
University of Kaiserslautern
Department of Computer Science
Database and Information Systems

Seminar
Recent Trends in
Database Research

Summer Semester 2013

Table of Contents

1 Introduction . 3
1.1 Database History . 3
1.2 Caching in a Database . 4
1.3 Caching using Flash Memory . 5
1.4 Problem Statement: Energy Efficiency and Performance 5
1.5 Outline . 7

2 Flash Memory - Future Storage . 7
2.1 About Flash Memory . 7
2.2 Flash Operations . 8
2.3 Field Translation Layer . 9
2.4 Flash Performance . 10
2.5 Summary. 11

3 Database Architecture – An Overview . 11
3.1 DBMS Reference Architecture . 11
3.2 Buffer Management . 13
3.3 Architectural Variants . 14
3.4 Summary. 15

4 Energy Efficiency and Performance . 16
4.1 Assumptions . 16
4.2 Replacement Algorithms . 17
4.3 Experiment . 18
4.4 Summary. 20

5 Inside View Of FTL . 21
5.1 Revisiting FTL . 21
5.2 Problem. 22
5.3 Savior: Logical Page Drop and Native Flash Access 23
5.4 Experiment . 25
5.5 Summary. 26

6 Conclusion . 26
7 References . 27

Flash-Based Caching For Databases - Energy
Efficiency and Performance

Ankit Chaudhary

University of Kaiserslautern

Abstract. Purpose of this report is to explain benefits of using flash
memory for storing databases. The beginning of this report contains in-
formation about the traditional storage devices and mechanisms used for
databases. Then it will take a look at how can we utilize flash memories
with databases. It will further discuss various different architectures that
can be used with flash memory in order to achieve optimum utilization
and efficiency. This report will also discuss various algorithms used in
database operations to further optimize their performance.

1 Introduction

1.1 Database History

In the 21st century, storing information is becoming absolutely necessary for any
organization to excel and evolve. In fact, the efforts of storing the information
began from mid 20th century with an initial effort on storing system-critical
data, which was about an order of magnitude smaller than that of today’s data-
crazy applications. A study of 2010 by EMC Corporation (NYSE:EMC) shows
that, in 2009 amid the Great Recession, the amount of digital information grew
62% over 2008 to 800 billion gigabytes (0.8 Zettabytes). One Zettabyte equals
one trillion gigabytes [ID08].

This raise in data volume is the curtsy of information-hungry applications,
which not only consume the information but also produce it with same rate.
As we grow and advance in Information Technology, we automatically start to
generate information. You may not have noticed, but, every time we interact
with some machine, we produce information or data. You want to drink a cup
of coffee. You select the type of coffee you want to have on a coffee machine
and well you just generated information that will be used by the machine to
produce coffee. You travel to a foreign destination, right from the planning of
the trip to the time you arrive at the destination, you take part into a process
which generates a tremendous amount of information, like your inventory, food
preference, luggage information, flight information, etc., and this list of data-
consuming and -producing applications is growing rapidly with time.

Now, the more we increase the use of information technology in our daily life,
the more data we produce. Hence, we need to look for various storage mechanisms
to store the wide range of heterogeneous data. In fact, this look out for suitable
data storage mechanisms started as early as in 1960 when IBM came up with the

4

SABRE system that was used by American Airlines to manage its reservations
data. After that between 1970–1972, E.F. Codd came up with the concept of
the relational database model. It turned out to be the revolution in database
technology and its applications. This actually broadened the scope of databases
by introducing the concept of schema and by separating it totally from the
data physically stored; this became the base principle on which future database
systems worked.

Shortly after E.F. Codd came up with his concept of separating the concep-
tual and physical organization of a database, query languages like QUEL and
SQUEL were designed. Later they led to the development of database systems
like MS SQL Server, Sybase, DB2, Allbase, Oracle, etc. During this decade of
revolution in database systems, the term Relational Database Management Sys-
tem, or RDBMS, got recognized in industry. Since then, we are continuously
working on standardizing the various database paradigms, like the query lan-
guage by SQL in 1980’s, and coming up with newer and faster database systems
and mechanisms.

1.2 Caching in a Database

In our database systems today, we use mainly HDDs (hard disk drive, magnetic
disk) for storing data persistently and DRAM (dynamic random access memory)
for keeping data to be processing in a volatile memory. While HDD is used as
external storage (because of huge size, slow R/W speed, and cheap cost), DRAM
is used for caching a small amount of currently processed data (because of small
size, fast R/W speed and higher cost).

With the huge amount of data being produced, it is important now to use
databases. Database management deals with storage and retrieval mechanisms
(and much more). Nowadays, such systems are usually designed as a multi-
tier architecture, where the application-tier and the data-tier are assigned to
completely independent computing nodes connected via a network. In order to
run these applications efficiently and without any latency, mostly due to the
network, we have to come up with a mechanism of caching the data on the
application-tier itself by using some lightweight database mechanisms. In some
of the cases, we have application and data lying on the same machine. In these
cases also, performance can get impacted by continuous update and retrieval of
data from physical disks, which exhibit slow read and write performance. For
this reason, we use the much faster main memory, with much superior write and
read performance compared to disks, for caching frequently used data. In this
report, we are analyzing an architecture where application and data are lying
on same machine.

Caching of data is very important for performance improvement of any ap-
plication. In later sections, we will also discuss how efficient and clever usage
of data caching not only helps in improving performance and throughput of a
database system, but also helps in achieving energy efficiency by saving a large
number of HDD operations.

5

1.3 Caching using Flash Memory

Flash memory is the latest technology used for storing small to large amounts
of data. It is a type of semiconductor-based non-volatile memory. Flash is of
special interest, because, unlike HDDs, it provides high read throughput and,
unlike DRAM, it consumes much less electricity for accessing the data. Because
of the missing mechanical arm movement, flash memory is also shock-proof,
which enables many interesting applications of flash memory in mobile devices.
Recently, flash memory has been actively used as an external storage device in
the form of SSDs (solid state disks) which provide the same interface as HDDs.

In contrast to DRAM, flash memory has an upper hand in cost, but provides
less read throughput. Its cost has substantially reduced in the past few years,
because of increase in sale’s volume and better mechanisms of production. If
we compare it to HDD, it has no mechanical arm and hence does not have
latency due to missing arm movement for data operations. This has enabled
flash memory to achieve a high number of IOPS (input/output operations),
which could only matched by having several HDDs working in parallel. Hence,
we can use flash memory in place of HDDs (in the form of SSDs) or maybe in
combination with DRAM (as secondary buffer storage) to further improve the
DB performance.

If we use flash memory instead of DRAM, we can use it for the purpose of
caching. Because we have a faster DRAM, but limited in size due to high cost per
GB, we can make use of flash memory with a larger size, while approximating
the read throughput of DRAM. Because flash memory provides much less write
throughput, which is comparable to that of HDDs, we can’t use flash to totally
replace DRAM. Instead, we need to look for a mechanism to use flash memory
in combination with DRAM for caching. This will be one of the main problem
statements discussed throughout this report.

1.4 Problem Statement: Energy Efficiency and Performance

Energy efficiency and performance are two important properties, which not only
make a product unconquerable but lagging in any of these properties will make
it obsolete in no time. Like for any industry product, both of them are important
properties for database products as well. We now consider three different storage
devices : HDD, Flash, and DRAM, for use in database systems. All of them
exhibit varying behavior in terms of performance and energy consumption.

In 2005, it was estimated that power consumed by servers in U.S. is 0.6% of
its total annual consumption. When the cooling and auxiliary infrastructure is
also included, the percentage became 1.2%, which is nearly equal to five 1000
MW power plants. The cost of running these servers in U.S. came up to 2.7
billion dollars per year [KM07]. Hence, it becomes extremely important to use
a technology which can cut down this huge operational cost. This is necessary,
because the number of server installations is increasing rapidly with every passing
year. The relationship between the cost of installation and cost of operation is

6

Fig. 1. IDC estimates for worldwide annual cost spent on powering and cooling servers
[RB09]

shown in Fig. 1, which illustrates a clear trend of increase in operational cost
compared to the installation cost of the servers.

Let us consider HDDs first. HDDs are introduced in the 1950’s by IBM and
are still most commonly used as external storage devices. They have a very cheap
price per GB in contrast to the other two storage devices under consideration.
HDDs suffer from high latency and, despite of more than half decade of research
and development, a high-end HDD can only achieve a maximum throughput of
1000 IOPS (I/O per second). Now, the mechanical arm movement, apart from
contributing towards high latency, also leads to high consumption of energy.
Hence, despite being cheap in price, HDDs suffer heavily in terms of energy
efficiency and performance. Next we have DRAM, which provides very high
throughput and hence performance, but is very expensive in terms of per GB
cost. Apart from having high cost, it also consumes a lot of energy because of
frequent refresh cycles for its capacitors due to charge leakage. Hence, DRAM is
faster than HDD but is more costly and consumes a high amount of energy.

To overcome the problems of these two storage devices, we have to use flash
memory smartly. Flash memory is the latest technology used for storing large
amounts of data. It is a type of semiconductor-based non-volatile memory. Flash
memory has comparable read throughput to DRAM and does not have any
latency issues as we have in HDD. As compared to DRAM, flash memory has
cheaper per GB cost, but sensitively higher than what we have for HDD. In
comparison to both DRAM and HDD, flash is much more energy efficient. Hence,
flash memory is the potential candidate for achieving both high energy efficiency
and performance.

7

1.5 Outline

In the succeeding chapters, we will cover in detail information about how we can
use flash memory in database systems.

Chapter 2: We will describe in detail the properties of flash memory and their
limitations. We will further discuss, how and what kind of flash memories are
suitable for the use in database systems.

Chapter 3: We will discuss the standard architecture for database systems
and different hybrid architectures that we can use to take advantage of flash
memory in order to improve performance and throughput.

Chapter 4: We will talk about the importance of energy efficiency and perfor-
mance in case of database systems. We will discuss different caching algorithms
that can be used for achieving energy efficiency and performance while using
flash memory in database systems.

Chapter 5: Based on our discussions and findings in Chapter 3 and 4, we will
conclude how flash memories can be used by a middle-tier cache manager in a
3-tier architecture to achieve our goal of energy efficiency and performance.

2 Flash Memory - Future Storage

In this chapter we will discuss in detail about flash memory. We will discuss
what different kind of flash devices are available and their respective properties.
This discussion will help us in selecting the flash memory that will best suit
our problem statement. We will further discuss about the limitation in flash
memories and how to cope-up with them.

2.1 About Flash Memory

Flash memory is latest technology used for storing small to large amounts of
data. It is a type of semiconductor-based non-volatile memory. Flash is of special
interest, because, unlike HDDs, it has high read throughput and less power
consumption. Also, unlike DRAM it consumes no power to store data, is cheaper
in cost, and has comparable read throughput.

Flash memory is a kind of electrically erasable programmable read-only mem-
ory (EEPROM). It provides persistent storage, i.e., if you switch off the device,
flash memory retains the data stored in it. Flash memory consists of arrays of
memory cells, made up of floating gate transistors. There are typically Single-
Level cells (SLC) which store a single bit in each cell. Nowadays, a more advanced
type of flash memory comes with Multi-Level Cells (MLC) which stores multiple
bits in each cell. MLC works by selecting from multiple level of charge to apply
to flash memory cells. Though, the MLC devices can store more information
compared to the SLC counterpart, but they are much slower than SLC flash
devices and also have a very low life span because of the high number of P/E
cycles. MLC flash can be a better solution for large storage devices like HDDs,
but is not good when used in high operation zones like the buffer or cache system
[SE10]. Hence, for our problem statement we will consider an SLC flash device.

8

Depending upon how these memory cells are arranged in flash memory, a fur-
ther flash memory classification is done as: NOR- or NAND-based flash memory.
NOR-based flash memory was used earlier when flash memory came into the pic-
ture. It provided flash memory with different advantages like faster read access
and a feature called eXecute In Place (XIP), which enabled the program to di-
rectly execute from flash memory instead of loading it into RAM first. A big
disadvantage of NOR-based flash memory is its cost effectiveness because of low
capacities (1–4 Mbytes) and suffers severely due to the large number of writes
and erase operations. Because the read latency of NOR-based flash memory is
very low, it allows for both code execution and data storage. Despite having fea-
tures like XIP, NOR-based flash memories are not useful, because they sustain
only a very low number of erase cycles [AR02].

The other type of flash memory is called NAND-based flash memory. It has
a much larger cell density compared to NOR-based flash memory. It gives more
storage capacity and enhanced write and erase rates. NAND-based flash memory
enables the addressing by page, word, and bit. This property of NAND-based
flash helps to emulate hard disks, which work on bit-level addressing. A relative
comparison between NOR- and NAND-based flash memory is shown in Table 1.

Table 1. Comparison between NOR and NAND based flash memories [AR02]

PARAMETER NOR NAND

Performance Erase Very Slow (5 s) Fast (3 ms)
Performance Write Slow Fast
Performance Read Fast Fast
Erase cycle range 10,000 to 100,000 100,000 to 1,000,000
Price High Very Low

From this comparison, we can easily deduce that, out of the two types of
flash memory, it will be beneficial to consider NAND-based Flash memory to
achieve our target.

2.2 Flash Operations

Flash memory provides 3 different operations, Read, Program (a.k.a Write),
and Erase. These three operations are used by the processor to work with flash
memory. The Read and Program operation work on collections of memory cells
called flash pages, while the Erase operation works on a larger entity called flash
block. Fig.2 shows the arrangement of flash pages and a block in a flash memory.

The latency in flash memory varies with the operations, with the Read oper-
ation having the least latency (in microseconds) and the Erase operation having
the maximum latency. Also, this latency factor differs with SLC and MLC flash
memory (here we are considering NAND-based flash memory). SLC-based flash
memory is having the smallest latency factor in all the three operations (i.e.,
Read, Program, and Erase) compared to MLC-based flash memory.

9

Fig. 2. Flash Memory Cell Representation [TD12]

During an Erase operation, the flash block becomes a free block and, hence,
all pages inside the block and consecutively all the memory cells inside the pages
are freed. After the Erase operation, the flash memory block becomes available
for fresh writes again, as if the block was never been written before. With the
Erase operation a big disadvantage of flash memory is associated, which is called
flash wearing or write endurance. Write endurance is discussed later in section
2.3. Using the Write or Program operation, the memory cell values are changed
from 1 to 0. This operation is performed on a page unit and hence multiple
cells are involved in the operation. To enable the write operation again, an erase
operation is performed at block level for again setting the value of all the cells
from 0 to 1[TD12]. Hence, to perform a write operation on a used page, an Erase
operation must be carried out beforehand. This may create further delays for
Write operations, called erase-before-write limitation.

In order to manage the flash wearing due to continuous Write and Erase
operations and to interact with computer and electronic devices, M-Systems
and SCM Microsystems in 1994 introduced the concept of Flash Translation
Layer (FTL), which was later endorsed by Intel.

2.3 Field Translation Layer

Flash memory is not directly accessible by processors and, hence, we need a
translation mechanism to work with it. The so-called Flash Translation Layer
(FTL) is used for communicating with computer and electronic devices. FTL is
responsible for carrying out read, program, and erase operation.

FTL supports logical page operations. Using a traditional update operation
on a flash page, a block-level erase operation is carried out and then the new
values are re-written to the flash pages, this is called in-place update operation.
The in-place update operation is typically very expensive and hence is avoided by
the concept of logical page operation. In this scenario, FTL, instead of adopting

10

in-place update, opts for what is called out-of-place update mechanism. In this
process, the updated data is placed into the next free page and is then associated
with the logical page address. The previous version of the data is then invalidated
by the FTL.

This process increases the write endurance of flash memory. The memory
cells of flash memory can be used only for a limited number of time (10000 to
1,00,000 Program/Erase cycles [GA05]), before they wear out and can not be
used for storing data persistently. The use of logical page addressing is done in
order to reduce the number of erase operations to be performed in case of in-place
updates and hence, improving the endurance of flash memory. Now, during the
update operation, multiple version of a page co-exist. The last updated version
is called valid page and rest are called invalid pages. Once, all the free pages are
consumed and the cache block is full. A mechanism called Garbage collection
is used by FTL to reorganize invalid pages on the blocks and remove them to
produce more free pages.

To improve the lifespan of flash memory, FTL needs to take care of the num-
ber of erases applied to the individual blocks. If we keep on erasing using the
same group of blocks, the blocks will rapidly wear off and hence may lead to
an unusable device, because usable blocks are in short supply. Hence, a mecha-
nism called wear-leveling is used by FTL to shuffle among the blocks to equally
distribute the number of program/erase operations to be performed.

Hence, we can say that the job of FTL is not just to perform the Read, Write,
and Erase operations, but also to perform management tasks like out-of-place
updates, garbage collection, and wear-leveling.

2.4 Flash Performance

The performance of the flash memory depends on how the operation is getting
carried out on it. We will discuss few of these performance issues in this section,
which need to be taken care of by different algorithms later in this report.

1. Randomness in operation: The performance of flash memory suffers from
randomness of read and write operations. Though, the flash drives do not
have any mechanical arm like disk drives, the performance of read opera-
tions can get impacted by random read requests. If we have sequential read
requests, flash can take advantage of the read-ahead mechanism and hence
can improve the read throughput. Though, during random read requests,
impact on IO throughput is not so significant, as it can be with the random
write requests. The performance varies as much as four magnitudes when it
comes to random write throughput of flash devices [IO09].

2. Type of Operations: Performance of flash devices, as discussed earlier,
is also severely impacted by the type of operations. Let Cr be the cost of
read operation, Cw/p the cost of write/program operation, and Ce the cost
of erase operation. Then the relationship between the three factors is given
by the following equation:

11

Cr < Cw/p < Ce (1)

The cost relation is based on the time (ms) taken in performing the oper-
ation. The flash update operation involves one write operation and one or
multiple flash erase operation. This problem is because of erase-before-write
mechanism explained in section 2.2. Also, the number of erase operations
decides the life of the flash device. The higher the number of erase opera-
tions, the shorter will be its life. This is further explained by the endurance
of the flash device.

3. Other Important Factors: The type and order of operations primarily ef-
fect the performance of a flash device. However, the background operations
like Garbage Collection, etc., also impact performance severely. For exam-
ple, a mixture of read and write operations can have significant negative
impact on each other’s latency. A read operation may suffer due to a write
operation involved in writing back the modified data, required for the read
operation. Furthermore, the distribution of flash pages and blocks can also
have significant impact on the flash device performance.

2.5 Summary

This chapter talked about the significance of flash memory in terms of energy
and performance efficiency. It outlined different kinds of flash memories available
and their types suitable for the use in caching. This chapter then discussed dif-
ferent operation types and performance issues faced during the operations. This
chapter further described FTL, an important part of a flash device, responsible
for garbage collection, out-of-place update, and wear leveling. In the last section
of the chapter, we discussed performance issues of flash devices that need to be
taken care when used as a database caching device.

3 Database Architecture – An Overview

Before we go for an integration of flash devices with a database system for im-
proving performance and energy efficiency, it is necessary to understand the basic
components of database systems. We will discuss a DBMS reference architecture.
We then talk about an important DBMS component called buffer management
and later discuss the different kinds of architectural variants possible with flash
devices used in a DBMS context.

3.1 DBMS Reference Architecture

Database management systems (DBMS) are important parts of today’s tech
savvy life style. The more we increase use of information technology in our
daily life, the more data we produce. Hence, we need to look for various storage
mechanisms to store a wide range of heterogeneous data. A DBMS is the solution

12

for all our storage and management needs. To study a DBMS system in greater
detail, we need to first visit its architecture design and understand its layers.

A widely used DBMS architecture is proposed by Theo Härder which is based
on five hierarchically ordered abstract layers. This five-layered architecture is
shown in Fig. 3. This architecture describes the abstraction from physical storage
to the user interaction level. The more we move upwards in the layers, the more
complex the layers become enabling feature-rich operations.[TH05]

Fig. 3. Reference Architecture of DBMS [TH05]

The bottom-most layer is called File Management, it deals at the bit level
with data stored at non-volatile storage devices. It works in coordination with
the operating system’s file management for managing the data files on physical
storage device. It is responsible for reading, writing, and modifying the data of
non-volatile storage devices, i.e., HDDs and flash drives. The L1 layer is responsi-
ble for number, type and address location of storage devices, which makes upper
layers to operate without worrying about these details. The next-upper layer is
called propagation control, it is responsible for buffering pages in main memory
to speed up the database operations. L2 accesses the pages from L1 physically,
whereas the upper layers access the pages logically from L2 independent of their
physical location. Hence, L2 accesses the pages from L1 using physical page
addressing, but upper layer access the pages using logical page addressing.

The L3, L4 and L5 layers deal with further abstractions and complex fea-
tures. The layer L3 provides functions like insert, update, and delete at the
record level. L4 is responsible for providing access to data and tables via differ-
ent scans or access paths. The last and top-most layer is eventually responsible
for providing records, tuples, tables via standard query languages such as SQL.

13

In our discussion, we will mainly focus on file management (L1) and propagation
control (L2), which deal with non-volatile storage and buffer management.

3.2 Buffer Management

Apart from non-volatile storage areas where all the data of the DBMS is phys-
ically stored, another important memory component called Buffer pool is used
for processing the data present in the database. Data from physical storage is
moved to a much faster memory device (RAM) for processing. Data in the buffer
pool is stored in pages and logical data blocks. Now, because of the substantial
performance difference between external storage and main memory, the number
of pages served from the buffer should be as high as possible and number of
accesses to the storage devices should be minimum. The size of main memory
is not limited and remains typically much smaller than that of the storage de-
vice due to high cost and, hence, the pages stored in the buffer pool located in
main memory should have a high re-reference probability, i.e., only frequently
requested data are stored in buffer pool.

This property is necessary for the performance and efficiency of any DBMS.
It can be explained as follows: A DBMS uses a buffer management algorithm
represented by equation 2. This algorithm is responsible for fetching the data
from physical storage into the buffer pool to speed up the DB operations. For
fetching the data into the buffer pool to satisfy Y physical requests, a cost
function is given by equation 3.

algo(X, b) (2)

X is the sequence of logical data request; b is the number of pages in buffer pool.

Cost(Y) = (Y) ∗ Ch (3)

Y is the sequence of physical data request; Ch is the constant representing access
cost associated with disk drive.

Hence, for a successful buffer algorithm the Cost(algo(X,b)) should always
be as low as possible. The main aim of any buffer management algorithm is
to keep the Hit ratio as high as possible. The Hit ratio is defined as number of
physical data requests served directly by buffer pool and hence reducing the cost
included in serving the data from physical storage area. In case of a buffer fault
i.e., if the data does not exist in buffer pool, the data has to be loaded from
physical storage area. To improve the Hit rate many different factors needed
to be considered. One of them is to continuously lookout for “Cold” pages and
removing them from buffer pool to make room for requested data which are not
present in buffer pool. How to decide which page is cold and which one is hot,
is decided by buffer management algorithm. This algorithm based on different
policies decide on the victim page needed to be removed from buffer pool.

The buffer management algorithm has to optimize the utilization of main
memory by considering two different factors, Spatial and Temporal page locality.

14

Temporal locality says that if a page is referenced at a point in time, there
is a high probability that the same page will be referenced in near future again.
Hence, it will be appropriate to keep the page in main memory for faster access.
The algorithm named Least Recently Used (LRU) is a popular algorithm which
works based on temporal locality. LRU makes sure to choose the page which
is being used least recently as the victim. The spatial locality says that the
probability of a page to be accessed in near future is higher, if pages in close
physical neighborhood (on disk) have been accessed recently. This give rise to
the concept of prefetching called Read-ahead, which helps most during sequential
access by loading the data into the buffer pool in advance, e.g., in case of table
scans.

3.3 Architectural Variants

In this section, we will discuss different kinds of architectures, where flash devices
are used for our DBMS. Flash memory has not only revealed lots of opportuni-
ties for performance optimization, but has also significantly contributed to the
evolvement of different architectural scenarios. We will be discussing three of
such architectures below:

1. Two-tier Architecture : In this architectural style, we will use flash-based
SSDs to replace the standard HDDs for use as primary storage devices.
We will take advantage of the fact that flash-based SSDs have the same
interface as HDDs. This will follow the standard DBMS architecture that
was explained in section 3.1. Replacing the HDDs by SSDs will give us the
advantage of high read throughput and energy efficiency. We will use SDDs
in bottom-tier and DRAM in top-tier for the buffer pool. The reference
architecture is shown in Fig. 4.

Fig. 4. Two-tier Architecture

2. Three-tier Architecture: Using a three-tier architecture, we introduce a
middle-tier between top-tier (based on DRAM) and bottom-tier (based on

15

SSDs or HDDs) using flash memory. This architecture is illustrated by Fig.
5. In this architecture, we try to leverage the performance advantage of flash
memory in the form of main memory. For this reason, we introduce extended
main memories, one small and very fast in top layer and other bigger and
slightly slower in the middle layer. This will give the system in general a
bigger main memory setup at comparatively low cost and higher energy
efficiency.

3. Hybrid Architecture: In a hybrid architecture, we use SSDs in combi-
nation with HDDs at bottom-tier. The architecture is similar to the 2-tier
architecture except that now the data will partially resides on both SSDs
and HDDs. SSDs usually keep all the hot data, which will help to speed up
transfers to the buffer pool (main memory) in case of a buffer fault at the
top-tier.

Fig. 5. Three-tier Architecture

The hybrid architecture and the two-tier architecturse are not used for our
report, as we want to utilize flash memory as part of the cache. Hence, we have
used the three-tier architecture for our analysis and conclusion.

3.4 Summary

In this chapter, we started our discussion by explaining the 5-layer DBMS ar-
chitecture. We discussed the functionality of important layers like file manage-
ment and propagation control of a DBMS, which are of relevance when building
a system using flash memory as cache. In section 3.2, we discussed the buffer

16

management algorithm and how it works within the DBMS. We talked about the
hot and cold pages and how a buffer management algorithm works to maintain
a high hit ratio. We further talked about temporal and spatial locality exploited
by the buffer management algorithm to optimize main memory usage. In section
3.3, we discussed different conceivable architectures by inclusion of flash memory
as part of a DBMS. We found out that the three-tier architecture is the best
possible option to utilize flash memory for a DBMS cache.

4 Energy Efficiency and Performance

In previous chapter, we discussed about different kind of architectural styles. In
this chapter, we will discuss in depth about 3TA and 2TA and find out which,
among the two, is more energy and performance efficient. In 2-tier architecture
we use DRAM as buffer/caching device and disk drive as primary storage de-
vice. In 2TA, as we increase the data size, the performance gets limited due to
smaller and expensive DRAM used in buffering/caching device. This limitation
in performance due to smaller DRAM won’t have much improvement, even if,
SSD is used as primary storage device. Hence, 3-tier architecture with extended
cache device (using flash memory) is considered as more appropriate. In order
to prove this, we have to conclude that the 3TA is not only performance efficient
but also energy efficient.

4.1 Assumptions

The 3-tier architecture consists of 3 different layers, described below :

1. Top layer consists of DRAM as buffer device. This layer is capable of holding
Tt pages.

2. Middle layer consists of flash memory as cache device. This layer is capable
of holding Tm pages.

3. Bottom layer consists of disk drive as primary storage device. This layer is
capable of holding Tb pages.

The number of pages stored at each level, increases from top-tier to bottom-
tier and is given by following equation:

Tt ≺ Tm ≺ Tb (4)

The hottest page is kept in the top-tier i.e. in Tt and Tm holds the hot pages
that can’t be retained in Tt due to size constraint. Hence, we need to come up
with some kind of page replacement policies to swap pages between Tt and Tm.
Whenever, a page fault occurs in Tt, the page is to be looked in Tm and if not
found then should be loaded from Tb. In case of 2TA, Tm won’t be present in
the architecture and Tt will directly access Tb for all its requests.

17

4.2 Replacement Algorithms

In this section, we will discuss about the replacement algorithm for Tm only (as
Tt and Tb are same as standard top and bottom layer of DBMS system). We will
discuss following algorithms: Local (LOC) and Global (GLB) algorithms.

Before we proceed explaining the 2 algorithms, let us discuss few general
goals of the algorithms. Both of the algorithms are used for maintaining a cache
slot Ls=Tm in an LRU fashion. The cache slot uses single bit for representing
clean/dirty state of the page. A dictionary (H) is maintained which maps the
currently cached pages with corresponding cache slots.

Local (LOC) Algorithm This algorithm play’s (locally) in Tm, without re-
quiring information from Tt layer, in LRU fashion. As, LOC is not considering
the content information of Tt, there is a possibility that some or complete data
of Tt is replicated in Tm (but not vice versa because Tm ≥ Tt).

For the read request of a page P, from a cache slots Ls using a
directory H.

1. Search cache slot location C for page P in directory H
2. If C belongs to Tm then

– Read the page P and serve the request.
– Move C to MRU position of Ls.

3. Else
– select the victim slot location V from LRU of Ls.
– Page Q is the page stored at location V.
– If page Q is dirty then
• Read the page Q.
• Flush it to Tb.

– Read page P from Tb.
– Move it to slot V.
– Move this slot V to MRU position of Ls.
– Update the new slot and location information in directory H for future

use.

Global (GLB) Algorithm GLB is second algorithm for page replacement and
was firsts introduced in [Zu04].This algorithm takes into consideration content
of Tt along with Tm for creating a global logical LRU list called Lg. It takes
care that no page is replicated between Tt and Tm (double caching) [KO08]. Lg

consists of LRU list of the Tt at its MRU end and LRU list of Tm at its LRU
end. Whenever, a page fault occurs in Tt, it looks for the page P in Tm. In case,
if it does not exists in Tm the page will be loaded directly from Tb, without being
copied into Tm.

Hence, whenever a page fault occurs in Tt, a page Q is evicted from Tt to
Tm. The evicted page Q from Tt will become MRU page of Tm. Hence, we have
to introduce a new function evict in Tm.

evicting a page P, a cache slots Ls, a directory H and bottom tier
Tb.

18

1. select the victim slot location V from LRU of Ls.
2. Page Q is the page stored at location V.
3. If page Q is dirty then

– Read the page Q.
– Flush it to Tb.

4. Store P at location V.
5. Move this slot V to MRU position of Ls.
6. Update the new slot and location information in directory H for future use.

Based on the properties of the 2 algorithms, GLB appears to be better in
terms of Global cache hit count because of bigger effective buffer size (consists of
Tt and Tm). But in GLB, the number of flash writes will be equivalent to number
of cache evict operations. This will create problem for flash based secondary
buffer device and will result in reduced lifespan and performance. Nonetheless,
we can leverage upon the non-volatile nature of flash memory and can avoid
performing flushing operation in Tm buffer memory at the time of shut down.
This will not only speed up the shutting down time but will also help in enhancing
the performance of DBMS by keeping the hottest pages pre-ready in buffer
memory at the time of DBMS start up.

4.3 Experiment

In this section, we will see different experimental results to compare the perfor-
mance and energy efficiency of 2-TA and 3-TA with LOC and GLB replacement
algorithms. In the study, following assumption is taken into consideration while
running the experiment for energy efficiency :

A1 The cost and power consumption of a storage media is linear to the their
capacity in use.

This assumption may not hold for fine grain systems but it is true for coarser
grained systems. All the experiment the program only communicate with Tt by
sending the logical page request which is handled by buffer management policies
in LRU fashion.

In the experiments, the size of the buffer pool b is scaled logarithmically. For
2TA, the size b is equivalent to Tt, but, for 3TA it is represented by Tt and Tm

by following formula:

|Tm| = b× s (5)

and
|Tt| = max(1, bb− |Tm| × (Mf/Mr + Sd/Spc) (6)

Where, Mf/Mr is the per-GB price ratio of flash to RAM; Sd is the byte size
of dictionary H entry; Sp is the page size in bytes

s is used to scale the size of |Tm| in case of 3TA. In the experiment, we will
show the performance index by measuring Virtual Execution Time tv, define by:

tv = tm + tb (7)

19

Here, tm represents the device access time elapsed in reading or writing data
from middle-tier Tm, further define by:

tm = tFR + tFW = nFR× CFR + nFW × CFW (8)

tFR and tFW are time taken in reading and writing from the flash device.
nFR and nFW are number of flash read and write with average cost of read and
write given by CFR and CFW .

Similarly, tb is given by:

tb = nH × CH (9)

Where, nH represents number of disk access and CH the average latency of
disk access.

Fig. 6. TPC-E trace performance

In figure 6(a), you can see that for tv all 3TA configurations has significantly
outperformed the 2TA Virtual Execution Time. In case of 3TA LOC for s=8,
we can observe an improvement of 32% to 35% in Virtual Execution Time. This
improvement is further described in figure 6(b), where majority of the 3TA page
requests are getting served by Tm. We can further observe that in both LOC and
GLB, by increasing the size of Tm using s, the number of buffer hits increases
and consequently reduces the number of reads from disk.

In figure 7, shows the energy efficiency of 2TA and 3TA for b=100 based on
assumption A1. The power consumption of Tt is given by :

Pt = |Tt| × Sp × ṖR (10)

Here, ṖR is the unit power of RAM. Using power values Pt, Pm and Virtual
Execution Time tv, we can calculate the energy consumption in all the setups.
From the last column, we can deduce that 2TA consumes more energy than 3TA.

20

Fig. 7. Energy consumption of the TPC-E trace for b=1000

Furthermore, the power consumption reduces drastically for both LOC and GLB
when the size of Tm is increased.

These observations can further be confirmed by running the experiment on
a real device. The observations can be seen in figure 8.

Fig. 8. Statistics running the real-life trace for b=32000

4.4 Summary

From the experiments done on simulation and real environment, we can conclude
that 3TA outperform 2TA in both power and performance efficiency. Further-
more, for 3TA we can conclude that for smaller value of s i.e., smaller size of Tm,
GLB performs better. But, in case of large size of Tm, LOC is a better choice
for replacement policy. In next chapter, we will study the impact of FTL in the
performance measurement of flash device and also, an important problem called
CPM (cold page migration).

21

5 Inside View Of FTL

Till now, we have successfully derived the conclusion about how the flash memory
usage can be leveraged in 3-tier architecture. In deriving the conclusion, we made
our decision based on monitory cost and performance cost of DRAM over flash
memory. Importantly, we also assumed that the FTL interface is available for
the flash memory to be accessed as block device and we can apply the algorithms
without any modifications. In this chapter, we will discuss the importance and
impact of FTL in performance measurement and the different problems faced
when accessing flash memory using FTL.

5.1 Revisiting FTL

We discussed the significance of FTL in section 2.3. In chapter 4, we made the
assumption of accessing the flash memory indirectly using FTL. FTL enables
the interface of flash memory to be transparent for middle-tier cache manager.
This is shown in figure 9.

Fig. 9. Middle-tier cache manger accessing the flash memory transparently using FTL.

Flash memory has its own logical page addresses provided by FTL, called
FTL logical addresses, and these logical addresses are used for addressing FTL
logical pages. Now, to keep track of valid logical pages the FTL maintain a table
mFTL : AF 7→ Af , where AF represents FTL logical addresses and Af represents
physical addresses available on the device.

22

5.2 Problem

FTL helps in using flash memory transparently as middle-tier cache by providing
external interface to cache manger(ref. figure 9). Hence, FTL gives the advan-
tage of implementing the standard cache management algorithms directly on
flash devices without bothering about its internal architecture. But, this brings
in dependencies on different vendors because FTLs are proprietary solutions.
This makes it difficult to standardize the performance of flash devices, as their
performance depends on FTL (which to vendor specific). Also, the potentially
expensive operation like, GC (Garbage Collection) is implemented by vendor and
operate independently, leading to unpredictable response time for the operation.

The problem with GC is further explained in this section. There are 3 steps
for GC:

1. Select the sets of garbage blocks. Each garbage block consists of valid/invalid
pages.

2. Move all sets of valid pages from garbage blocks to another sets of free blocks
and update the management information.

3. Erase the garbage blocks, which in return will create a free blocks.

Following is the illustration on how the steps will work :

1. A block of M pages got selected as garbage block using Step 1. Let us assume
that there are v valid flash pages.

2. Step 2 will consume v free flash pages and will increase the total number of
free flash pages by M-v.

3. Total cost of the operation will be (Cfr+Cfp)×v+Cfe, where (Cfr+Cfp)×v
is done by Step 2 and Cfe by Step 3.

The Ratio of v/M is called block utilization. The GC will be more effective
and efficient if, block utilization is small. Hence, block utilization is important
for garbage block selection. For high utilization or complete utilization the ratio
will become 1, making GC ineffective and expensive. This will result in no free
page generation and expensive GC operation.

Apart from the inefficient and expensive GC during high utilization of buffer
memory, another problem called cold-page migration (CPM) contribute towards
inefficiency of GC operation. Though, only hot pages are considered to be kept
in buffer memory, FTL make sure that all valid pages should be accessible irre-
spective of the pages hot/cold state. These cold pages, though not required to
be kept in buffer memory, contribute a lot towards number of valid pages v. Re-
sulting in high block utilization ratio and hence, contributing towards inefficient
GC operation.

Hence, the CPM creates two significant problem for use of flash memory in
middle-tier :

1. Increases the cost of GC because of movement of cold pages along with hot
pages.

23

2. The GC operation will result in less number of free pages and hence, result
in frequent GC operations. More number of GC operations result in more
number of erase operations(Step 3). This will reduce the life of flash device
due to endurance limitation.

5.3 Savior: Logical Page Drop and Native Flash Access

The solution to cold page migration is given by 2 different approaches. The base
principle is to drop the cold pages proactively, so that, GC can produce more
number of free pages (due to reduced block utilization).

– Logical Page Drop (LPD) :
In LPD, we access the flash memory indirectly by using FTL interface and
drop cold pages proactively while ignore them during GC operation. To
achieve this proactive dropping of cold pages, a new operation called delete
is introduce just like read and write. Job of delete is to turn the desired page
into invalid page, so that, that page can be ignored during GC operation.
LPD contains an address mapping table mLPD : Ab 7→ AF , this table is used
for locating the pages cached into the device. Ab represents the set of bottom
tier addresses and AF represents the set of FTL logical addresses. Each cache
slot corresponds to exactly one FLA and also contains the corresponding
dirty/clean state of the page. If the dirty page is selected for eviction, it
must be first written back to the bottom-tier and then the delete instruction
should be passed by FTL for the page.
In LPD, if we have no free page available we will evict and delete d pages
from the cache using the LPD algorithm. The parameter d should be selected
cautiously because it will determine the number of cold pages evicted from
the cache to produce equivalent number of free pages. If we became too
greedy and increased the value of d to drop more valid pages, the advantage
would surpass the cost of loading them back from bottom-tier during page
faults. This process of evicting d pages is called page dropping and will
occur only after first cache replacement, indicating no more free flash pages
available.
For a parameter d, a set F of free slots, a set S of occupied slots; on a cache
hit the free page is selected by following algorithm:

1. If F is not empty then select one element from F and reduce number of
slots by 1. Return the free slot.

2. Else
• Select a cache slot v and remove the victim from S
• Evict the page represented by slot v
• Loop from 0 to d such that S is not empty (Page Dropping)
∗ Select a cache slot s and remove the victim from S
∗ Evict the page represented by slot s
∗ Issue delete operation for page represented by slot s
∗ add s to set of F

• Return v

24

– Native Flash Access (NFA) :
In NFA, the cache manager directly accesses flash memory, removing FTL
dependency for GC and other operations. The NFA cache manager is re-
sponsible for implementing all the basic operations and GC operation. The
NFA cache manager maintains the table mNFA : Ab 7→ Af for mapping the
BTAs (bottom-tier address) Ab to FPAs (FTL page address) Af . In NFA, the
block management information is represented in block management struc-
ture (BMS). The BMS contains the valid/invalid and dirty/clean state of
the pages inside the block. These information are used during GC and cold
page dropping operations.
In NFA, the free page is serve using following algorithm :
a wp pointer, set of free page F, watermark wl, wh

1. If the selected block is fully written then
• set wp to the free page of the available free block
• If |F | ≤ wl then
∗ while |F | ≺ wh do GC

• return wp
2. Else return wp = wp + 1

In this algorithm which provides free flash pages, few important properties
needed to be explained beforehand. Whenever a request for free flash page
arrives in the system, the write pointer wp provides the free flash page and
then points towards the next free flash page in the block. If the block does
not have any more free page left, then the next free block is selected and the
pointer wp points to the first free page of the block. During this process, the
system compares the value of |F | to the lower watermark wl. If the value is
less then equal to wl, then GC is triggered until |F | becomes equal to higher
watermark wh. This helps in doing bulk GC processing.
Next is the NFA GC operation, which differs from typical FTL GC algo-
rithm because of victim page selection policy (used for page dropping) and
garbage block selection policy for performing GC. The dropping of victim
pages happens when all the pages in the block are valid and the block is
fully utilized. In NFA GC operation, the garbage block is selected by victim
selection policy based on the last access time t. All the pages in the garbage
block accessed earlier than t is then dropped and this threshold is passed to
other garbage blocks for page dropping.
The NFA GC algorithm is given as follow:
for a page-dropping threshold t

1. Select the garbage block b
2. If all the pages in b are valid then
• select a victim block b
• set t as the last access time of block b
• foreach page p in block b do
∗ if last access time of p ≤ t then drop page p (make it invalid)
∗ else move p to a free flash page

3. erase b and mark it as a free block

25

Fig. 10. Throughput (IOPS)

5.4 Experiment

In this section, we compare the performance of both the algorithm i.e., NFA
ad LPD, with a baseline (BL) algorithm. The BL approach is indirect access of
flash device without any additional operation like, delete or cold page drop. In
this experiment we will specify the value d for LPD as 1024. We have a top-tier
with buffer pool of 10000 pages and serving the request based on LRU policy.
Whenever, we have a page fault at top-tier, it reads and writes the data from
the middle-tier, which will help us in calculating the performance of three ap-
proaches(TB, NFA, and LPD). To analyze the performance, we uses the through-
put as the criteria. Throughput is given by N/tv, i.e, N number of request served
in tv time. tv is given by tv = tm + tb (as explained in section 4.3).

The performance of three approaches is shown in figure 10 by running the
TPC-C, TPC-H and TPC-E traces. Furthermore, the breakup of the execution
time is represented by figure 11, for all the 3 traces. Here, tm = tg + tc where,
tg is the time taken for garbage collection and tc is the time taken for normal
caching operation.

Fig. 11. Breakup of execution time into garbage collection time tg, caching operation
tc and disk access time tb

26

From the experiment result, we can clearly see that both the algorithms i.e.,
NFA and LPD, significantly reduce the time taken for GC. If we further analyze
the pattern of wear-leveling (explained in section 2.3), we can see that in figure
12 it has been taken care of automatically.

Fig. 12. The number of erase operation for each block. where, x-axis represent the
block number

5.5 Summary

In this chapter, we studied the role of FTL in performance analysis of a flash
memory. We analyzed that, the common problem associated with indirect use
of flash memory using FTL called CPM, can significantly impact the device
performance. To overcome such a problem, two approaches were discussed, one
is by direct access of the flash memory without using FTL (NFA) and other
is by indirect access of the flash memory (LPD). By running the traces, we
analyzed that both the algorithms enhanced the performance of the middle-tier
significantly by reducing the GC operation time. We also analyzed that the use
of these 2 policies automatically resolve the wear-leveling issue faced in flash
based devices. Out of the two approaches, we found that Native Flash Access
is better and hence, can conclude that direct access of the flash based memory
yield better result than the indirect approaches.

6 Conclusion

In this report, we discussed in detail about the flash memory architecture and
how it can be used for DBMS systems. We looked for different architectural

27

scenarios and algorithms to improve the performance and efficiency of the flash
memory. We discussed about the 2TA and 3TA approaches, for using flash mem-
ory as main storage device and as middle-tier for caching respectively. Based on
the experimental results, we concluded that 3TA approach yield better results
in terms of energy efficiency and performance. In 3TA, we discussed two cache
management algorithms namely : Local algorithm (LOC) and Global algorithm
(GLB). In LOC, we only keep account of the pages stored in middle-tier and in
GLB, we consider top tier data while computing the global mapping table. GLB
is the efficient when we have smaller middle-tier flash memory compared to top-
tier DRAM and LOC is better when we have bigger middle-tier flash memory
compared to DRAM.

We also discussed about the significance of indirect (using FTL) and direct
access of the flash memory by the cache management algorithms. With FTL
we have the issue of CPM (cold page migration) during GC, which hampers
the performance of the flash memory significantly. Also, FTL is a proprietary
application and its performance varies from vendor to vendor and can not be
used for standardizing the result. Hence, we discussed two different approaches
namely : Logical Page Drop (LPD) and Native Flash Access (NFA). These two
approaches drop the valid cold pages in advance such that, during GC operation
these pages can be ignored and more free pages can be generated. While, LPD
access the flash memory indirectly (using FTL), the NFA accesses the flash
memory directly and implements out-of-place update and garbage collection
operation. In the result, we can see that NFA performs better.

Hence, we can conclude that using flash memory in middle-tier as cache
device, will not only provide us better efficiency in terms of performance, but
also, in terms of energy consumption.

7 References

References

[RB09] D.Roberts, T.Kgil, et al.: Integrating NAND device onto servers. Communica-
tions of the ACM, vol. 52, no. 4, pages 98-103, 2009.

[KM07] J.Koomey: Estimating total power consumption by servers in the US and
the world. http://sites.and.com/de/Documents/svrpwrusecompletefinal.pdf,
February 2007.

[ID08] The diverse and exploding digital universe-(an IDC white paper).
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-
universe.pdf, March 2008.

[AR02] ARIE TAL, M-Systems Newark, CA: NAND vs. NOR flash technology.The
designer should weigh the options when using flash memory-(Article). http :
//www.electronicproducts.com/DigitalICs/NANDvsNORf lashtechnology.aspx,,
January 2002.

[BY10] Byung-Woo Nam, Gap-Joo Na and Sang-Won Lee: A Hybrid Flash Memory
SSD Scheme for Enterprise Database Applications, April 2010.

[TD12] TDK Global: SMART Storage Solution for Industrial Application (Technical
Journal), January 2012.

28

[GA05] Eran Gal and Sivan Toledo, School of Computer Science, Tel-Aviv University:
Algorithms and Data Structures for Flash Memories, January 2005.

[IO09] Ioannis Koltsidas and Stratis D. Viglas, School of Informatics, University of
Edinburgh: Flash-Enabled Database Storage, March 2010

[KO08] I.Koltsidas & S.D.Viglas. The case for flash-aware multi-level caching. Rapport
technique, University of Edinburgh, 2009.

[SE10] Seongcheol Hong and Dongkun Shin, School of Information and Communica-
tion Engineering Sungkyunkwan University Suwon, Korea : NAND Flash-based
Disk Cache Using SLC/MLC Combined Flash Memory, May 2010.

[Zu04] Y.Zhou,Z. Chen, et al. Second-level buffer cache management. IEEE Transac-
tions on parallel and Distributed System, vol.15, no. 6, pages 505-519, 2004.

[TH05] Theo Härder DBMS Architecture - The Layer Model and its Evolution. March
2005

[Yi12] Yi Ou Thesis report, Caching for flash-based databases and flash-based caching
for databases. August 2012

List of Figures

1 IDC estimates for worldwide annual cost spent on powering and
cooling servers [RB09] . 6

2 Flash Memory Cell Representation [TD12] . 9
3 Reference Architecture of DBMS [TH05] . 12
4 Two-tier Architecture . 14
5 Three-tier Architecture . 15
6 TPC-E trace performance . 19
7 Energy consumption of the TPC-E trace for b=1000 20
8 Statistics running the real-life trace for b=32000 20
9 Middle-tier cache manger accessing the flash memory transparently

using FTL. 21
10 Throughput (IOPS) . 25
11 Breakup of execution time into garbage collection time tg, caching

operation tc and disk access time tb . 25
12 The number of erase operation for each block. where, x-axis

represent the block number . 26

List of Tables

1 Comparison between NOR and NAND based flash memories [AR02] . . 8

