Query processing on raw files

Vítor Uwe Reus

Outline

- 1. Introduction
- 2. Adaptive Indexing
- 3. Hybrid MapReduce
- 4. NoDB
- 5. Summary

Outline

- 1. Introduction
- 2. Adaptive Indexing
- 3. Hybrid MapReduce
- 4. NoDB
- 5. Summary

Raw Files

Information Storing

Sometimes human-readable, open format

Not physically optimized for querying

Might be useful in some cases

Big Data

Traditional DBMS may not be a good option

Internet-scale business

Scientific data

The fourth paradigm

For scientific discovery

Experimental

Theoretical

Computational (simulations)

Data driven

Interoperability

Interoperability

Information interoperability

Application interoperability

Human-sourced Information

How to query raw files?

State of the art

Raw file as storage

A-priori loading

Raw file parsing

AWK

Oracle external table

MySQL CSV engine

MapReduce

Read entire data all times

No indexing features

A-priori loading

Load into a DBMS and then query Benefit from indexes Time

Labor intensive Loading scripts, schemas Data duplication Big data Versioning

Workload behavior

Load time vs Query time

Query time

Hybrid querying techniques

Query time

Outline

- 1. Introduction
- 2. Adaptive Indexing
- 3. Hybrid MapReduce
- 4. NoDB
- 5. Summary

Adaptive indexing

Automatic tuning based on workload

Keep an auxiliary structure

Can benefit raw file parsing

Database Cracking

Adaptive Merging

Database cracking

Physical reorganization of columns

Implemented on MonetDB

A column store, but can be generalized (raw)

Database Cracking

Cracking a column

Database Cracking

Column A \rightarrow Copy to cracker column A_{CRK}

AVL tree indexing

Refinement

Tuple reconstruction

Fast if columns are in same order

Cracking compromises original positions

Cracker columns: Value selection

Original columns: Tuple reconstruction

Adaptive merging

Incremental index creation as in cracking

Partitioned B-trees

Focus on merging instead of partitioning

Merging vs cracking

*In this case, all queries focus on the same 10⁶ keys in the center of the domain

Merging vs cracking

	Cracking	Merging
Converge	Stable	Faster
Storage	AVL	B-Tree
Data is	Partitioned	and Sorted
as in	Quick Sort	Merge Sort

Outline

- 1. Introduction
- 2. Adaptive Indexing
- 3. Hybrid MapReduce
- 4. NoDB
- 5. Summary

Hybrid MapReduce

	Scalability*	High Performance**
MapReduce		X
Parallel Databases	X	
What is needed		

* 1000s of nodes

** Queries on structured data

HadoopDB

MapReduce using a DBMS instead of HDFS

SMS Planner

Hive query processor

- 1. Convert HiveQL query to AST
- 2. Get schema from catalog
- 3. Create a Query Plan
- 4. Optimize
- 5. Converted plan to one or more MR Jobs

SMS Planner

- Convert HiveQL query to AST
 Update Catalog with DB information
- 2. Get schema from catalog
- 3. Create a Query Plan
- 4. Optimize

Reconstruc some SQL to push it to the DB

5. Converted plan to one or more MR Jobs

SMS Planner

Hive

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

HadoopDB Performance

Group By

2,500,000 unique groups over 20gb of data

Join

134,000 joined records over 20gb of date

HadoopDB loading times

Load Grep (0.5GB/node)

Load UserVisits (20GB/node)

HadoopDB

- Good performance
- Scalable
- General Fault tolerant
- ⊙ Heterogeneous node compatible
- ⊙ Make any DBMS a distributed system
- © Data Loader: All *a-priori* loading problems

Load DBMS with data from Hadoop at run-time

Invisibility objective

Minimal human effort

Minimal increase in response time

Use a DBMS as a cache for the raw data

Use code for tuple parsing and extraction to invisibly load the parsed tuples into a DBMS

On next data access, it can be read from DBMS

Invisible loading: Parser

Parser extends inputFormat

getAttribute(int index)

Code for tuple parsing and extraction

Map takes a Parser as input

- Incremental data reorganization
- ☺ Almost no overhead on MR Jobs
- ⊙ Optimizes future access speeds
- © Data duplication (No GC)

Outline

- 1. Introduction
- 2. Adaptive Indexing
- 3. Hybrid MapReduce
- 4. NoDB
- 5. Summary

NoDB

New DBMS paradigm

Do not require data loading

Maintains feature set of modern DBMS

Replaces physical storage with raw files

PostgresRaw

NoDB Implementation

Replaces TableScan Operator

CSV Files

Optimizations

PostgresRaw Optimizations

Selective...

- a. Tokenizing
- b. Parsing
- c. Tuple formation

Indexing

Auto Tuning

Caching

Statistics

a. Selective tokenizing

<u>111;222;"third";garbage;...</u>

Supposing we want attributes 1 and 3

We can stop tokenizing at the third

Saves CPU time

b. Selective parsing

<u>111;222;"third";garbage;...</u> In memory:

 111
 6F
 Parsed to int

 222
 32
 32
 32

 "third"
 74
 68
 69
 72
 64

Also: delayed parsing

c. Selective tuple formation

<u>111;222;"third";garbage;...</u>

(111, "third")

Final tuple containing only attributes 1 and 3

CPU bound

Indexing

Year; Make; Model; Liters 1997; BMW; E89; 2,34 2011; Mercedes; SLS; 2

Looks nice :)

Indexing

NOT :(

Year;Make;Model;Liters91997;BMW;E89;2,3492011;Mercedes;SLS;2

Sequentially reading each time is not an option

Solution

Keep an index of the already used attributes Skip file reading to this positions

Indexing

Positional Map

Dynamically created according to queries

Tuple 1		Tup	ole 2			Т	uple 3		
Attribute 1	Attribute 3	Attri	bute 1	Att	ribute 3	A	ttribute 1	Attribut	e 3
0	10	23	_	32		4	1	55	_
Year:Make:	Model;Lite	ers¶1	997:BM	1W:	89:2.34	9	011:Merc	edes ; s	LS:2

Updates

First case, no positions change

Tuple 1		Tu	ole 2			Т	uple 3		
Attribute 1	Attribute 3	Attri	bute 1	Att	ribute 3	A	ttribute 1	Attribut	te 3
0	10	23		32		4	1	55	
<pre>Year;Make;</pre>	Model;Lite	ers¶1	989;BE	BB;	CC;4,44		011;Merc	edes; <mark>S</mark>	LS;2

Updates

Second case, positions change. First option, update index.

Tuple 1		Tuple 2	2		Tuple 3	
Attribute 1	Attribute 3	Attribute	1 A	ttribute 3	Attribute 1	Attribute 3
0	10	23	3:	2 30 (-2)	41 37 (-4)	55 51 (-4)
Year;Make;	Model;Lite	ers¶19 89 ;	B;C;	4,4492 01	L1;Mercedes	; s Ls;2

Updates

Second case, positions change. Second option, throw it partially (or fully) away.

Tuple 1		Tuple 2
Attribute 1	Attribute 3	Attribute 1
0	10	23
		$\mathbf{h} = \mathbf{n} + $

Year;Make;Model;Liters¶1989;B;C;4,44¶2011;Mercedes;SLS;2

Index will automatically reconstruct itself

Traditional optimizations

Caching

Statistics

NoDB Performance Compared

NoDB

- ⊙ Great DBMS + Raw hybrid
- Output Competitive performance with traditional DBs
- ② Eliminates loading times
- ☺ Queries get faster with time
- Updates

Outline

- 1. Introduction
- 2. Adaptive Indexing
- 3. Hybrid MapReduce
- 4. NoDB
- 5. Summary

Summary

Mature solutions: high load or query time No index \rightarrow High query time Load all data \rightarrow High delay (load time) Hybrid solutions Bring indexes to in-situ processing Adaptive indexing HadoopDB NoDB

Remember..

Query time

Conclusions

References

- 1. Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexander Rasin. **HadoopDB**: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads. *Proceedings of the VLDB Endowment,*
- Azza Abouzied, Daniel J. Abadi, and Avi Silberschatz.
 Invisible loading: access-driven data transfer from raw files into database systems.
 Proceedings of the 16th International Conference on Extending Database Technology, pages 1–10, 2013.
- Renata Borovica, Stratos Idreos, and Anastasia Ailamaki.
 NoDB : Efficient Query Execution on Raw Data Files Categories and Subject Descriptors. pages 241– 252.
- 4. Goetz Graefe and Harumi Kuno. **Adaptive indexing** for relational keys. 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010), pages 69–74, 2010.
- 5. Felix Halim, S Idreos, P Karras, and RHC Yap. Stochastic **database cracking**: Towards robust adaptive indexing in main-memory column-stores. *Proceedings of the VLDB Endowment (PVLDB),*
- 6. Tony Hey, Stewart Tansley, and Kristin Tolle, editors. **The Fourth Paradigm**: Data-Intensive Scientific Discovery. *Microsoft Research, Redmond, Washington, 2009.*
- 7. Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki. **Here are my data files. here are my queries. where are my results**. *Proceedings of 5th Biennial Conference on Innovative Data Systems Research, pages 57–68, 2011.*
- 8. Christopher Olston, Benjamin Reed, Ravi Kumar, and Andrew Tomkins. **Pig Latin**: A Not-So-Foreign Language for Data Processing.
- 9. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. **Hive** A Ware-housing Solution Over a Map-Reduce Framework. *PVLDB*

Questions?

Thank you!

MapReduce

Can be classified as distributed raw file parsing

Adaptive merging

Database Cracking

