
Query processing on raw
files

Vítor Uwe Reus

Outline

1. Introduction

2. Adaptive Indexing

3. Hybrid MapReduce

4. NoDB

5. Summary

Outline

1. Introduction

2. Adaptive Indexing

3. Hybrid MapReduce

4. NoDB

5. Summary

Information Storing

Sometimes human-readable, open format

Not physically optimized for querying

Might be useful in some cases

Raw Files

Big Data

Traditional DBMS may not be a good option

Internet-scale business

Scientific data

The fourth paradigm

For scientific discovery

Experimental

Theoretical

Computational (simulations)

Data driven

Interoperability

Interoperability

Information
interoperability

Application
interoperability

Human-sourced Information

How to query raw files?

State of the art

Raw file as storage

A-priori loading

Raw file parsing

AWK

Oracle external table

MySQL CSV engine

MapReduce

Read entire data all times

No indexing features

A-priori loading

Load into a DBMS and then query
Benefit from indexes

Time
Labor intensive

Loading scripts, schemas
Data duplication

Big data
Versioning

Workload behavior

Load time vs Query time

Hybrid querying techniques

Outline

1. Introduction

2. Adaptive Indexing

3. Hybrid MapReduce

4. NoDB

5. Summary

Automatic tuning based on workload

Keep an auxiliary structure

Can benefit raw file parsing

Database Cracking

Adaptive Merging

Adaptive indexing

Database cracking

Physical reorganization of columns

Implemented on MonetDB

A column store, but can be generalized (raw)

Database Cracking

Cracking a column

Database Cracking

Column A → Copy to cracker column ACRK

AVL tree indexing

Refinement

Tuple reconstruction

Fast if columns are in same order

Cracking compromises original positions

Cracker columns: Value selection

Original columns: Tuple reconstruction

Adaptive merging

Incremental index creation as in cracking

Partitioned B-trees

Focus on merging instead of partitioning

Merging vs cracking

Typical result of merging compared to cracking
*In this case, all queries focus on the same 106 keys in the center of the domain

Merging vs cracking

Cracking Merging
Converge Stable Faster
Storage AVL B-Tree
Data is Partitioned ...and Sorted
as in.. Quick Sort Merge Sort

Outline

1. Introduction

2. Adaptive Indexing

3. Hybrid MapReduce

4. NoDB

5. Summary

Hybrid MapReduce

What is
needed

HadoopDB

MapReduce using a DBMS instead of HDFS

SMS Planner

SQL MapReduce SQL

Hive query processor

1. Convert HiveQL query to AST

2. Get schema from catalog

3. Create a Query Plan

4. Optimize

5. Converted plan to one or more MR Jobs

SMS Planner

1. Convert HiveQL query to AST

Update Catalog with DB information

2. Get schema from catalog

3. Create a Query Plan

4. Optimize

Reconstruc some SQL to push it to the DB

5. Converted plan to one or more MR Jobs

SMS Planner

HadoopDB Performance

Group By
2,500,000 unique groups
over 20gb of data

Join
134,000 joined records

over 20gb of date

HadoopDB loading times

HadoopDB

☺ Good performance

☺ Scalable

☺ Fault tolerant

☺ Heterogeneous node compatible

☺ Make any DBMS a distributed system

☹ Data Loader: All a-priori loading problems

Invisible loading

Load DBMS with data from Hadoop at run-time

Invisibility objective

Minimal human effort

Minimal increase in response time

Use a DBMS as a cache for the raw data

Invisible loading

Use code for tuple parsing and extraction to
invisibly load the parsed tuples into a DBMS

Read Write

Invisible loading

On next data access, it can be read from
DBMS

Read

Invisible loading: Parser

Parser extends inputFormat

getAttribute(int index)

Code for tuple parsing and extraction

Map takes a Parser as input

Invisible loading

☺ Incremental data reorganization

☺ Almost no overhead on MR Jobs

☺ Optimizes future access speeds

☹ Data duplication (No GC)

Outline

1. Introduction

2. Adaptive Indexing

3. Hybrid MapReduce

4. NoDB

5. Summary

New DBMS paradigm

Do not require data loading

Maintains feature set of modern DBMS

Replaces physical storage with raw files

NoDB

PostgresRaw

NoDB Implementation

Replaces TableScan Operator

CSV Files

Optimizations

PostgresRaw Optimizations

Selective...
a. Tokenizing
b. Parsing
c. Tuple formation

Indexing

Auto Tuning

Caching

Statistics

a. Selective tokenizing

111;222;"third";garbage;...

Supposing we want attributes 1 and 3

We can stop tokenizing at the third

Saves CPU time

b. Selective parsing

111;222;"third";garbage;...
In memory:

111 6F Parsed to int
222 32 32 32 Keep as string
"third" 74 68 69 72 64

Also: delayed parsing

c. Selective tuple formation

111;222;"third";garbage;...

(111, "third")

Final tuple containing only attributes 1 and 3

CPU bound

Indexing

Year; Make; Model; Liters

1997; BMW; E89; 2,34

2011; Mercedes; SLS; 2

Looks nice :)

Indexing

NOT :(

Year;Make;Model;Liters¶1997;BMW;E89;2,34¶2011;Mercedes;SLS;2

Sequentially reading each time is not an option

Solution
Keep an index of the already used attributes
Skip file reading to this positions

Indexing

Positional Map
Dynamically created according to queries

Year;Make;Model;Liters¶1997;BMW;E89;2,34¶2011;Mercedes;SLS;2

Tuple 1 Tuple 2 Tuple 3
Attribute 1 Attribute 3 Attribute 1 Attribute 3 Attribute 1 Attribute 3

0 10 23 32 41 55

Updates

First case, no positions change

Year;Make;Model;Liters¶1989;BBB;CCC;4,44¶2011;Mercedes;SLS;2

Tuple 1 Tuple 2 Tuple 3
Attribute 1 Attribute 3 Attribute 1 Attribute 3 Attribute 1 Attribute 3

0 10 23 32 41 55

Updates

Second case, positions change.
First option, update index.

Year;Make;Model;Liters¶1989;B;C;4,44¶2011;Mercedes;SLS;2

Tuple 1 Tuple 2 Tuple 3
Attribute 1 Attribute 3 Attribute 1 Attribute 3 Attribute 1 Attribute 3

0 10 23 32 30 (-2) 41 37 (-4) 55 51 (-4)

Updates

Second case, positions change.
Second option, throw it partially (or fully) away.

Year;Make;Model;Liters¶1989;B;C;4,44¶2011;Mercedes;SLS;2

Index will automatically reconstruct itself

Tuple 1 Tuple 2
Attribute 1 Attribute 3 Attribute 1

0 10 23

Traditional optimizations

Caching

Statistics

NoDB Performance Compared

NoDB

☺ Great DBMS + Raw hybrid

☺ Competitive performance with traditional DBs

☺ Eliminates loading times

☺ Queries get faster with time

☹ Updates

Outline

1. Introduction

2. Adaptive Indexing

3. Hybrid MapReduce

4. NoDB

5. Summary

Summary

Mature solutions: high load or query time
No index → High query time
Load all data → High delay (load time)

Hybrid solutions
Bring indexes to in-situ processing
Adaptive indexing
HadoopDB
NoDB

Remember..

Conclusions

References
1. Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexander Rasin.

HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads.
Proceedings of the VLDB Endowment,

2. Azza Abouzied, Daniel J. Abadi, and Avi Silberschatz.
Invisible loading: access-driven data transfer from raw files into database systems.
Proceedings of the 16th International Conference on Extending Database Technology, pages 1–10,
2013.

3. Renata Borovica, Stratos Idreos, and Anastasia Ailamaki.
NoDB : Efficient Query Execution on Raw Data Files Categories and Subject Descriptors. pages 241–
252.

4. Goetz Graefe and Harumi Kuno. Adaptive indexing for relational keys. 2010 IEEE 26th International
Conference on Data Engineering Workshops (ICDEW 2010), pages 69–74, 2010.

5. Felix Halim, S Idreos, P Karras, and RHC Yap. Stochastic database cracking: Towards robust
adaptive indexing in main-memory column-stores. Proceedings of the VLDB Endowment (PVLDB),

6. Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research, Redmond, Washington, 2009.

7. Stratos Idreos, Ioannis Alagiannis, Ryan Johnson, and Anastasia Ailamaki. Here are my data files.
here are my queries. where are my results. Proceedings of 5th Biennial Conference on Innovative
Data Systems Research, pages 57–68, 2011.

8. Christopher Olston, Benjamin Reed, Ravi Kumar, and Andrew Tomkins. Pig Latin: A Not-So-Foreign
Language for Data Processing.

9. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao
Liu, Pete Wyckoff, and Raghotham Murthy. Hive - A Ware-housing Solution Over a Map-Reduce
Framework. PVLDB

Questions?

Thank you!

MapReduce

Can be classified as distributed raw file parsing

Adaptive merging

Database Cracking

