7/10/13

= SCkm UNIVERSITAT
I m TeCHNISCHE UNIVERSITAT mw”u DES
m KAISERSLAUTERN (1] SAARLANDES

Distributed Data Management
Summer Semester 2013
TU Kaiserslautern

Dr.-Ing. Sebastian Michel

smichel@mmci.uni-saarland.de

Lecture 10
DISTRIBUTED DATA STREAM
PROCESSING / SENSOR NETWORKS

s. Michel

Recap Data Stream Management

* Previous lecture: generic concepts of sliding
windows and continuous queries; semantics of
continuous query language (CQL) for data
stream processing

Sample Query:

SELECT F.clerk, max(O.cost)
FROM orders O,
fulfillments F [PARTITION BY clerk ROW 5] 10% SAMPLE
WHERE O.orderlD = F.orderID
GROUP BY F.clerk

Content of Today’s Lecture (Cont’d)

* Implementation/query processing concepts

e Distributed DSMS with emphasis on recent
systems like Twitter Storm or Yahoo S4 that
aim at fault tolerant large-scale processing

* Sensor networks. Particularly, managing
sensor data using sensor data middleware.

S. Michel

Query Processing
* Many problems to be addressed resemble
conceptually the same issues that arise in
traditional RDBMS
* Goals of DSMS as different in many aspects,
though.
— Continuous queries
— Push-based data model
— Aim at real-time processing
— Need for memory efficient algorithms
— Handle overload to guarantee real-time processing;
load shedding
— Sharing of intermediate results (multi query
optimization)

Implementation and Processing

* Query is compiled into query execution plan
(similar to what is known from RDBMS
lectures)

* Recall differences from DBMS and DSMS; data
is actively streaming in.

* What does this imply for the implementation?

S. Michel

Push vs. Pull

* Two fundamentally different ways operators
(nodes in a query plan) interact

* Pull: Consuming
operator actively
retrieves results of
producer.

e Push: Producer push
results to consumer.

7/10/13

Pull

* We all know that from DBMS (think JDBC or
operator trees) or Java Iterators

ResultSet rset = Statement.executeQuery(“Select * from”);
while (rset.next()) {
rset.getinteger(1);

} | plate, lastname

plate LIKE ‘KL-%"
SELECT c.plate, p.lastname |

FROM people p JOIN cars c ON p.id=c.owner —>
WHERE c.plate LIKE ‘KL-%’ /e id=right.owner

“OPEN, NEXT, CLOSE” SCAN
people Aars
ment, SoSe 2013, 5. Michel

Push

* Steam processing is by design mainly data-
driven

* Operators register at other operators

* When new tuples are generated, they are
actively pushed to registered operator

* Creating a directed acyclic graph (DAG), e.g.,
called topology in later system

tributed Data Management, SoSe 2013, S. Miche

STREAM: Simple Query Plan

Q,
- /
-
-

1
-
N

/°*P
—Ii /

Stream;

— i

Stream; Stream,

Slide courtesy ofjehr‘uferWldoﬁ et S 205 el 8

Query Plans in STREAM

* Operators \
— do the actual processing; T

— e.g., join, selection, window, ... o

* Queues ™~

— connect operators

perators
1

* Synopses .

— store operator states. For ~ BEEON--- °

instance, the hash table of a
hash-based join

Queues

* A queue connects a tuple producing
operator O, and its consuming
operator O

* Conceptually FIFO buffer

* Elements inserted and retrieved in
timestamp order

e—’ [[[[]} —'@

* Shared Queues: multiple consumers
for one producer possible

gement, SoSe 2013, 5. Michel

Operator Decoupling

* Queues allow decoupling of operators
* Consumers read from queue
* Producers write to queue

7/10/13

Distributed DSMS

* Conceptually distributed data stream
management systems behave/look like
centralized ones

* STREAM (seen before)
* Borealis (Brandeis U, Brown U, MIT)
* Global Sensor Networks (EPFL)

Abadi et al. : The Design of the Borealis Stream Processing Engine. CIDR 2005: 277-289

Karl Aberer et al.: Infrastructure for Data Processin
Networks. MDM 2007: 198-205 pctributed Data v

ale Interconnected Sensor
t, SoSe 2013, 5. Michel

Distributed DSMS (Cont’d)

* In spirit of the beginning of the lecture on
MapReduce / NoSQL, we look at very recent
distributed DSMS for big data (stream)
processing
—Yahoo! S4 (now Apache)

— Twitter Storm

* Many concepts are also generic. Conceptually,

e.g., the operator interfaces and topologies.

(Generic) Aims

* Guaranteed data processing

* Fault tolerance

* Horizontal scalability

* Enable high-level programming

* Sounds like MapReduce/Hadoop? Well ...

fanagement, SoSe 2013, 5. Michel

Twitter Storm

* Sometimes referred to as “the realtime

Hadoop”

Fault tolerant, distributed stream processing

system. Developed by N. Marz (now Twitter)

in 2011

* Widely used by companies

* Data stream operators are (can) be put on
different nodes; replicated operators of same
kind for scalability.

stributed Data Management, SoSe 2013, S. Miche 17

Storm Cluster Setup
* Using Apache Zookeeper for coordination

* Supervisor: worker nodes (like Hadoop task
tracker)

* Nimbus: coordinator node (like Hadoop job

tracker) -

Zookeeper

Nimbus
Supervisor
Jistributed Data Management, SoSe 2013, 5. Michel

7/10/13

Zookeeper: Setup + Data Model, 2
* “enables highly reliable distributed
coordination” L

Zookeeper Service et

‘ Server ‘ ‘ Server ‘ ‘ Server ‘ ‘ Server ‘ ‘ Server |

‘ Client ‘ ‘ Client ‘ ‘ Client ‘ ‘ Client ‘ ‘ Client ‘ ‘ Client ‘ ‘ Client ‘

* Hierarchical data model, simple API:
create, delete, exists, get data, set i
data, get children, sync .

¢ Used to implement higher level
applications

lappilp_1 lappiip2 lappllp_3

Distributed Data Management, Sose 2013, 5. Miche
http://zookeeper.apache.org/doc/trunk/zookeeperOver.html

Zookeeper Guarantees

Sequential Consistency: Updates from a client will
be applied in the order that they were sent.

Atomicity: Updates either succeed or fail.

Single System Image: A client will see the same
view of the service regardless of the server that it
connects to.

Reliability: Once an update has been applied, it
will persist from that time forward until a client
overwrites the update.

Timeliness: The clients view of the system is
guaranteed to be up-to-date within a certain time
bound.

ment, SoSe 2013, S. Michel

Storm and Zookeeper

* Storms use Zookeeper for
— Discovery of nodes
— Storing state of nimbus and supervisors
— Guaranteed message processing/tracking
— and storing statistics

* The actual heavy communication between
nodes is using a library called Zero MQ

http://www.zeromg.org/

Zookeeper Application

Barrier: synchronize beginning and end of
computation for group of processes
Enter:

— zk.create(root + “/" + myProcessName) |47
Leave: while true

— List<String> list = zk.getChildren(root, true);

— break/return if list.size()==0, otherwise wait

Or implementation of producer/consumer
queues or distributed locks

read on: http://zookeeper.apache.org/doc/r3.2.2/zookeeperTutorial.html

ment, SoSe 2013, S. Michel

Storm Concepts
Data sources, operators and query plans are
called in Storm:

* Spouts: Data sources (e.g., Twitter stream)

* Bolts: Operators that consume output of
spouts or other bolts (e.g., filter stopwords)

* Topologies: By connecting spouts and bolts,
the created topology determines the data
flow.

Bolts and Spouts: Topology
* Example Topology

Bolt
\ Bolt

Bolt

m_—’ Bolt

ment, SoSe 2013, S. Michel

Topology Builder

* Operator/Source Topology is created by
registering consumers to producers using
unique names of sources/operators.

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout ("words", new TestWordSpout (), 10);
aiml", new ExclamationBolt(), 3)
uping ("words") ;

exclaim2", new ExclamationBolt (), 2)

uffle!
builder.setBolt

.shuffleGrouping ("exclaiml");

Bolt: _ Bolt:
Spout: words ek exclaim2

Distributed Data Management, SoSe 2013,
https://github.com/nathanmarz/storm/wiki/Tutorial

7/10/13

Topology Builder: Spouts

name of stream

builder.setSpout ("words",
new TestWordSpout (), 10);

parallelization hint;
Java Object that implements the Spout will see later
interface

Sistributed Data Management, SoSe 2013, 5. Michel

Spout Implementation

* Sample Spout that emits at random words of a
specific set

public void nextTuple() {
Utils.sleep(100);
final String[] words =
new String[] {”a", “b", ”c", ”d", "e"};
final Random rand = new Random() ;
final String word =
words [rand.nextInt (words.length)];
_collector.e:ﬂit (new Values (word)) ;

Topology Builder: Bolts

name of stream

Bolt Java Object

builder.setBolt ("exclaiml",/ (impl. 1Bolt)
new ExclamationBolt(), 3

.shuffleGrouping ("words") ; \

parallelization hint;

will see later
specification how tuples are name of stream
passed on from words spouts to to consume

exclaim1 bolts

Sistributed Data Management, SoSe 2013, 5. Michel

Bolt Implementation

* Stream operators receive tuples and output
(emit) new tuples

public void execute (Tuple tuple) {
_collector.emit (tuple,

new Values (tuple.getString(0) + "!!11"));

_collector.ack(tuple);

* We will see later why tuples are acknowledged
once processed.

* There are also a couple of other methods
required, such as description of output fields

Stream Grouping Commands

* Shuffle Grouping: randomly spreading tuples
across consuming operators. Good for load
balancing.

* Fields Grouping: tuples are send to consumers

based on specific fields.

All Grouping: tuples are replicates among ALL of

the bolts tasks

¢ Global Grouping: tuples go to ONE specific task
(the one with lowest id)

* There are some more groupings; see online
description for full details (of current state)

Sistributed Data Management, SoSe 2013, 5. Michel

7/10/13

Example Application

Counting the mentions of #hashtags in the
Twitter stream.

* Counting how often two #hashtags co-occur.

* Computing trends as sudden increases of such
occurrences or co-occurrences.

Grouping (particularly by field) needs to make
sure required data is arriving at nodes that do
counting for a #hashtag or pair, e.g.

Distributed Data Management, SoSe 2013, S. Miche

Application of Fields Grouping: Joins

* How to implement a join with that grouping
primitives?

* Have to ensure right data is ending up at
nodes for the join (remember MapReduce?)

builder

etBolt ("join", new MyJoiner (), parallelism)

.fielc ouping ("1", new Fields("joinfieldl", "joinfield2"))
.fielc ouping ("2", new Fields("joinfieldl"™, "joinfield2"))
.fieldsGrouping ("3", new Fields("joinfieldl", "joinfield2"));

this as other pattern examples:
https://github.com/nathanmarz/storm/wiki/Common-patterns

istributed Data Management, SoSe 2013, S. Michel

Start a Storm Topology

Submit jar file of your code (with dependencies) to
cluster (nimbus)

storm jar mycode.jar package.MyFirstTopology

Looks familiar? Have seen similar usage before in
Hadoop

But: Topology will run (generally) forever, once

deployed
Can kill, monitor it

Distributed Data Management, SoSe 2013, S. Miche

Storm Ul: Screenshot

Window 2] Emitea Transforred Complets latency (ms)

1om 08 0.000
0.000

3nom 0s

14.0n Om 0s 0.000

Altme s 0000

Emitted Transferred Acked
Spouts (All time) Tuples Tuples Tuples
1 ~ Executors Tasks Emitied Transterred Compiete atency (ms) Acked
source s1a4540 Hassao 0000 o

Emi Transferred

Bolts (Al time) Tu;‘t:: Tt ?EET:S
1 o executors Tasks Emitied Transtorred Process latency (ms) Acked
Counter B . 0 0 o1 767940
cover s s 1000 310660
Dissemination s 5 767140 319500
Foover ' 180
parser 3 064 s144400

. i Overview of parallel execution of operators
start with command “storm ui”

istributed Data Management, SoSe 2013, S. Michel 34
default port 8080

Workers, Executors, and Tasks

One or more worker
per machine. Worker
specific to topology.

One or more
executor per worker >

It runs one or more
tasks of the same
component (bolt/
spout)

Worker Process

Distributed Data Management, SoSe 2013, S. Miche

Parallelization
Config conf = new Config();
conf.setNumWorkers (2) ;
* use two worker processes
topologyBuilder.setBolt (“MyBolt",
new MyBolt (), 2)
.setNumTasks (4)
.shuffleGrouping (“*MySpout") ;

* Run MyBolt with 2 initial executors and 4
tasks.

* Will run two executors with 2 tasks each.

* Default is 1 task per executor.

istributed Data Management, SoSe 2013, 5. Michel

7/10/13

Rebalancing a Running Topology

* Reconfigure the topology "mytopology" to use
5 worker processes

* The spout "MySpout" to use 3 executors and
* #the bolt "MyBolt" to use 10 executors.

command line: storm rebalance mytopology -n 5
-e MySpout=3
-e MyBolt=10

http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-
storm-topology/ Distributed Data Management, SoSe 2013, 5. Miche

Fault Tolerance

When worker dies it is automatically restarted

If node dies, workers will be started on
different machine

Nimbus and Supervisor (daemons) are
stateless (state is in Zookeper or on disk),
need just be restarted

Contrast to Hadoop: running jobs are not lost

ment, SoSe 2013, S. Michel

Guaranteed Message Processing

* Consuming operators (bolts) should
acknowledge the correct processing of
arriving tuples; using the ack method.

Producing operators have, thus, chance to see
if tuple was properly processed

* After timeout, tuple can be resend.

Or instead of timeout, use fail method directly

Anchored vs. Un-Anchored

When emitting a tuple, it can be connected to its
“parent” tuple; through parameter to emit method.

_collector.emit (tuple, new Values (word)) ;

Called anchoring in Storm.

Doing so, generally, ancestor tuples of a failed tuple
can be replayed.

Tuple can have multiple anchors

Use of special “acker task” that keeps track

ment, SoSe 2013, S. Michel

Trident

* Guess what? There is a high-level abstraction on
top of Storm.

TridentTopology topology = new TridentTopology();
TridentState wordCounts =
topology.newStream ("
.each (new Fields (" ce
new Split(), new Fields ("word"))
.groupBy (new Fields ("word"))
.persistentAggregate (new MemoryMapState.Factory(),
new Count (), new Fields ("count"))
.parallelismHint (6);

https://github.com/nathanmarz/storm/wiki/Trident-tutorial

(MOBILE) SENSOR NETWORKS /
APPLICATIONS OF DATA MANGEMENT

ment, SoSe 2013, S. Michel

7/10/13

Recall: Sensor Networks as Data

Streams Origin Sample Applications: Pothole Patrol

* The Pothole Patrol

* Detecting and reporting the surface conditions
of roads; using sensors in vehicles

* E.g., in Environmental Monitoring

StationStream(humidity, solarRadiation, windSpeed,
snowHeight)

Various application * Using 3-axis accelerometer+GPS + learning

scenarios:
— avalanche risk level Wiepolter o i
computation <> "'

— insights for agriculture
— air pollution (urban)
monitoring

Eriksson et al. The Pothole Patrol: Using a Mobile Sensor Network for Road Surface
Monitoring. MobiSys 2008.

Distributed Data 3,5, Michel a3 Distributed Data Management, SoSe 2013, S. Michel 44

Sample Application: Swiss Experiment

http://www.swiss-experiment.ch

Sensors

* Sensors generate data (that we can process as
previously explained, by DSMSs)

* Environmental monitoring

* Sensor data management
and meta data sharing.

* Across many different types
of measurement:

(hydrology, alpine monitoring,)
atmospheric phenomena, plugged at station or board

earthquakes, ...) with transmission capabilities (WLAN, GPRS, ...)
Also higher level applications like putting sensors
and interpretations on maps, computing statistics
over streams.

* Arbitrary application cases
* Tailored sensing hardware

] Distributed Data Management, SoSe 2013, S. Michel 16

Example Sensor (Tinynode) on Top of

Sensors .
Extension Board

* Mobile vs. static

* Large vs. tiny (smart dust!)
* bytes/hours vs. > GB/minute &

Tiny sensor at
U Michigan

When everything connects

A1é-page special report on the coming wireless revolution

ambient temp.
sensor of a ca

http://www.tinynode.com/

Distributed Data Management, SoSe 2013, S. Michel

Distributed Data Management, SoSe 2013, S. Michel a7

TinyOS and nesC
* TinyOS is an operating system designed to
target limited-resource sensor network nodes
* nesCis a C dialect
* Program sensors (motes) to build network and
measure what we are interested in

£ SerialForwarder.
Liscening to serialfCONL

struct OscopeMsg i3 ctening for cisent comections on port 9001
oc:ie10000.:19200: resynohroniaing
uint16_t sourceMotelD;
uint16_t lastSampleNumber;
uint16_t channel;

uint16_t data[BUFFER_SIZE];

Distributed Data Management, SoSe 2013, S. Miche 49

Sensor node (aka. Mote) Characteristics

* Shockfish TinyNode (a Swiss Company)

— Texas Instruments MSP430: 16bit microcontroller,
running at 8 MHz

— Semtech XE1205 radio transceiver: max rate of 76
Kbps

— 10KB RAM

— 512KB flash memory

* Apparently good deal between power
consumption and communication range

Distributed Data Management, SoSe 2013, 5. Miche

7/10/13

2D Deployment/Infrastructure Example

* Multi-hop communication toward one sink node.
* Or direct communication to consumer
* Or Sensors might move, creating ad-hoc networks

. Sistributed Data Management, SoSe 2013, 5. Michel 50

Challenges/Research

* Sensors usually have limited battery
capabilities (although complemented with)

* as well as processing power

* and reach of radio signal for communication

Sistributed Data Management, SoSe 2013, 5. Michel

SensorScope

* As one specific example of the utilization and
realization of wireless sensor networks we
look at SensorScope.

— Project at EPFL (Lausanne, Switzerland), two
groups (communication systems lab, and
environmental scientists)

— Environmental monitoring sensor stations; base
station with several application specific sensors

— Aims at low cost stations; easy to setup,
“lighweight”

Frangois Ingelrest, Guillermo Barrenetxea, Gunnar Schaefer, Martin Vetterli, Olivier Couach,
Marc Parlange: SensorScope: Application-specific sensor network for environmental
monitoring. TOSN 6(2) (2010)

Distributed Data Management, SoSe 2013, 5. Miche

Measured Quantities Example

SensorScope station

[easwe ———[sensor [range L precision |
Air humidity Sensirion SHT75 0-100% 2%

Air temperature Sensirion SHT75 -20-60°C +0.3°C

Precipitation Davis Rain Collector ~ 0-°° mm +1mm

Soil moisture Decagon EC-5 0-100% +0.1%

Solar radiation Davis Solar Radiation 0-1800W/m? +90 W/m?

Surface temperature Zytemp TN901 -33-220°C +0.6°C

Water content Irometer Watermark -200-OkPa unknown

Wind direction Davis Anemometer 0-360° +7°

Wind speed Davis Anemometer 1.5-79m/s +1.5m/s

source: SensorScope paper

Sistributed Data Management, SoSe 2013, 5. Michel

Communication
* Each node keeps table of neighbors.
* Neighbors are nodes the node can (literally)
hear, by observing radio signals

* Cost of routing to sink is updated if new node
is discovered

* Estimating link quality between nodes due to
randomness of radio channel; by observing
lost messages or signal strength

7/10/13

Power Management
* Radio signal is big energy consumer

 Just switching is on increases power cons. by
more than factor of 7

o) Label Activity Value

z 4 ey
B h (a) None 0mA
H o (b) CPUon 2mA
g% @ " i () Radioon 15mA
128 ™ (d) Transmission (0dBm) 25mA
H pél ol bl o () Transmission (5dBm) 31mA
© (f) Transmission (10dBm) 44mA
0 (8) Transmission (15dBm) 58mA

J Gy

0 20 40 60 80 100 120
ime (ms]

« Results are of course specific to actual
hardware, but exemplary for behavior

image source: Ingelrest et al. SensorScope. TOSN 6(2) (2010,
Jistributed Data Management 1, SoSe 2013, 5. Michel

Power Management (Cont’d)

* Nodes have two-state communication cycles:
— active state (i.e., radio is on)
— idle state (radio is off)

* Idle state should be as long as possible but still
allow communication between nodes. How?
— Low-power listening: announce packet by sending
specific bit pattern (with length larger than idle
state). Nodes see it and wait for packet.

— Duty-cycling: All nodes switch radio on at same
time (synchronously). Used in SensorScope. Nodes
have sync’ed time anyway (so it's “easy”).

Sensor Management / Middleware

« Different sensors come with different packet
formats for transmissions, also different
connectors/interfaces to program against

Abstraction needed to unify/enable usage

In principle: make tuples/relations out data
obtained through various interfaces

Offer metadata and computation means,
sharing, access control, ...

‘‘‘‘‘ t, SoSe 2013, 5. Michel

Global Sensor Networks (GSN):
High Level View

* Open-source sensor middleware

* Developed at LSIR lab at EPFL

* Comes with wrappers for various sensor

* And higher level operations, e.g., data cleaning,

visualization
* Runs on local instance, but can connect to others
sink Base Computer (\
Node Running GSN ..
& i h
Q-G Internet
V. ~ -0
P t — :
= Serial . _/\j'
Connector

Karl Aberer, Manfred Hauswirth, Ali Salehi: Infrastructure for Data Processing in Large-Scale Interconnected Sensor
Networks. MDM 2007: 198-205 pictributed Dats Management, So5e 2013, 5. Miche

GSN: Virtual Sensors

* Abstraction of physical sensors or local operators (also
remote)

* Specified through an XML document (mix of SQL and
specification of Java Classes that act as wrappers)

 Virtual sensors can be composed of other virtual
nodes; resembling operators in the operator DAG
(seen before)

* Use of standard SQL to process queries over wrapper
data or other virtual sensors

‘‘‘‘‘ t, SoSe 2013, 5. Michel

10

7/10/13

Receiving Data in Virtual Sensors

* Virtual sensor receives tuples on

public void dataAvailable (
String inputStreamName,
StreamElement streamElement) { .. };

¢ Like execute (Tuple tuple) in Storm

If output is produced: Virtual sensor will
notify the responsible “manager” by adding
itself to the list of the virtual sensors which
have produced data.

Distributed Data M: ent, SoSe 2013, S. Michel

GSN Ul (Map

¥ IMIs-ENET

http://sourceforge.net/apps/trac/gsn/

Distributed Data Management, SoSe 2013, S. Michel

Side Remark: Sensor Metadata

Sensor data has important additional (often

static) aspects besides pure measurement values

— sensor manufacturer, measured quantities, units

— frequency of measurements, averaging applied,
sampling?

— sensor serial number

— geographic location

— quality information

* Why? Essential to make good use of data.

* QOverall, want full lineage (aka. provenance):

where does data come from, what happened to it

(transformations, errors, etc.)

ent, SoSe 2013, S. Michel 63

Distributed Data M:

Related Areas (Subset)

* In-network data processing
* Communication efficient data gathering
(optimizing also for battery lifetime, not
necessarily query response time)
* @KL: distributed computer systems lab
* From “our” perspective the work mainly starts
when data is at hand:
— But might be noisy (uncertain) or incomplete
— Data mining: finding patterns, trends, predicting
behavior, such as in road networks, people movement
at festivals, etc.
— Computation of complex models, like spatial
interpolations, inference

Distributed Data Management, SoSe 2013, S. Michel 64

Literature

« Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,
Esther Ryvkina, Nesime Tatbul, Ying Xing, Stanley B. Zdonik: The Design of the
Borealis Stream Processing Engine. CIDR 2005: 277-289

* http://storm-project.net/ and documentations/tutorials within

* http://zookeeper.apache.org/ and documentations/tutorials within

* Karl Aberer, Manfred Hauswirth, Ali Salehi: Infrastructure for Data Processing in
Large-Scale Interconnected Sensor Networks. MDM 2007: 198-205

« Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Madden, Hari
Balakrishnan: The pothole patrol: using a mobile sensor network for road surface
monitoring. MobiSys 2008: 29-39

* Karl Aberer, Gustavo Alonso, Donald Kossmann: Data management for a smart
earth: the Swiss NCCR-MICS initiative. SIGMOD Record 35(4): 40-45 (2006)

Distributed Data Management, SoSe 2013, S. Michel

11

