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Information Storing

Sometimes human-readable, open format

Not physically optimized for querying

Might be useful in some cases

Raw Files





Big Data

Traditional DBMS may not be a good option

Internet-scale business

Scientific data



The fourth paradigm

For scientific discovery

Experimental

Theoretical

Computational (simulations)

Data driven



Interoperability



Interoperability

Information 
interoperability

Application 
interoperability



Human-sourced Information



How to query raw files?



State of the art

Raw file as storage

A-priori loading



Raw file parsing

AWK

Oracle external table

MySQL CSV engine

MapReduce

Read entire data all times

No indexing features



A-priori loading

Load into a DBMS and then query
Benefit from indexes

Time
Labor intensive

Loading scripts, schemas
Data duplication

Big data
Versioning



Workload behavior



Load time vs Query time



Hybrid querying techniques
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Automatic tuning based on workload

Keep an auxiliary structure 

Can benefit raw file parsing

Database Cracking

Adaptive Merging

Adaptive indexing



Database cracking

Physical reorganization of columns

Implemented on MonetDB

A column store, but can be generalized (raw)



Database Cracking

Cracking a column



Database Cracking

Column A → Copy to cracker column ACRK

AVL tree indexing

Refinement



Tuple reconstruction

Fast if columns are in same order

Cracking compromises original positions

Cracker columns: Value selection

Original columns: Tuple reconstruction

 



Adaptive merging

Incremental index creation as in cracking

Partitioned B-trees

Focus on merging instead of partitioning



Merging vs cracking

Typical result of merging compared to cracking
*In this case, all queries focus on the same 106 keys in the center of the domain



Merging vs cracking

Cracking Merging
Converge Stable Faster
Storage AVL B-Tree
Data is Partitioned ...and Sorted
as in.. Quick Sort Merge Sort
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Hybrid MapReduce

What is 
needed



HadoopDB

MapReduce using a DBMS instead of HDFS

























 
 



SMS Planner

SQL MapReduce SQL



Hive query processor

1. Convert HiveQL query to AST

2. Get schema from catalog

3. Create a Query Plan

4. Optimize

5. Converted plan to one or more MR Jobs



SMS Planner

1. Convert HiveQL query to AST

Update Catalog with DB information

2. Get schema from catalog

3. Create a Query Plan

4. Optimize

Reconstruc some SQL to push it to the DB

5. Converted plan to one or more MR Jobs



SMS Planner



HadoopDB Performance

Group By
2,500,000 unique groups 
over 20gb of data

Join
134,000 joined records

over 20gb of date



HadoopDB loading times



HadoopDB

☺ Good performance 

☺ Scalable

☺ Fault tolerant 

☺ Heterogeneous node compatible 

☺ Make any DBMS a distributed system 

☹ Data Loader: All a-priori loading problems



Invisible loading

Load DBMS with data from Hadoop at run-time

Invisibility objective

Minimal human effort

Minimal increase in response time 

Use a DBMS as a cache for the raw data



Invisible loading

Use code for tuple parsing and extraction to 
invisibly load the parsed tuples into a DBMS

Read Write



Invisible loading

On next data access, it can be read from 
DBMS 

Read



Invisible loading: Parser

Parser extends inputFormat

getAttribute(int index)

Code for tuple parsing and extraction

Map takes a Parser as input



Invisible loading

☺ Incremental data reorganization

☺ Almost no overhead on MR Jobs

☺ Optimizes future access speeds

☹ Data duplication (No GC)
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New DBMS paradigm

Do not require data loading 

Maintains feature set of modern DBMS

Replaces physical storage with raw files

NoDB



PostgresRaw

NoDB Implementation

Replaces TableScan Operator

CSV Files

Optimizations



PostgresRaw Optimizations

Selective...
a. Tokenizing
b. Parsing
c. Tuple formation

Indexing

Auto Tuning

Caching

Statistics



a. Selective tokenizing

111;222;"third";garbage;...

Supposing we want attributes 1 and 3

We can stop tokenizing at the third

Saves CPU time



b. Selective parsing

111;222;"third";garbage;...
In memory:

111 6F  Parsed to int
222 32 32 32 Keep as string
"third" 74 68 69 72 64

Also: delayed parsing



c. Selective tuple formation

111;222;"third";garbage;...

(111, "third")

Final tuple containing only attributes 1 and 3

CPU bound



Indexing

Year; Make; Model; Liters

1997; BMW; E89; 2,34

2011; Mercedes; SLS; 2

Looks nice :)



Indexing

NOT :(

Year;Make;Model;Liters¶1997;BMW;E89;2,34¶2011;Mercedes;SLS;2

Sequentially reading each time is not an option

Solution
Keep an index of the already used attributes
Skip file reading to this positions



Indexing

Positional Map
Dynamically created according to queries

Year;Make;Model;Liters¶1997;BMW;E89;2,34¶2011;Mercedes;SLS;2

Tuple 1 Tuple 2 Tuple 3
Attribute 1 Attribute 3 Attribute 1 Attribute 3 Attribute 1 Attribute 3

0 10 23 32 41 55



Updates

First case, no positions change

Year;Make;Model;Liters¶1989;BBB;CCC;4,44¶2011;Mercedes;SLS;2

Tuple 1 Tuple 2 Tuple 3
Attribute 1 Attribute 3 Attribute 1 Attribute 3 Attribute 1 Attribute 3

0 10 23 32 41 55



Updates

Second case, positions change.
First option, update index.

Year;Make;Model;Liters¶1989;B;C;4,44¶2011;Mercedes;SLS;2

Tuple 1 Tuple 2 Tuple 3
Attribute 1 Attribute 3 Attribute 1 Attribute 3 Attribute 1 Attribute 3

0 10 23 32 30 (-2) 41 37 (-4) 55 51 (-4)



Updates

Second case, positions change.
Second option, throw it partially (or fully) away.

Year;Make;Model;Liters¶1989;B;C;4,44¶2011;Mercedes;SLS;2

Index will automatically reconstruct itself

Tuple 1 Tuple 2
Attribute 1 Attribute 3 Attribute 1

0 10 23



Traditional optimizations

Caching

Statistics



NoDB Performance Compared



NoDB

☺ Great DBMS + Raw hybrid

☺ Competitive performance with traditional DBs

☺ Eliminates loading times

☺ Queries get faster with time

☹ Updates
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Summary

Mature solutions: high load or query time
No index → High query time
Load all data → High delay (load time)

Hybrid solutions
Bring indexes to in-situ processing
Adaptive indexing
HadoopDB
NoDB



Remember..



Conclusions
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Questions?



Thank you!



MapReduce

Can be classified as distributed raw file parsing



Adaptive merging



Database Cracking


