
Recent Developments for Data Models 1

AG Heterogene Informationssysteme

Prof . Dr.-Ing. Stefan Deßloch

Fachbereich Informatik

Technische Universität Kaiserslautern

Recent Developments for Data Models –
Solution to Exercise 4
Monday, June 18, 2012 – 15:30 to 17:00 – Room 36-336

1) Multi-dimensional Modeling

Multi-dimensional schemas are typically used for data warehousing. The design goals

are query performance, user understandability (through simplicity), and resilience to

changes.

Consider the following scenario: An online bookstore company wants to build a data

warehouse to better understand its sales. Each book has a unique identifier and a title.

Books are further classified into genres. The price on which books are purchased by

the company is known as cost price. The price on which books are sold to customers

is known as sales price. The difference between cost price and sales price is known as

gross profit. The gross margin can be calculated by dividing the gross profit by the

sales price.

Customers need to register before they can place orders. During registration custom-

ers have to enter their name, email address, age, city, state, and country. Each custom-

er is assigned a unique identifier (customer key).

Orders may contain multiple order lines. Each order line refers to one or more copies

of the same book. Each order is assigned a unique identifier (order key), order lines

are numbered consecutively. For analyzing the sales it is important to understand

when an order was placed, i.e. at what year, quarter, month, day of month, week of

year, day of week, and whether the day was a holiday.

a. Design a star schema that captures the information to be analyzed described in

the scenario above!

A star schema is made up from fact tables and dimension tables. A fact table is the

primary table in a dimensional model where the numerical performance measure-

ments of the business are stored. A row in a fact table corresponds to a measurement.

A measurement is a row in a fact table. The most useful facts are numeric and addi-

tive, such as dollar sales amount. We often describe facts as continuously valued

mainly as a guide for the designer to help sort out what is a fact versus a dimension

attribute. The dollar sales amount fact is continuously valued because it can take on

virtually any value within a broad range.

Dimension tables are integral companions to a fact table. The dimension tables con-

tain the textual descriptors of the business. Each dimension table is defined by its sin-

Recent Developments for Data Models 2

gle primary key, which serves as the basis for referential integrity with any given fact

table to which it is joined.

Dimension attributes serve as the primary source of query constraints, groupings, and

report labels. For example, when a user states that he or she wants to see dollar sales

by week and by brand, week and brand must be available as dimension attributes.

Sometimes when we are designing a database it is unclear whether a numeric data

field extracted from a production data source is a fact or dimension attribute. We of-

ten can make the decision by asking whether the field is a measurement that takes on

lots of values and participates in calculations (making it a fact) or is a discretely val-

ued description that is more or less constant and participates in constraints (making it

a dimensional attribute).

(Ralph Kimball, Margy Ross: The Data Warehouse Toolkit, Wiley, 2002)

In the above scenario the numeric attributes are customer age, order line quantity,

cost price, sales price, gross profit, gross margin, year, quarter, month, day of month,

and week of month. Customer age, year, quarter, month, day of month, and week of

month are more likely to participate in constraints than in calculations and should

thus appear in dimension tables. Percentages and rations, such as gross margin, are

non-additive. The numerator and denominator should be stored in the fact table. The

ratio can be calculated in a data access tool by calculating the ratio of the sums (not

the sums of the ratios!).

All non-fact attributes must appear in the dimension tables. Given the above scenario,

it is natural to have a customer, product, and date dimension. Note that cost price and

sales price are not part of the product dimension. These attributes are rather

measures than descriptive attributes. Furthermore, the prices are likely to change fre-

quently. While it is possible to introduce changes to dimensions it is more complex.

Customer_dim

PK customer_key

 name

 email

 age

 city

 state

 country

Date_dim

PK date_key

 year

 quarter

 month

 day_of_month

 week_of_year

 day_of_week

 holiday
Product_dim

PK product_key

 title

 genre

Sales_facts

FK3 product_key

FK2 customer_key

FK1 date_key

 order_key

 line_number

 quantity

 cost_price

 sales_price

 gross_profit

Figure 1: Star schema

Recent Developments for Data Models 3

b. What are the differences between a star schema and a schema in third-normal-

form? What are the differences between a star schema and a snowflake sche-

ma? What are the advantages and drawbacks of either approach?

Dimensional modeling is quite different from third-normal-form (3NF) modeling. 3NF

modeling is a design technique that seeks to remove data redundancies. Data is divid-

ed into many discrete entities, each of which becomes a table in the relational data-

base.

Normalized modeling is immensely helpful to operational processing performance

because an update or insert transaction only needs to touch the database in one place.

Normalized models, however, are too complicated for data warehouse queries. Rela-

tional database management systems can’t query a normalized model efficiently; the

complexity overwhelms the database optimizer. The use of normalized modeling in the

data warehouse presentation area defeats the whole purpose of data warehousing,

namely, intuitive and high-performance retrieval of data.

(Ralph Kimball, Margy Ross: The Data Warehouse Toolkit, Wiley, 2002)

Dimension table normalization typically is referred to as snowflaking. Redundant at-

tributes are removed from the flat, denormalized dimension table and placed in nor-

malized secondary dimension tables.

(Ralph Kimball, Margy Ross: The Data Warehouse Toolkit, Wiley, 2002)

Snowflaking prevents update anomalies caused by denormalized models. However,

queries may require more joins to be evaluated and query processing may therefore

be less efficient.

2) Data Analysis in SQL

In SQL:1999 the GROUP BY clause was extended for improved data analysis. These

extensions, invoked with the keywords CUBE, ROLLUP, and GROUPING SETS,

provide multi-dimensional summaries for grouped data.

a. Reconsider the star schema designed in 1). Specify SQL queries to retrieve the

following information. (Assume that a view named sales has been defined

that joins the fact table and the dimension tables of the star schema).

1) The revenue (sum of sales price) of book sales per genre and year.

select genre, year, sum(sales_price) as revenue

from sales

group by genre, year;

2) The revenue of book sales per genre and per year with subtotals for

each year and the grand total.

select genre, year, sum(sales_price) as revenue

from sales

group by ROLLUP (year, genre)

Recent Developments for Data Models 4

3) The revenue per city, state, and country with subtotals for each state

and country, subtotals for each country, and the grand total.

select city, state, country, sum(sales_price) as revenue

from sales

group by ROLLUP(country, state, city);

4) The revenue per city, state, and country with subtotals for each state

and country, and subtotals for each country.

select city, state, country, sum(sales_price) as revenue

from sales

group by GROUPING SETS((country, state, city),

 (country, state), (country));

5) The average order total per calendar month, the average order total per

calendar year, the average order total per month and year, and the

overall average order total.

select year, month, avg(order_total) as avg_order_total

from (

 select year, month, sum(sales_price) as order_total

 from sales

 group by year, month, order_key) as order_total

group by CUBE(year, month);

6) The revenue of book sales in 2009 per genre and per state and country

(in combination) with subtotals for each genre and the grand total.

select genre, state, country, sum(sales_price) as revenue

from sales

where year = 2009

group by ROLLUP(genre, (state, country));

7) The revenue of book sales in each country per year, per quarter, per

year and quarter, and the grand total.

select country, year, quarter, sum(sales_price) as revenue

from sales

group by country, CUBE(year, quarter);

Recent Developments for Data Models 5

8) The gross margin of book sales by genre and year and the grand total.

select genre, year,
 sum(gross_profit) / sum(sales_price) as gross_margin

from sales

group by GROUPING SETS((genre, year), ());

b. Rewrite the following queries using alternative grouping features.

1) Use ordinary grouping to rephrase the following query.

select genre, year, sum(sales_price) as revenue

from sales

group by ROLLUP (year, genre)

select genre, year, sum(sales_price) as revenue

from sales

group by genre, year

union

select CAST(NULL AS VARCHAR(50)) as genre, year,
 sum(sales_price) as revenue

from sales

group by year

union

select CAST(NULL AS VARCHAR(50)) as genre,
 CAST(NULL AS INTEGER) as year,
 sum(sales_price) as revenue

from sales;

2) Use GROUPING SETS to rephrase the following query.

select month, day_of_month,
 avg(order_total) as avg_order_total

from (

 select month, day_of_month,
 sum(sales_price) as order_total

 from sales

 group by month, day_of_month, order_key)

group by CUBE(month, day_of_month);

Recent Developments for Data Models 6

select month, day_of_month,
 avg(order_total) as avg_order_total

from (

 select month, day_of_month,
 sum(sales_price) as order_total

 from sales

 group by month, day_of_month, order_key)

group by GROUPING SETS((month, day_of_month), (month),
 (day_of_month), ());

3) Use GROUPING SETS to rephrase the following query.

select year, quarter, month, sum(gross_profit)

from sales

group by year, ROLLUP(quarter, month);

select year, quarter, month, sum(gross_profit)

from sales

group by GROUPING SETS((year, quarter, month),
 (year, quarter), (year));

4) Use GROUPING SETS to rephrase the following query.

select genre, country, state, avg(quantity)

from sales

group by GROUPING SETS(ROLLUP(genre),
ROLLUP(country, state));

select genre, country, state, avg(quantity)

from sales

group by GROUPING SETS((genre), (), (country, state),
 (country), ());

3) Window Functions in SQL

The most fundamental enhancement that SQL/OLAP adds to the SQL language is the

notion of windows – a user-defined selection of rows within a query that determines

the set of rows used to perform certain calculations.

Recent Developments for Data Models 7

Reconsider the star schema designed in 1). Specify SQL queries to retrieve the fol-

lowing information. (Again, assume that a view named sales has been defined that

joins the fact table and the dimension tables of the star schema).

a. The total amount of each order in 2009 together with the moving average over

the last three orders of the respective customer.

select order_key, sum(sales_price) as order_total,
 avg (sum(sales_price)) over (PARTITION BY customer_key
 ORDER BY month, day_of_month ROWS 2 PRECEDING)
 as moving_avg

from sales

where year = 2009

group by month, day_of_month, order_key, customer_key;

b. The total amount of each order in 2009 together with the moving average over

orders placed in the last three month by the respective customer.

select order_key, sum(sales_price) as order_total, month,
 avg (sum(sales_price)) over (PARTITION BY customer_key
 ORDER BY month RANGE 2 PRECEDING)
 as moving_avg_order_total

from sales

where year = 2009

group by month, order_key, customer_key;

c. The monthly sales and the cumulative sales for each genre in 2009 ordered by

genre and month.

select genre, month, sum(sales_price) as genre_total,
 sum (sum(sales_price)) over (PARTITION BY genre
 ORDER BY month ROWS UNBOUNDED PRECEDING)
 as cumulative_total

from sales

where year = 2009

group by genre, month

order by genre, month;

d. The actual sales in each state together with the average sales in that state in the

previous three month.

select state, month, year, sum(sales_price) as state_total,
 avg (sum(sales_price)) OVER (PARTITION BY state
 ORDER BY month ROWS BETWEEN 4 PRECEDING AND 1 PRECEDING)
 as three_month_avg

Recent Developments for Data Models 8

from sales

group by state, year, month

order by state, year, month;

e. A ranking of the bestselling books in 2009.

select title, sum(quantity) as total_quantity,
 RANK() OVER (ORDER BY sum(quantity) DESC) as rank,
 DENSE_RANK() OVER (ORDER BY sum(quantity) DESC)
 as dense_rank,
 ROW_NUMBER() OVER (ORDER BY sum(quantity) DESC)
 as row_number

from sales

where year = 2009

group by title;

f. A ranking of the most valuable customers (highest order totals) in the last

quarter of 2009 per country and per state.

select name, country, state,
 sum(sales_price) as quarter_total,

 RANK() OVER (PARTITION BY country, state
 ORDER BY sum(sales_price) DESC) as state_rank,

 RANK() OVER (PARTITION BY country
 ORDER BY sum(sales_price) DESC) as country_rank

from sales

where year = 2009 and quarter = 4

group by country, state, name;

g. The monthly order totals together with the cumulative order totals of custom-

ers from "Texas" in 2009.

select name, month, sum(sales_price) as month_total,
 sum(sum(sales_price)) OVER (PARTITION BY name
 ORDER BY month ROWS UNBOUNDED PRECEDING)
 as cumulative_total

from sales

where year = 2009 and state = 'Texas'

group by name, month;

Recent Developments for Data Models 9

h. The percentage contribution of cities to the total sales of the respective coun-

tries.

select distinct city,
 sum(sales_price) over (partition by city) /
 sum(sales_price) over (partition by country) * 100

from sales

order by city;

