
Die Verwendung von Phase-change Memory in
modernen DBMS-Architekturen

Jan Stärz

University of Kaiserslautern

j staerz11@cs.uni-kl.de

12.07.2013

1 / 48

Überblick

Motivation

Phase-change Memory (PCM)

Algorithmen zur Verschleißreduzierung

Anwendung PCMLogging

Fazit

Literatur

2 / 48

Motivation

3 / 48

I Parallelisierung von immer größer werdenden Aufträgen durch
Multi-Threading benötigt zunehmend größeren Arbeitsspeicher

I DRAM schlecht skalierbar

I Skalierbare Alternative zu DRAM gesucht bei gleichem
Laufzeitverhalten

I Vielversprechendster Kandidat ist Phase-change Memory
(PCM)

4 / 48

Phase-change Memory (PCM)

5 / 48

Was ist PCM?

I Neuartiger Speicher

I Datenspeicherung geschieht über ein Phasenwechselmaterial,
häufig Ge2Sb2Te5, kurz GST

Phase elektr. Widerstand Zustand logisch

kristallin gering SET 1
amorph hoch RESET 0

I ohne äußere Einflüsse bleibt die Phase erhalten
→ persistent

6 / 48

PCM-Operationen SET, RESET, READ

I SET/RESET: Zufuhr von elektrischem Strom
unterschiedlicher Stärke und Dauer

I READ: Lesen der gespeicherten Daten über
Widerstandsmessung des Materials

Table 1: Comparison of memory technologies.
DRAM PCM NAND Flash HDD

Read energy 0.8 J/GB 1 J/GB 1.5 J/GB [28] 65 J/GB
Write energy 1.2 J/GB 6 J/GB 17.5 J/GB [28] 65 J/GB
Idle power ∼100 mW/GB ∼1 mW/GB 1–10 mW/GB ∼10 W/TB
Endurance ∞ 106 − 108 104 − 105 ∞
Page size 64B 64B 4KB 512B
Page read latency 20-50ns ∼ 50ns ∼ 25 µs ∼ 5 ms
Page write latency 20-50ns ∼ 1 µs ∼ 500 µs ∼ 5 ms
Write bandwidth ∼GB/s per die 50-100 MB/s per die 5-40 MB/s per die ∼200MB/s per drive
Erase latency N/A N/A ∼ 2 ms N/A
Density 1× 2− 4× 4× N/A
Note: The table contents are based mainly on [10, 15, 22].

"RESET" pulse

"SET" pulse

READ

Time

(T
e

m
p

e
ra

tu
re

)
C

u
rr

e
n

t

cryst

melt

T

T

Figure 1: Currents and timings (not to scale) for
SET, RESET, and READ operations on a PCM cell.
For phase change material Ge2Sb2Te5, Tmelt ≈ 610◦C
and Tcryst ≈ 350◦C.

the primary main memory, and the key challenge of over-
coming its write limitations.

2.1 PCM Technology
Phase change memory (PCM) is a byte-addressable non-

volatile memory that exploits large resistance contrast be-
tween amorphous and crystalline states in so-called phase
change materials such as chalcogenide glass. The difference
in resistance between the high-resistance amorphous state
and the low-resistance crystalline state is typically about
five orders of magnitude and can be used to infer logical
states of binary data (high represents 0, low represents 1).
Programming a PCM device involves application of elec-

tric current, leading to temperature changes that either SET
or RESET the cell, as shown schematically in Figure 1. To
SET a PCM cell to its low-resistance state, an electrical
pulse is applied to heat the cell above the crystalization tem-
perature Tcryst (but below the melting temperature Tmelt) of
the phase change material. The pulse is sustained for a suffi-
ciently long period for the cell to transition to the crystalline
state. On the other hand, to RESET the cell to its high-
resistance amorphous state, a much larger electrical current
is applied in order to increase the temperature above Tmelt.
After the cell has melted, the pulse is abruptly cut off, caus-
ing the melted material to quench into the amorphous state.
To READ the current state of a cell, a small current that
does not perturb the cell state is applied to measure the
resistance. At normal temperatures (< 120◦C ≪ Tcryst),
PCM offers many years of data retention.

2.2 Using PCM in the Memory Hierarchy
To see where PCM may fit in the memory hierarchy, we

need to know its properties. Table 1 compares PCM with
DRAM (technology for today’s main memory), NAND flash

SSD/HARD DISK

M
E

M
O

R
Y

M
A

IN

CACHE

PCM

CPU
(a)

CACHE

SSD/HARD DISK

CPU

DRAM PCM

(b)

CACHE

SSD/HARD DISK

DRAM CACHE

CPU

PCM

(c)

Figure 2: Candidate main memory organizations
with PCM.

(technology for today’s solid state drives), and HDD (hard
disk drives), showing the following points:

• Compared to DRAM, PCM’s read latency is close to
that of DRAM, while its write latency is about an
order of magnitude slower. PCM offers a density ad-
vantage over DRAM. This means more memory capac-
ity for the same chip area, or potentially lower price
per capacity. PCM is also more energy-efficient than
DRAM in idle mode.

• Compared to NAND Flash, PCM can be programmed
in place regardless of the initial cell states (i.e., with-
out Flash’s expensive “erase” operation). Therefore,
its sequential and random accesses show similar (far
superior) performance. Moreover, PCM has orders of
magnitude higher write endurance than Flash.

Because of these attractive properties, PCM is being incor-
porated in mobile handsets [24], and recent computer ar-
chitecture and systems studies have argued that PCM is a
promising candidate to be used in main memory in future
mainstream computer systems [9, 15, 22].

Figure 2 shows three alternative proposals in recent stud-
ies for using PCM in the main memory system [9, 15, 22].
Proposal (a) replaces DRAM with PCM to achieve larger
main memory capacity. Even though PCM is slower than
DRAM, clever optimizations have been shown to reduce ap-
plication execution time on PCM to within a factor of 1.2
of that on DRAM [15]. Both proposals (b) and (c) include
a small amount of DRAM in addition to PCM so that fre-
quently accessed data can be kept in the DRAM buffer to
improve performance and reduce PCM wear. Their differ-
ence is that proposal (b) gives software explicit control of the
DRAM buffer [9], while proposal (c) manages the DRAM

22

7 / 48

Einordnung in bekannte Speicher

DRAM NAND Flash HDD PCM
Dichte 1X 4X N/A 2-4X
Leselatenz
(Seitengröße)

20-50ns
(64B)

~25µs
(4KB)

~5ms
(512B)

~50ns
(64B)

Schreiblatenz
(Seitengröße)

20-50ns
(64B)

~500µs
(4KB)

~5ms
(512B)

~1µs
(64B)

Idle-Verbrauch ~100 mW/GB 1-10 mW/GB ~10 W/TB ~1 mW/GB
Read-Verbrauch 0.8 J/GB 1.5 J/GB 65 J/GB 1 J/GB
Write-Verbrauch 1.2 J/GB 17.5 J/GB 65 J/GB 6 J/GB
Beständigkeit
(in Schreibzyklen) N/A 104-105 ∞ 106-108

������
������
������

������
������
������

2
1

2 2 2 2 2
5 9 13 17 21

L1 CACHE

SRAM

LAST LEVEL CACHE

EDRAM DRAM FLASHPCM HARD DRIVE

MAIN MEMORY SYSTEM

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

HIGH PERFORMANCE DISK SYSTEM

2 2 2 2
3 7 11 15

2
19

2
23

Figure 1: Latency of different technologies in memory hierarchy. Numbers accurate within a factor of two.

There is active research on PCM, and several PCM prototypes
have been proposed, each optimizing for some important device
characteristics (such as density, latency, bandwidth, or lifetime).
While the PCM technology matures, and becomes ready to be used
as a complement to DRAM, we believe that system architecture
solutions can be explored to make these memories part of the main
memory to improve system performance. The objective of this pa-
per is to study the design trade-offs in integrating the most promis-
ing emerging memory technology, PCM, into the main memory
system.

To be independent of the choice of a specific PCM prototype, we
use an abstract memory model that is D times denser than DRAM
and S times slower than DRAM. We show that for currently pro-
jected values of PCM (S ≈ 4,D ≈ 4), a main memory system
using PCM can reduce page faults by 5X, and hence execute appli-
cations with much larger working sets. However, because PCM is
slower than DRAM, main memory access time is likely to increase
linearly with S, which increases the overall execution time. There-
fore, we believe that PCM is unlikely to be a drop-in replacement
for DRAM. We show that by having a small DRAM buffer in front
of the PCM memory, we can make the effective access time and
performance closer to a DRAM memory.

We study the design issues in such a hybrid memory architecture
and show how a two-level memory system can be managed. Our
evaluations for a baseline system of 16-cores with 8GB DRAM
show that PCM-based hybrid memory can provide a speedup of 3X
while incurring only 13% area overhead. The speedup is within
10% of an expensive DRAM only system which would incur 4X
the area. We use an aggressive baseline that already has a large
Flash-based disk cache. We show that PCM-based hybrid memory
provides much higher performance benefits for a system without
Flash or with limited Flash capacity.

As each cell in PCM can endure only a limited number of writes,
we also discuss techniques to reduce write traffic to PCM. We de-
velop an analytical model to study the impact of write traffic on the
lifetime of PCM that shows how the “bytes per cycle” relates to av-
erage lifetime of PCM for a given endurance (maximum number of
writes per cell). We show that architectural choices and simple en-
hancements can reduce the write traffic by 3X which can increase
the average lifetime from 3 years to 9.7 years.

To our knowledge, this is the first study on architectural analysis
of PCM based main memory systems. We believe this will serve
as a starting point for system architects to address the challenges
posed by PCM, making PCM attractive to be integrated in the main
memory of future systems.

2. BACKGROUND AND MOTIVATION
With increasing number of processors in the computer system,

the pressure on the memory system to satisfy the demand of all
concurrently executing applications (threads) has increased as well.
Furthermore, critical computing applications are becoming more
data-centric than compute-centric [9]. One of the major challenges
in the design of large-scale, high-performance computer systems
is maintaining the performance growth rate of the system mem-
ory. Typically, the disk is five orders of magnitude slower than
the rest of the system [6] making frequent misses in system main
memory a major bottleneck to system performance. Furthermore,
main memory consisting entirely of DRAM is already hitting the
power and cost limits [15]. Exploiting emerging memory technolo-
gies, such as Phase-Change Memory (PCM) and Flash, become
crucial to be able to build larger capacity memory systems in the
future while remaining within the overall system cost and power
budgets. In this section, we first present a brief description of the
Phase-Change Memory technology, and highlight the strengths of
PCM that makes it a promising candidate for main memory of high-
performance servers. We present a simple model that is useful in
describing such emerging memory technologies for use in com-
puter architecture studies.

2.1 What is Phase-Change Memory?
PCM is a type of non-volatile memory that exploits the prop-

erty of chalcogenide glass to switch between two states, amorphous
and crystalline, with the application of heat using electrical pulses.
The phase change material can be switched from one phase to an-
other reliably, quickly, and a large number of times. The amor-
phous phase has low optical reflexivity and high electrical resistiv-
ity. Whereas, the crystalline phase (or phases) has high reflexivity
and low resistance. The difference in resistance between the two
states is typically about five orders of magnitude [24] and can be
used to infer logical states of binary data.

While the principle of using phase change materials for memory
cell was demonstrated in 1960s [23], the technology was too slow
to be of practical use. However, the discovery of fast crystalliz-
ing material such as Ge2Sb2Te5(GST) [27] and Ag- and In-doped
Sb2Te(AIST) [25] has renewed industrial interest in PCM and the
first commercial PCM products are about to enter the market. Both
GST and AIST can crystallize in less than 100ns compared to 10µs
or more for earlier materials [23]. PCM devices with extremely
small dimensions as low as 3nm × 20nm have been fabricated
and tested. A good discussion on scaling characteristics of PCM is
available in [24].

8 / 48

Einordnung in bekannte Speicher

DRAM NAND Flash HDD PCM
Dichte 1X 4X N/A 2-4X
Leselatenz
(Seitengröße)

20-50ns
(64B)

~25µs
(4KB)

~5ms
(512B)

~50ns
(64B)

Schreiblatenz
(Seitengröße)

20-50ns
(64B)

~500µs
(4KB)

~5ms
(512B)

~1µs
(64B)

Idle-Verbrauch ~100 mW/GB 1-10 mW/GB ~10 W/TB ~1 mW/GB
Read-Verbrauch 0.8 J/GB 1.5 J/GB 65 J/GB 1 J/GB
Write-Verbrauch 1.2 J/GB 17.5 J/GB 65 J/GB 6 J/GB
Beständigkeit
(in Schreibzyklen) N/A 104-105 ∞ 106-108

������
������
������

������
������
������

2
1

2 2 2 2 2
5 9 13 17 21

L1 CACHE

SRAM

LAST LEVEL CACHE

EDRAM DRAM FLASHPCM HARD DRIVE

MAIN MEMORY SYSTEM

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

HIGH PERFORMANCE DISK SYSTEM

2 2 2 2
3 7 11 15

2
19

2
23

Figure 1: Latency of different technologies in memory hierarchy. Numbers accurate within a factor of two.

There is active research on PCM, and several PCM prototypes
have been proposed, each optimizing for some important device
characteristics (such as density, latency, bandwidth, or lifetime).
While the PCM technology matures, and becomes ready to be used
as a complement to DRAM, we believe that system architecture
solutions can be explored to make these memories part of the main
memory to improve system performance. The objective of this pa-
per is to study the design trade-offs in integrating the most promis-
ing emerging memory technology, PCM, into the main memory
system.

To be independent of the choice of a specific PCM prototype, we
use an abstract memory model that is D times denser than DRAM
and S times slower than DRAM. We show that for currently pro-
jected values of PCM (S ≈ 4,D ≈ 4), a main memory system
using PCM can reduce page faults by 5X, and hence execute appli-
cations with much larger working sets. However, because PCM is
slower than DRAM, main memory access time is likely to increase
linearly with S, which increases the overall execution time. There-
fore, we believe that PCM is unlikely to be a drop-in replacement
for DRAM. We show that by having a small DRAM buffer in front
of the PCM memory, we can make the effective access time and
performance closer to a DRAM memory.

We study the design issues in such a hybrid memory architecture
and show how a two-level memory system can be managed. Our
evaluations for a baseline system of 16-cores with 8GB DRAM
show that PCM-based hybrid memory can provide a speedup of 3X
while incurring only 13% area overhead. The speedup is within
10% of an expensive DRAM only system which would incur 4X
the area. We use an aggressive baseline that already has a large
Flash-based disk cache. We show that PCM-based hybrid memory
provides much higher performance benefits for a system without
Flash or with limited Flash capacity.

As each cell in PCM can endure only a limited number of writes,
we also discuss techniques to reduce write traffic to PCM. We de-
velop an analytical model to study the impact of write traffic on the
lifetime of PCM that shows how the “bytes per cycle” relates to av-
erage lifetime of PCM for a given endurance (maximum number of
writes per cell). We show that architectural choices and simple en-
hancements can reduce the write traffic by 3X which can increase
the average lifetime from 3 years to 9.7 years.

To our knowledge, this is the first study on architectural analysis
of PCM based main memory systems. We believe this will serve
as a starting point for system architects to address the challenges
posed by PCM, making PCM attractive to be integrated in the main
memory of future systems.

2. BACKGROUND AND MOTIVATION
With increasing number of processors in the computer system,

the pressure on the memory system to satisfy the demand of all
concurrently executing applications (threads) has increased as well.
Furthermore, critical computing applications are becoming more
data-centric than compute-centric [9]. One of the major challenges
in the design of large-scale, high-performance computer systems
is maintaining the performance growth rate of the system mem-
ory. Typically, the disk is five orders of magnitude slower than
the rest of the system [6] making frequent misses in system main
memory a major bottleneck to system performance. Furthermore,
main memory consisting entirely of DRAM is already hitting the
power and cost limits [15]. Exploiting emerging memory technolo-
gies, such as Phase-Change Memory (PCM) and Flash, become
crucial to be able to build larger capacity memory systems in the
future while remaining within the overall system cost and power
budgets. In this section, we first present a brief description of the
Phase-Change Memory technology, and highlight the strengths of
PCM that makes it a promising candidate for main memory of high-
performance servers. We present a simple model that is useful in
describing such emerging memory technologies for use in com-
puter architecture studies.

2.1 What is Phase-Change Memory?
PCM is a type of non-volatile memory that exploits the prop-

erty of chalcogenide glass to switch between two states, amorphous
and crystalline, with the application of heat using electrical pulses.
The phase change material can be switched from one phase to an-
other reliably, quickly, and a large number of times. The amor-
phous phase has low optical reflexivity and high electrical resistiv-
ity. Whereas, the crystalline phase (or phases) has high reflexivity
and low resistance. The difference in resistance between the two
states is typically about five orders of magnitude [24] and can be
used to infer logical states of binary data.

While the principle of using phase change materials for memory
cell was demonstrated in 1960s [23], the technology was too slow
to be of practical use. However, the discovery of fast crystalliz-
ing material such as Ge2Sb2Te5(GST) [27] and Ag- and In-doped
Sb2Te(AIST) [25] has renewed industrial interest in PCM and the
first commercial PCM products are about to enter the market. Both
GST and AIST can crystallize in less than 100ns compared to 10µs
or more for earlier materials [23]. PCM devices with extremely
small dimensions as low as 3nm × 20nm have been fabricated
and tested. A good discussion on scaling characteristics of PCM is
available in [24].

9 / 48

Vor- und Nachteile zusammengefasst

Vorteile:

I Persistente Speicherung

I Geringer Stromverbrauch

I Skalierbarkeit

I Byte-Adressierung

I Bit-Modifikation

Nachteile:

I Hoher Verschleiß (derzeitiger Stand)

10 / 48

Vorstellbare Architekturen

Table 1: Comparison of memory technologies.
DRAM PCM NAND Flash HDD

Read energy 0.8 J/GB 1 J/GB 1.5 J/GB [28] 65 J/GB
Write energy 1.2 J/GB 6 J/GB 17.5 J/GB [28] 65 J/GB
Idle power ∼100 mW/GB ∼1 mW/GB 1–10 mW/GB ∼10 W/TB
Endurance ∞ 106 − 108 104 − 105 ∞
Page size 64B 64B 4KB 512B
Page read latency 20-50ns ∼ 50ns ∼ 25 µs ∼ 5 ms
Page write latency 20-50ns ∼ 1 µs ∼ 500 µs ∼ 5 ms
Write bandwidth ∼GB/s per die 50-100 MB/s per die 5-40 MB/s per die ∼200MB/s per drive
Erase latency N/A N/A ∼ 2 ms N/A
Density 1× 2− 4× 4× N/A
Note: The table contents are based mainly on [10, 15, 22].

"RESET" pulse

"SET" pulse

READ

Time

(T
e

m
p

e
ra

tu
re

)
C

u
rr

e
n

t

cryst

melt

T

T

Figure 1: Currents and timings (not to scale) for
SET, RESET, and READ operations on a PCM cell.
For phase change material Ge2Sb2Te5, Tmelt ≈ 610◦C
and Tcryst ≈ 350◦C.

the primary main memory, and the key challenge of over-
coming its write limitations.

2.1 PCM Technology
Phase change memory (PCM) is a byte-addressable non-

volatile memory that exploits large resistance contrast be-
tween amorphous and crystalline states in so-called phase
change materials such as chalcogenide glass. The difference
in resistance between the high-resistance amorphous state
and the low-resistance crystalline state is typically about
five orders of magnitude and can be used to infer logical
states of binary data (high represents 0, low represents 1).
Programming a PCM device involves application of elec-

tric current, leading to temperature changes that either SET
or RESET the cell, as shown schematically in Figure 1. To
SET a PCM cell to its low-resistance state, an electrical
pulse is applied to heat the cell above the crystalization tem-
perature Tcryst (but below the melting temperature Tmelt) of
the phase change material. The pulse is sustained for a suffi-
ciently long period for the cell to transition to the crystalline
state. On the other hand, to RESET the cell to its high-
resistance amorphous state, a much larger electrical current
is applied in order to increase the temperature above Tmelt.
After the cell has melted, the pulse is abruptly cut off, caus-
ing the melted material to quench into the amorphous state.
To READ the current state of a cell, a small current that
does not perturb the cell state is applied to measure the
resistance. At normal temperatures (< 120◦C ≪ Tcryst),
PCM offers many years of data retention.

2.2 Using PCM in the Memory Hierarchy
To see where PCM may fit in the memory hierarchy, we

need to know its properties. Table 1 compares PCM with
DRAM (technology for today’s main memory), NAND flash

SSD/HARD DISK

M
E

M
O

R
Y

M
A

IN

CACHE

PCM

CPU
(a)

CACHE

SSD/HARD DISK

CPU

DRAM PCM

(b)

CACHE

SSD/HARD DISK

DRAM CACHE

CPU

PCM

(c)

Figure 2: Candidate main memory organizations
with PCM.

(technology for today’s solid state drives), and HDD (hard
disk drives), showing the following points:

• Compared to DRAM, PCM’s read latency is close to
that of DRAM, while its write latency is about an
order of magnitude slower. PCM offers a density ad-
vantage over DRAM. This means more memory capac-
ity for the same chip area, or potentially lower price
per capacity. PCM is also more energy-efficient than
DRAM in idle mode.

• Compared to NAND Flash, PCM can be programmed
in place regardless of the initial cell states (i.e., with-
out Flash’s expensive “erase” operation). Therefore,
its sequential and random accesses show similar (far
superior) performance. Moreover, PCM has orders of
magnitude higher write endurance than Flash.

Because of these attractive properties, PCM is being incor-
porated in mobile handsets [24], and recent computer ar-
chitecture and systems studies have argued that PCM is a
promising candidate to be used in main memory in future
mainstream computer systems [9, 15, 22].

Figure 2 shows three alternative proposals in recent stud-
ies for using PCM in the main memory system [9, 15, 22].
Proposal (a) replaces DRAM with PCM to achieve larger
main memory capacity. Even though PCM is slower than
DRAM, clever optimizations have been shown to reduce ap-
plication execution time on PCM to within a factor of 1.2
of that on DRAM [15]. Both proposals (b) and (c) include
a small amount of DRAM in addition to PCM so that fre-
quently accessed data can be kept in the DRAM buffer to
improve performance and reduce PCM wear. Their differ-
ence is that proposal (b) gives software explicit control of the
DRAM buffer [9], while proposal (c) manages the DRAM

22

11 / 48

Algorithmen zur Verschleißreduzierung

12 / 48

Data-Comparison Write Scheme

I Ziel: Reduzierung der Schreibzugriffe auf PCM

1

1

13 / 48

Data-Comparison Write Scheme

I Ziel: Reduzierung der Schreibzugriffe auf PCM

1 1

14 / 48

Seitenersetzungsstrategie LWD

Least wear-unit difference (LWD)

I Ziel: Seite ersetzen, die der neuen physikalisch am nächsten
kommt

I Entscheidungskriterium ist die Wear-Unit-Differenz (WD)
I WD zweier Seiten wird ermittelt, indem jedes

korrespondierende Paar von PCM-Einheiten verglichen wird
I voneinander verschiedene Paare werden gezählt

I Verwendung des Data-Comparison Write Scheme

I Zeitkomplexität von O(B ∗ P) für P die Seitengröße und B die
Speicherkapazität

I Nachteil: Keine Beachtung der Anzahl bisher getätigter
Überschreibungen pro Seite

15 / 48

Seitenersetzungsstrategie LPW

Least page wear (LPW)

I Ziel: Seite ersetzen, die den geringsten Verschleißzähler hat

I Bei der Ersetzung einer Seite im PCM wird der
Verschleißzähler dieser Seite um die Anzahl der zu ändernden
PCM-Zellen erhöht

I Zeitkomplexität von O(B)

I Nachteil: Verschleißverteilung innerhalb einer Seite
unbeachtet

16 / 48

Seitenersetzungsstrategie LFM

Least frequently modified (LFM)

I Ziel: Seite ersetzen, die den niedrigsten Modifikationszähler
besitzt

I Ähnlich dem Algorithmus least frequently used (LFU)

I Verdrängung einer Seite führt zur Inkrementierung des Zählers

I Verschleißzähler bleibt nach der Verdrängung bestehen

I Zeitkomplexität von O(B)

I Analog least recently modified (LRM) vorstellbar

17 / 48

Record-Swapping-Algorithmus

I Ziel: Schreiblastverteilung über das gesamte PCM-Modul,
Vermeidung von hochfrequentiertem Schreiben in immer
dieselbe PCM-Stelle

I Ausgewählter Speicherinhalt wird ersetzt, wenn er kälter als
der zu schreibende Datensatz ist

I in diesem Fall wird zuvor der zu ersetzende Datensatz an eine
freie Speicheradresse verschoben

I Swap, wenn XIDc − XIDn ≥ δ
I Fest gewähltes δ nicht optimal

I Lebensdauerverlängerung des PCM um das 5-fache bei 34%
mehr Schreibzugriffen

18 / 48

Anwendung PCMLogging

19 / 48

Datenstrukturen

I Mapping Table (MT): Abbildung logischer Seiten-IDs zu
physischen PCM-Adressen

I Inverse Mapping: Teil der Seitenmetadaten, Rekonstruktion
der initialen Mapping Table beim Systemstart

I FreeSlotBitmap: Speichert freie PCM-Speicherplätze

I ActiveTxList: Speichert alle Transaktionen, die noch laufen
und dirty pages im PCM besitzen

I Transaction Table (TT): Beinhaltet alle Transaktionen und
deren dirty pages im DRAM oder PCM

I Dirty Page Table (DPT): Hält Referenzen auf vorher gültige
Versionen von dirty pages laufender Transaktionen

20 / 48

Datenstrukturen

TABLE I

COMPARISON OFSTORAGE TECHNOLOGIES[4]

Parameter DRAM Flash HDD PCM
Density 1X 4X N/A 2-4X

Read latency
(granularity)

20-50ns ∼25µs ∼5ms ∼50ns
(64B) (4KB) (512B) (64B)

Write latency
(granularity)

20-50ns ∼500µs ∼5ms ∼1µs
(64B) (4KB) (512B) (64B)

Endurance
(write cycles) N/A 104-105 ∞ 106-108

• Fine-grained access:Compared to other non-volatile
memory technologies such as flash memory, erase-before-
write and page-based access do not restrain PCM. It is
byte addressable (or word addressable) and bit alterable,
which enable PCM to support small in-place updates.

• Asymmetric read/write latency:As shown in Table I, the
write speed of PCM is about 20 times slower than its
read speed. This is similar to flash memory that has such
an asymmetry as well.

• Endurance limitation:Similar to flash memory, PCM
endures a limited number of writes, about106 to 108

writes for each cell, which is however much higher than
that of flash memory.

• Low idle energy consumption:While PCM uses for data
access similar energy as DRAM (i.e., 1-6 J/GB), it
consumes much lower idle energy compared to DRAM
(i.e., 1 v.s. 100mW/GB).

This paper focuses on improving transaction logging and
recovery performance by PCM integration. For this purpose,
we mainly exploit PCM’s low access latency and fine-grained
access granularity and address its endurance limitation.

B. PCM in the Memory Hierarchy

So far, two representative architectures for the use of PCM
in a memory hierarchy are proposed [6], [22]: 1) PCM co-
existing with DRAM to serve as main memory (as shown
in Figure 1(a)); 2) main memory only composed of PCM
chips thereby fully replacing DRAM. Considering the hard-
ware features of PCM, the co-existence architecture might be
more practical. The first reason is that PCM has endurance
limitation, which prevents a complete replacement of DRAM.
Secondly, write latency of PCM is still 20-50 times larger
than that of DRAM. Thirdly, PCM capacity is expected to
still remain relatively small in the near future, in comparison
with DRAM. Thus in this study, we focus on the memory
architecture using PCM as an auxiliary memory, being a
staging area between DRAM and external disks.

III. PCML OGGING

We consider the memory architecture as shown in Fig-
ure 1(a). Without largely modifying the buffer manager re-
siding in DRAM memory, we present a new logging scheme,
called PCMLogging, where the cached updates and transaction
log records are combined and kept in PCM. The wear-leveling
and data destaging issues of PCMLogging will be discussed
in Sections IV and V.

Fig. 2. Page format and Mapping Table

A. Overview

The basic idea of PCMLogging is to integrate the transac-
tion log into the updates cached in PCM, by exploiting the
persistence property of PCM storage. For ease of exposition,
we assume in this section that PCM caching granularity is a
page and concurrency control is also at a page level. That is,a
page can be updated by at most one transaction at a time. To
further improve transaction processing performance, we will
extend the design to record-level caching and record-based
concurrency control in Section III-C.

Overview of the PCMLogging scheme: To support data
caching in PCM, we maintain the following data structures
in main memory (DRAM) / PCM (see Figure 2):

• Mapping Table.This table maps logical page IDs to
physical PCM addresses. It is maintained in DRAM
rather than in PCM, because the mapping entries are
frequently updated and the write speed of PCM is 20-
50 times slower than that of DRAM.

• Inverse Mapping.The inverse mapping is embedded in
each PCM page as metadata (i.e., PID). It is used to
construct the initial Mapping Table at boot time.

• FreeSlotBitmap.This bitmap is used to keep track of the
free page slots in PCM. Note for PCMLogging, only
the dirty pages evicted from main memory are cached
in PCM to minimize disk write I/Os.

Inspired by shadow paging [9], we adopt an out-of-place
update scheme in PCM. When a transaction is to commit,
all its dirty pages are flushed to PCM to ensure durability.
Also, when a dirty page is evicted from main memory, it
will be cached in PCM. For each dirty page, if there already
exists a previously committed version in PCM, the committed
version will not be overwritten. Instead, the previous version
is retained, while the dirty page as new version is written to
a free PCM slot. After that, the logical page address in the
Mapping Table is adjusted to the new version. The need of
retaining the previously committed version is to support undo
operations in case of transaction rollback or system crash.

To support transaction recovery, an ActiveTxList is main-
tained in PCM to record the in-progress transactions that have
dirty pages cached in PCM. Each cached page records the
XID of the last transaction that caused the page to be dirty.
Before the first dirty page of a transaction is written to PCM,
its corresponding XID should be recorded in the ActiveTxList

21 / 48

Grundlagen

I Nur aus dem DRAM verdrängte dirty pages oder Seiten einer
Transaktion, die mit Commit abschließt, werden im PCM
gespeichert

I Shadow-Paging (siehe Zweck Dirty Page Table)

I Seite einer Transaktion wird erst in den PCM geschrieben,
wenn XID in die ActiveTxList aufgenommen wurde

I XID wird erst wieder entfernt, wenn ein Commit oder Abort
getätigt wurde

I Auf den Externspeicher werden nur Seiten erfolgreich
abgeschlossener Transaktionen zurückgeschrieben

22 / 48

Grundlagen - Beispiel

TABLE I

COMPARISON OFSTORAGE TECHNOLOGIES[4]

Parameter DRAM Flash HDD PCM
Density 1X 4X N/A 2-4X

Read latency
(granularity)

20-50ns ∼25µs ∼5ms ∼50ns
(64B) (4KB) (512B) (64B)

Write latency
(granularity)

20-50ns ∼500µs ∼5ms ∼1µs
(64B) (4KB) (512B) (64B)

Endurance
(write cycles) N/A 104-105 ∞ 106-108

• Fine-grained access:Compared to other non-volatile
memory technologies such as flash memory, erase-before-
write and page-based access do not restrain PCM. It is
byte addressable (or word addressable) and bit alterable,
which enable PCM to support small in-place updates.

• Asymmetric read/write latency:As shown in Table I, the
write speed of PCM is about 20 times slower than its
read speed. This is similar to flash memory that has such
an asymmetry as well.

• Endurance limitation:Similar to flash memory, PCM
endures a limited number of writes, about106 to 108

writes for each cell, which is however much higher than
that of flash memory.

• Low idle energy consumption:While PCM uses for data
access similar energy as DRAM (i.e., 1-6 J/GB), it
consumes much lower idle energy compared to DRAM
(i.e., 1 v.s. 100mW/GB).

This paper focuses on improving transaction logging and
recovery performance by PCM integration. For this purpose,
we mainly exploit PCM’s low access latency and fine-grained
access granularity and address its endurance limitation.

B. PCM in the Memory Hierarchy

So far, two representative architectures for the use of PCM
in a memory hierarchy are proposed [6], [22]: 1) PCM co-
existing with DRAM to serve as main memory (as shown
in Figure 1(a)); 2) main memory only composed of PCM
chips thereby fully replacing DRAM. Considering the hard-
ware features of PCM, the co-existence architecture might be
more practical. The first reason is that PCM has endurance
limitation, which prevents a complete replacement of DRAM.
Secondly, write latency of PCM is still 20-50 times larger
than that of DRAM. Thirdly, PCM capacity is expected to
still remain relatively small in the near future, in comparison
with DRAM. Thus in this study, we focus on the memory
architecture using PCM as an auxiliary memory, being a
staging area between DRAM and external disks.

III. PCML OGGING

We consider the memory architecture as shown in Fig-
ure 1(a). Without largely modifying the buffer manager re-
siding in DRAM memory, we present a new logging scheme,
called PCMLogging, where the cached updates and transaction
log records are combined and kept in PCM. The wear-leveling
and data destaging issues of PCMLogging will be discussed
in Sections IV and V.

Fig. 2. Page format and Mapping Table

A. Overview

The basic idea of PCMLogging is to integrate the transac-
tion log into the updates cached in PCM, by exploiting the
persistence property of PCM storage. For ease of exposition,
we assume in this section that PCM caching granularity is a
page and concurrency control is also at a page level. That is,a
page can be updated by at most one transaction at a time. To
further improve transaction processing performance, we will
extend the design to record-level caching and record-based
concurrency control in Section III-C.

Overview of the PCMLogging scheme: To support data
caching in PCM, we maintain the following data structures
in main memory (DRAM) / PCM (see Figure 2):

• Mapping Table.This table maps logical page IDs to
physical PCM addresses. It is maintained in DRAM
rather than in PCM, because the mapping entries are
frequently updated and the write speed of PCM is 20-
50 times slower than that of DRAM.

• Inverse Mapping.The inverse mapping is embedded in
each PCM page as metadata (i.e., PID). It is used to
construct the initial Mapping Table at boot time.

• FreeSlotBitmap.This bitmap is used to keep track of the
free page slots in PCM. Note for PCMLogging, only
the dirty pages evicted from main memory are cached
in PCM to minimize disk write I/Os.

Inspired by shadow paging [9], we adopt an out-of-place
update scheme in PCM. When a transaction is to commit,
all its dirty pages are flushed to PCM to ensure durability.
Also, when a dirty page is evicted from main memory, it
will be cached in PCM. For each dirty page, if there already
exists a previously committed version in PCM, the committed
version will not be overwritten. Instead, the previous version
is retained, while the dirty page as new version is written to
a free PCM slot. After that, the logical page address in the
Mapping Table is adjusted to the new version. The need of
retaining the previously committed version is to support undo
operations in case of transaction rollback or system crash.

To support transaction recovery, an ActiveTxList is main-
tained in PCM to record the in-progress transactions that have
dirty pages cached in PCM. Each cached page records the
XID of the last transaction that caused the page to be dirty.
Before the first dirty page of a transaction is written to PCM,
its corresponding XID should be recorded in the ActiveTxList

I T1 war noch nicht abgeschlossen, T2 schon

I Anpassung der FreeSlotBitmap zu ’00001010’

23 / 48

Seitenebene - Verdängung zum PCM

I Verdrängung modifizierter Seiten zum PCM:
I XID wird der ActiveTxList hinzugefügt
I Kopie M’ von Seite M wird out-of-place erstellt
I Dirty Page Table und Transaction Table erhalten spezifische

Einträge
I Mapping Table wird aktualisiert

24 / 48

Verdängung zum PCM - Beispiel

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

I (a) T1 in Arbeit, T2 bereits abgeschlossen

I (b) Verdrängung von P5, Kopieerstellung in M8

25 / 48

Verdängung zum PCM - Beispiel

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

I (a) T1 in Arbeit, T2 bereits abgeschlossen

I (b) Verdrängung von P5, Kopieerstellung in M8

26 / 48

Seitenebene - Commit

I Commit:
I Jede noch im DRAM befindliche Seite wird zum PCM

zurückgeschrieben
I XID wird aus der ActiveTxList entfernt
I Anpassung der FreeSlotBitmap mithilfe der Dirty Page Table
I Aktualisierung der Dirty Page Table und der Transaction Table

27 / 48

Commit - Beispiel

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

I T3 möchte mit einem Commit abschließen

I Alle zugehörigen Seiten bereits im PCM

I Vorher gültige Version von P5 in M7 wird verworfen

28 / 48

Commit - Beispiel

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

I T3 möchte mit einem Commit abschließen

I Alle zugehörigen Seiten bereits im PCM

I Vorher gültige Version von P5 in M7 wird verworfen

29 / 48

I Abort:
I Alle dirty pages der Transaktion werden verworfen
I Vorherige Versionen der dirty pages werden mithilfe der

Mapping Table wiederhergestellt
I XID wird aus der ActiveTxList entfernt
I Transaction und Dirty Page Table werden aktualisiert

30 / 48

Abort - Beispiel

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

I Abort von T3

I M8 wird verworfen, Verweis auf M7 wird wiederhergestellt

I Zugehörige Einträge werden gelöschen

31 / 48

Abort - Beispiel

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

I Abort von T3

I M8 wird verworfen, Verweis auf M7 wird wiederhergestellt

I Zugehörige Einträge werden gelöschen

32 / 48

Seitenebene - Recovery

I Recovery:
I Überprüfung aller im PCM befindlichen Seiten mithilfe der

FreeSlotBitmap
I Jede dirty page einer zum Systemabsturz laufenden

Transaktion wird verworfen
I Aus den übrig gebliebenen Seiten wird die Mapping Table

rekonstruiert

33 / 48

Recovery - Beispiel

to guarantee atomicity. The XID is not removed until the
transaction is to commit and all its dirty pages are flushed
to PCM. Thus, during recovery, if the XID of a transaction is
found in the ActiveTxList, it implies that the transaction was
not yet committed before the crash; otherwise, the transaction
was already committed. Consequently, each PCM page can
be recovered according to the status of the corresponding
transaction. For example, if PCM appears as shown in the right
part of Figure 2, we can infer thatT1 is not yet committed,
whereasT2 is committed. Thus, the pages updated byT1 (i.e.,
those stored inM1-M3) are discarded,2 whereas the pages
updated byT2 (i.e., those stored inM5 andM7) need to be
restored. Accordingly, the FreeSlotBitmap will be updatedto
“00001010.” We note that, to avoid hot-spots in PCM, wear-
leveling techniques should be adopted to evenly distribute
writes across the PCM space, which will be discussed in more
detail in Section IV.

As a brief summary, PCMLogging eliminates the explicit
transaction log by integrating it into the dirty pages cached
in PCM. This integrated design has several advantages. First,
the data redundancy between the log and cached updates is
minimized. Second, it avoids the challenging space manage-
ment issue, which is a must if they are separated. Third,
recovery can be done without checkpoints, because we do
not maintain an explicit log. In addition, the recovery process
becomes extraordinarily simple and efficient. In the following,
we describe the PCMLogging scheme in detail.

B. PCMLogging Operations

Durability is achieved by forcing the affected dirty pages to
PCM when a transaction is to commit. On the other hand, a
steal buffer policy allows a dirty page to be flushed to PCM
before the transaction commits. To ensure atomicity, undo
operations will be needed if the transaction is finally aborted.
To efficiently support such undo operations, we maintain two
additional data structures in main memory:

• Transaction Table (TT).This table records all in-progress
transactions. For each of them, it keeps track of all
its dirty pages stored in main memory and PCM. The
purpose is to quickly identify relevant pages when the
transaction is to commit or abort.

• Dirty Page Table (DPT).This table keeps track of the
previously committed version of each PCM page “over-
written” by an in-progress transaction. Recall that we em-
ploy out-of-place updates in PCM. This is necessary for
restoring the previously committed version in the event
of a rollback. A dirty page entry will be removed from
the table, once the in-progress transaction is committed
or aborted.

PCMLogging needs to handle the following key events:
Flushing Dirty Pages to PCM. When main memory

becomes full or a transaction is to commit, some dirty pages
may need to be flushed to PCM. For each dirty page, we first
check the Transaction Table. If it is the first dirty page of the
transaction to be flushed to PCM, we add the related XID
to the ActiveTxList in PCM before flushing. If there exists a

2They have not left the PCM, because our destaging algorithm (Section V)
only flushes committed pages to external storage.

Fig. 3. An example of PCMLogging (MT: Mapping Table; TT: Transaction
Table; DPT: Dirty Page Table)

previously committed versionM in PCM, we do not overwrite
it in place. To support undo, we create instead an out-of-place
copyM ′ with a larger version number. Then,M is added to
the Dirty Page Table and the page is mapped toM ′ in the
Mapping Table. Finally, the Transaction Table is updated.

Commit. Upon receiving a commit request, all dirty pages
of the transaction being still buffered in main memory are
forced to PCM, by consulting the Transaction Table. After
that, we remove its XID from the ActiveTxList to indicate the
transaction is committed. Next, if any of its pages is contained
in the Dirty Page Table, the previous versions are discarded
by resetting their corresponding bits in the FreeSlotBitmap.
Finally, we clear the relevant entries in the Transaction Table
and Dirty Page Table.

Abort. When a transaction is aborted, all its dirty pages
are discarded from PCM, by consulting the Transaction Table.
If any of its pages is contained in the Dirty Page Table, the
current version should be invalidated and the mapping should
be re-mapped (restored) to the previous version in the Mapping
Table. Finally, we clear its XID in the ActiveTxList and the
relevant entries in the Transaction Table and Dirty Page Table.

An Example: Consider the example shown in Figure 3,
where T1 is in progress and T2 is committed. Suppose now a
new transaction T3 updates page P5. Before this dirty page
is flushed, T3 points to page P5 kept in main memory (see
Figure 3(a)). When it is flushed to PCM slot M8, T3 is added
to the ActiveTxList in PCM (see Figure 3(b)). After that, P5 is
mapped to M8, T3 points to M8, and the previous version M7 is
kept in the Dirty Page Table. Finally, if T3 is to commit, it isre-
moved from the ActiveTxList; the previous version is discarded
(the corresponding bit becomes 0 in the FreeSlotBitmap); and
the corresponding entries are removed from the Transaction
Table and Dirty Page Table (see Figure 3(c)). Otherwise, if
T3 is finally aborted, the current version is discarded (the
corresponding bit becomes 0 in the FreeSlotBitmap) and the
previous version is restored in the Mapping Table; and the
corresponding entries are also removed from the ActiveTxList,
Transaction Table, and Dirty Page Table (see Figure 3(d)).

Recovery.A recovery process is invoked when the system
restarts after a failure. It identifies the last committed version

I T3 aus der ActiveTxList entfernt, M7 noch nicht verworfen

↪→ M8 hat höhere Versionsnummer

34 / 48

Satzebene - Datenstrukturen, Grundlagen (1)

I Speicherplätze des PCM werden auf die Satzgröße angepasst

I Sätze erhalten zusätzliches Metadatenfeld SNO
(Slot-Nummer), die mit der Seiten-ID die Satz-ID (RID) bildet

I Mapping Table beinhaltet weiterhin modifizierte Seiten,
jedoch speichert jede Seite Referenzen auf dirty records

I Dirty Page Table beinhaltet weiterhin Seiten, jedoch mit
Verweisen zu Vorgängerversionen der jeweiligen Sätze

35 / 48

Satzebene - Datenstrukturen, Grundlagen (2)

I Zusätzliche Liste für jede Seite, die zugehörige, im DRAM
befindliche dirty records speichert

I Transaction Table unterhält eine Liste aller laufenden
Transaktionen und deren dirty records

I Wird eine ganze Seite angefordert, wird diese vom
Externspeicher geladen und mit den zuletzt gültigen records
im PCM zusammengeführt

I Ähnliches Prinzip bei der Verdrängung von Sätzen zum
Externspeicher während des Betriebs und in
Systemleerlaufzeiten

36 / 48

Satzebene - Verdängung zum PCM

I Verdrängung modifizierter Sätze zum PCM:
I XID wird der ActiveTxList hinzugefügt
I Kopie t’ von Satz t wird out-of-place erstellt
I Falls bereits eine Kopie vorliegt, wird diese verworfen (Kopie

stammt von der gleichen Transaktion)
I Dirty Page Table und Transaction Table erhalten spezifische

Einträge
I Mapping Table wird aktualisiert

37 / 48

Satzebene - Commit

I Commit von Transaktion T:
I Jeder dirty record von T wird aus dem DRAM verdrängt
I T wird aus der ActiveTxList entfernt
I Vorherige Versionen der dirty records von T werden verworfen
I Einträge von T werden aus der Transaction Table und der

Dirty Page Table entfernt

38 / 48

Satzebene - Abort

I Abort von Transaktion T:
I Alle dirty records von T im DRAM oder PCM werden

verworfen
I Wenn T noch in der ActiveTxList zu finden ist, werden die

zuletzt gültigen records der dirty records von T
wiederhergestellt

I Mapping Table wird auf die vorherigen Versionen aktualisiert
I Einträge von T werden aus der ActiveTxList, der Transaction

Table und der Dirty Page Table gelöscht

39 / 48

Satzebene - Recovery

I Recovery:
I Alle validen Sätze werden geprüft, ob die ändernde Transaktion

zum Zeitpunkt des Systemabsturzes noch aktiv war oder eine
höhere Version vorliegt

I Erfüllt ein Satz diese Bedingung, wird er verworfen
I Ansonsten wird für den Satz ein neuer Eintrag in der Mapping

Table angelegt

40 / 48

Performance-Aspekte (1)

Verglichen wurden drei Logging-Schemata

I SCMLogging: PCM-Modul speichert ausschließlich das
Transaktionslog

I WAL:
I 1. Zone: Zwischenspeicher für dirty pages
I 2. Zone: Zwischenspeicher für Logeinträge
I Update-in-Place

I PCMLogging auf Satzebene

41 / 48

Performance-Aspekte (2)

TABLE II

DEFAULT PARAMETER SETTINGS

Parameter Default Setting
HDD read/write latency 8.05ms/8.20ms
SSD read/write/erasure latency 0.11ms/0.32ms/1.5ms
SD card read/write latency 1.47ms/200.1ms
PCM write latency 1µs
Logical page size 8KB
PCM unit size 128B
TPC-C database size 2.4GB
TPC-C client number/warehouse number 50/20
Main memory (DRAM) size 128MB
PCM size 128MB

We compared three logging schemes: our record-level PCM-
Logging scheme (denoted as PCMLogging), the WAL design
of using PCM for both data caching and transaction logging
(detailed in the Introduction section, denoted as WAL), anda
recent proposal of using storage-class memory such as PCM
for logging only (denoted as SCMLogging) [8]. Note that
the page-level PCMLogging scheme was not evaluated as
it does not support record-level concurrency control. For a
fair comparison using PCMLogging, the main memory area
included the space needed for holding the data structures
of PCM management (such as Mapping Table and Dirty
Page Table). For the destaging process of PCMLogging, we
assumed the rate relationship functiong(k) = 1 for simplicity
(f(k)’s were measured during warm up). For WAL, as it is
difficult to determine the optimal space allocation betweenthe
cache and log zones, we used for simplicity the whole PCM
space for data caching and reserved an additional page for
archiving log records. For SCMLogging, the log records were
created and maintained in PCM directly. In general, the WAL
and SCMLogging schemes represent two typical usages of
PCM, i.e., maximizing its caching or logging capabilities. In
both of these schemes, the log records archived in PCM can
be flushed out to external disks asynchronously.

We conducted the simulation experiments on a desktop
computer running Windows 7 Enterprise with an Intel i7-
2600 3.4GHz CPU. As we simulated a database of 2.4GB,
the default sizes of DRAM and PCM were both set at
128MB (i.e., total 10% of the database size). For all schemes,
the results were collected after a fixed warmup period (i.e.,
after PCMLogging starts the first destaging process). TableII
summarizes the settings of our simulation experiments.

B. Overall Performance Comparison

In this section, we report the overall comparison of PCM-
Logging with WAL and SCMLogging. We plot the transaction
throughput and response time of the three schemes in Fig-
ures 6(a) and 6(b), respectively, by varying the size of PCM
from 32MB to 160MB. We make the following observations
from the results. First, WAL has a better performance than
SCMLogging in all cases tested. The reason can be explained
as follows: i) applying WAL, PCM is not only used for logging
but also for data caching, which makes its I/O cost less than
that of SCMLogging (see Figure 7(a)); ii) using SCMLogging,
each transactional update incurs a PCM write to create a
new log record, which causes a larger latency than a write
in DRAM needed in case of WAL. Second, PCMLogging

(a) Transaction throughput (b) Transaction response time

Fig. 6. Overall performance results

has the best performance among all the three schemes. In
Figure 6(a), the throughput improvement of PCMLogging
over WAL increases from 19.2% to 78.3%, as the PCM size
grows. A similar trend is observed for the response time in
Figure 6(b). This confirms our argument that PCMLogging
can better exploit the PCM hardware features for superior
performance improvements. Next, we reveal more details of
the PCMLogging performance from various perspectives.

I/O Breakdown: We decompose the total I/O number into
reads and writes and plot the I/O breakdown in Figure 7(a).
Obviously, the total I/O number of SCMLogging remains the
same under different PCM sizes, because it writes only log
records to PCM. In contrast, due to data caching in PCM, the
total I/Os of WAL and PCMLogging decrease as the size of
PCM grows. In particular, compared with WAL, PCMLogging
saves 21.5%∼46.6% of total I/Os under different PCM sizes.
The saving is mainly due to reduced write I/Os (the upper part
of each bar). For example, when the PCM size is 128MB,
the number of write I/Os of PCMLogging is only 12.7%
of that of WAL. Note, the write I/Os for PCMLogging are
record destaging operations, whereas they are PCM page
replacements for WAL.

To gain more insights, we further measure the average
number of dirty records per page for each write I/O operation
and plot the results in Figure 7(b). This number indicates the
efficiency of flushing dirty information from DRAM/PCM to

(a) I/O breakdown

(b) Dirty records per page (c) Read I/Os and PCM hits
Fig. 7. I/O breakdown comparison

42 / 48

Performance-Aspekte (3)

I Hit-Wahrscheinlichkeit nimmt mit steigender Größe zu

I PCMLogging liest vor dem Zurückschreiben lediglich Sätze,
keine ganzen Seiten

I Nur angeforderte Sätze werden ins PCM geschrieben

I PCMLogging vermeidet zeitaufwändige Operationen, wodurch
Transaktionen ihre Sperren kürzer halten

I Commit-Prozess benötigt durch wenige Schreibzugriffe auf
den PCM wenig Zeit

Außerdem:

I PCMLogging reduziert die Datenredundanz zwischen
Logeinträgen und zwischengespeicherten Daten

I Recovery kommt ohne Checkpoints aus, da kein explizites Log

I Recovery-Prozess sehr simpel und effizient

43 / 48

Performance-Aspekte (3)

I Hit-Wahrscheinlichkeit nimmt mit steigender Größe zu

I PCMLogging liest vor dem Zurückschreiben lediglich Sätze,
keine ganzen Seiten

I Nur angeforderte Sätze werden ins PCM geschrieben

I PCMLogging vermeidet zeitaufwändige Operationen, wodurch
Transaktionen ihre Sperren kürzer halten

I Commit-Prozess benötigt durch wenige Schreibzugriffe auf
den PCM wenig Zeit

Außerdem:

I PCMLogging reduziert die Datenredundanz zwischen
Logeinträgen und zwischengespeicherten Daten

I Recovery kommt ohne Checkpoints aus, da kein explizites Log

I Recovery-Prozess sehr simpel und effizient

44 / 48

Fazit

45 / 48

Fazit

I PCM vielversprechendste Speichertechnologie, um DRAM zu
unterstützen, bzw. zu erweitern

I Starke Nähe zum DRAM und Persistenz eröffnen neue
Möglichkeiten

I Schwerwiegender Nachteil: Hoher Verschleiß, gilt es zu
reduzieren

I Erstes PCM-Modul von Numonyx (2010) und Ankündigung
der 8GB-PCM-Modulproduktion von Samsung (vor kurzem)

I PCM als Teil der Speicherhierarchie eines Computersystems in
naher Zukunft vorstellbar

46 / 48

Literatur

47 / 48

Literatur

I S. Gao, J. Xu, T. Härder, B. He, B. Choi, and H. Hu: PCMLogging:
Optimizing Transaction Logging and Recovery Performance with PCM,
submitted, 2013

I Y. Ou, S. Gao, J. Xu, and T. Härder: Wear-Aware Algorithms for
PCM-Based Database Buffer Pools, submitted, 2013

I B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu: A Low
Power Phase-Change Random Access Memory using a Data-Comparison
Write Scheme, in Proc. ISCAS, pages 3014-3017, 2007

I M. K. Qureshi, V. Srinivasan, and J. A. Rivers: Scalable High
Performance Main Memory System Using Phase-Change Memory
Technology, in Proc. ISCA, 2009

I S. Chen, P. B. Gibbons, and S. Nath: Rethinking Database Algorithms for
Phase Change Memory, in Proc. CIDR, pages 21–31, 2011

48 / 48

	Motivation
	Phase-change Memory (PCM)
	Algorithmen zur Verschleißreduzierung
	Anwendung PCMLogging
	Fazit
	Literatur

