchange structured type values with host language

programs and with external functions and methods. Pairs of such transform functions

are called transform groups; the so called TO SQL function is invoked when transfer-

ring a structured type instance from the host language side of the interface to the SQL

side, and the other, called FROM SQL function, is used for transferring from the SQL

side to the host language side.

Reconsider the AccessCntT structured type introduced by the first exercise sheet.

Define a pair of user-defined functions to convert instances of this type to a string rep-

resentation (simply separate the two integer values by a comma) and vice versa! Fur-

thermore, create a transform group using these functions!

create function accessCntToStr (a AccessCntT)
returns VARCHAR(20)
language sql
return trim(char(a.localAccesses)) || ', ' ||
 trim(char(a.remoteAccesses));

create function strToAccessCnt (a Varchar(20))
returns AccessCntT
language sql
return accessCntT(integer(substr(a, 1, locate(',', a)-1)),
 integer(substr(a, locate(',', a)+1)));

CREATE TRANSFORM FOR AccessCntT
DB2_PROGRAM(
 TO SQL WITH FUNCTION strToAccessCnt,
 FROM SQL WITH FUNCTION accessCntToStr
);

Note that DB2_PROGRAM is DB2’s default transform group.

