Chapter 2 - Concepts and Definitions

Introduction and Requirements
Database Systems

- **Usage:** management of large sets of data
 - well-structured
 - elimination of redundancies
 - flexible query/search support
 - flexible data usage (open for new applications)
 - concurrent data access by multiple applications
 - high data currency
 - fault tolerance

- **Key concepts**
 - data model and DB schema
 - data modeling (DB design) is a complex, expensive task
 - requires tight cooperation of developer and user
 - normalization
 - query language (selection, join, aggregation, ...)
 - synchronization of data access operations
 - transactions
 - "all or nothing" behavior for a sequence of operations
 - automatic recovery from inconsistent DB-states due to failure
Multimedia Databases as Content Repositories

- What can databases do for managing multimedia data?
 - data independence
 - data structures and DB schemas are application-independent
 - support for storage, search
- Fundamental service
 - infrastructure for numerous applications
 - focus on APIs, not so much on end-user interfaces
- Storage and retrieval of multimedia objects
- Key concepts (in addition to database concepts discussed above)
 - device- and format-independent access to MM objects
 - representation of relationships
 - among MM objects, between MM objects and structured data
 - used for querying and navigation
 - content-based search
 - descriptive, similarity-based
Multimedia Management and Retrieval: Challenges

- Data volume
 - storage and management of large objects
 - compression
 - efficient resource management and content processing

- Implicit semantics
 - feature extraction
 - similarity search

- Heterogeneity
 - media object types, formats
 - conversion

- Complex multimedia objects
 - combination of various MM object types
 - management of structural information

- Input/Output devices
 - dependencies regarding media object types
 - optimized data/result delivery
 - real-time aspects and requirements
Multimedia Data

- related to input/output devices:

- keyboard
- mouse, trackball
- scanner
- video camera
- frame grabber
- microphone
- audio board
- text
- graphics
- image
- video
- sound
- line printer
- character display
- plotter
- laser printer
- raster display
- video board
- audio board
- speaker
Multimedia Data (2)

- **Comparison:**

<table>
<thead>
<tr>
<th>Medium</th>
<th>Elements</th>
<th>Order</th>
<th>Typical size</th>
<th>Time-dependent?</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>printable characters</td>
<td>sequence</td>
<td>10 KB (5 p.)</td>
<td>no</td>
<td>visual/acoustic</td>
</tr>
<tr>
<td>Graphics</td>
<td>vectors, polygons, meshes (3D), textures</td>
<td>set or sequence (z-order)</td>
<td>10-100 KB</td>
<td>no</td>
<td>visual</td>
</tr>
<tr>
<td>Raster Image</td>
<td>pixel</td>
<td>matrix</td>
<td>1 MB (1024x1024)</td>
<td>no</td>
<td>visual</td>
</tr>
<tr>
<td>Audio Recording</td>
<td>amplitude</td>
<td>sequence</td>
<td>600 MB (audio CD)</td>
<td>yes</td>
<td>acoustic</td>
</tr>
<tr>
<td>Video-Clip</td>
<td>Raster Image, Graphics</td>
<td>sequence (script)</td>
<td>2 GB (30 min.)</td>
<td>yes</td>
<td>visual</td>
</tr>
</tbody>
</table>
Multimedia Content - Terminology

- **Media Object**
 - a data object belonging to a *single* media, e.g., a single image or piece of text

- **Multimedia Object**
 - (or "Mixed-Mode Object")
 - aggregation (composition) of media objects having different types, z.B. Video (image + audio)

- **Multimedia Data**
 - generic term for both media objects and multimedia objects

- **Multimedia Document**
 - aggregates media objects and multimedia objects
 - defines a structure and/or layout (spatial and possibly temporal)
 - may include elements for navigation/browsing (e.g., links)
Media Object

- consists of structure and unstructured data
- raw data
 - unstructured (s. oben)
 - large sequence (set, ...) of small elements
 (bits, characters, pixel, lines, ...)
- registration data
 - mandatory
 - required for correct interpretation and identification of raw data
 - interpretation: what is the structure? what do the elements mean?
 - identification: to distinguish among otherwise equal objects
 (e.g., creation/recording timestamp, ...)
- descriptive data
 - optional
 - often redundant:
 representation of structure and/or content in a different media or form
 - structured an/or unstructured
Operations on Media Objects

- Create (insert, capture)
 - from device – in a program – from a file
- Output (show, present)
 - on device – to program – in a file
- Update (modify, edit)
- Compose
 - creation of multi-media objects
- Deliver (send)
- Archive
- Process (aggregate, derive)
 - filter, analyse, extract, create descriptive data
- Search (compare)
 - pattern matching on raw data
 - similarity
 - based on descriptive data

Digitale Libraries and Content Management

© Prof. Dr.-Ing. Stefan Deßloch
Example: Raster Image

- **Raw data**
 - pixel matrix (pixel = picture element, or "pel")

- **Registration data**
 - # of bits/pixel (pixel depth, usually 1, 8, or 24)
 - # of pixels/line (picture width)
 - # of lines (picture height)
 - linearization: by line or column
 - pixel semantics: grayscale, color definition, index into colormap
 - (optional) colormap with specific number of entries, length of entries (e.g., 24 bit)
 - (optional) definition of color space (RGB, IHS, ...)
 - and more

- **Descriptive data**
 - text, keywords, knowledge representation describing content
 - recognized lines, areas appearing in the image
 - resulting 2-D objects such as circles, elipses, polygons, ...
Device Independence

- Multimedia data volume requires new storage media/devices
 - optical, video tape, ...
- Devices
 - operation of devices differs from hard disk storage
- Data independence required
 - application should be independent from the storage technology used
 - no program changes required when new devices are introduced
- Goal for content repository (MMDBMS)
 - hide all device-specific properties

Digitale Libraries and Content Management
Format Independence

- Storage formats for media objects
 - numerous formats exist today
 - various "standards"
 - examples (raster images): GIF, TIFF, JPEG, Sun Rasterfile, FBM, PBM, ...
 - format conversion possible (most of the time)
 - additional aspects: compression, container formats (e.g., AVI)

- Goal for content repository (MMDBMS)
 - hide internal storage format from end users and applications
 - provide conversion routines
 - support change of (internal) storage format (e.g., if new compression techniques become available) without impacting the applications
Structured vs. Unstructured Data

- **structured** data

 (NAME = "Miller"; BDATE = "1952-06-23",)

 - values of attributes/fields with a fixed name
 - maximal length (= finite value domain)
 - predetermined (known) semantics
 - search: (classical) data retrieval (i.e., query evaluation)

    ```
    SELECT * FROM EMPS WHERE NAME = "Miller";
    ```

- **unstructured** data

 "His name is Miller. He was born on June 23rd, 1952."

 - arbitrary length
 - mostly self-describing
 - unknown/weak semantics
 - search: information retrieval

 Find documents about employees with the name 'Miller'.

Digitale Libraries and Content Management
Information Retrieval

- **Index:** library catalog on a computer
 - availability of text documents in electronic format allows for full-text search as additional option
 - search for words appearing in the document
- **Builds on methods of library sciences**
 - classification (decimal, ACM, ...) – strictly hierarchical
 - indexing: assignment of keywords (descriptors), which describe the semantics of the document (may not even appear in the text)
 - descriptors may be weighted
- **Use of a thesaurus (keyword "dictionary")**
 - lists all keywords used for indexing
 - defines relationships among keywords
 - synonyms (DBS, database system, ...), preferred term
 - broader and narrower terms
- **Manual thesaurus construction and text indexing**
 - expensive, result influenced by human interpretation
- **Automatic indexing**
 - input: text document (complete, or abstract/title), thesaurus
 - output: keywords (index terms)
 - challenges
 - handling linguistic variations, use of synonyms
 - recognizing related words in keyword phrases
 - "DB-design"
 - "the design of high-quality database schemas is ..."
 - "... are DBs. Their design is ..."
 - ...
Information Retrieval (2)

- Query
 - consists of keywords, which may be weighted

- Result documents
 - boolean decision whether a document matches the query or not is often inadequate
 - better: similarity score as a measure for describing the relevance of the document wrt. the query

- Retrieval model defines how relevance values are determined
 - boolean, vector-based, probabilistic, ...

- Presentation of search results
 - ranking (sorted descending based on relevance)

- Improving query results
 - iterative query process
 - relevance feedback
Information Retrieval Process

- query
 - preprocessing
 - query representation
 - comparison (similarity)
 - result objects
 - query refinement and relevance feedback

- media objects
 - preprocessing
 - object representation

Digitale Libraries and Content Management
Data Retrieval vs. Information Retrieval

- **DBS**
 - search based on exact match, result always relevant/complete
- **IRS**
 - index terms only provide a partial, ambiguous characterization of a document
 - search based on similarity measures, result may contain irrelevant documents

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Data Retrieval</th>
<th>Information Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>explicit (attribute values)</td>
<td>implicit (interpretation required)</td>
</tr>
<tr>
<td>Results</td>
<td>exact (equality)</td>
<td>approximate/imprecise (similarity)</td>
</tr>
<tr>
<td>Query process</td>
<td>single query</td>
<td>iterative refinement</td>
</tr>
<tr>
<td>Query formulation tolerance</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Result collection</td>
<td>set</td>
<td>list (ranked)</td>
</tr>
</tbody>
</table>
Searching for Media Objects

- Specification of search criteria
 - using properties (features, formatted)
 - verbally (unformatted)
 - query-by-example, using a comparison object (pattern)
- Media objects are usually linked to formatted data
 - application-specific (e.g., archiving number)
 - registration data
 - descriptive data (if formatted)
- Search mechanisms initially based on
 - searching formatted data (classic DB techniques)
 - pattern matching
 - using raw data (e.g., full text search), or
 - using descriptive (unformatted) data
Content-based Search

- Search based on media object content at a higher level of abstraction
 - objects, activities, situations, etc. represented or described by the media object
 - requires analysis and interpretation of raw data, content
 - hard to do, can only be partially automated

- Examples
 - search for:
 - entries in criminal database using descriptions by crime scene witnesses
 - symptoms of medical conditions in x-ray images
 - satellite images showing an airport
 - news pictures showing Angela Merkel with George W. Bush
 - text documents about digital libraries
 - radio programs about benefits of highway speed limits
 - almost impossible to do based on pattern matching!

- Application and generalization of information retrieval concepts and approaches!
Content-based Search (2)

- **Preselection**
 - use categories, classification scheme of a content repository (e.g., relations in an RDBMS)
 - helps reduce the search scope, but usually too coarse-grained

- **Content analysis at runtime**
 - for a specific query
 - methods and techniques for
 - text analysis and indexing
 - image processing/recognition
 - speech recognition
 - to be applied to a (large) set of media objects
 - too expensive!

- **Browsing**
 - fast browsing through preselected search scope
 - puts burden of search evaluation on the end user
 - only feasible for small sets of objects
Consequence: Content analysis as a pre-processing step
- creation of content description
 - automatically, if possible (e.g., automatic abstracting)
 - manually: e.g., author or librarian creates a summary, assigns keywords

Drawback: search criteria at runtime are restricted to those aspects covered by the analysis, cannot be expanded dynamically
- storage of content description together with the media objects, utilization at query processing time
Representation of Metadata / Content Description

- **Formatted Data**
 - e.g., as tuples in RDBMS tables
 - efficient search
 - may result in "undesirable" entity types (e.g., "storm", "night", ...) for detailed model of content domain
 - not powerful enough

- **Keywords**
 - well-known (libraries, IR)
 - easy to create (also automatically)
 - not powerful enough: relationships, dependencies, causalities (e.g., for complex description of image content) are hard to represent

- **Knowledge Representation**
 - logic, sem. networks, frames, scripts, ontologies, ...
 - search techniques exist
 - powerful, but requires expert user (knowledge engineer) to create

- **Free text**
 - easy to create
 - full text search? dependency on formulations used

- **Captions**
 - restricts natural language syntax
 - still easy to create
 - may internally be translated to a formal representation (e.g., knowledge representation)
Alternative Classification of Metadata

- **content-describing (interpreting)**
 expresses semantics of media object at a high level of abstraction
 - context-describing (e.g., index vocabulary, ontology, thesaurus)
 describe context of a collection of objects
 - context-related (e.g., identification, spatial/temporal coordinates)
 describe object in relation to a collection of objects
 - object-describing, non-textual (e.g., objects, people, activities, title)
 - object-describing, textual (e.g., annotation, subtitles, script, screenplay)

- **content-related (non-interpreting)**
 properties at a low semantic level, can be extracted automatically
 - feature (e.g., image color distribution, texture)
 - segment specification (e.g., start/end of video scene, shape of image segment)

- **content-independent**
 important for management, correct interpretation
 - presentation-related (e.g., QoS, resolution, layout)
 - recording-related (e.g., copyright owner, recording device)
 - storage-related (e.g., media type, format, storage location)
Deriving Metadata at Various Abstraction Levels

- **Automatic steps**
 - decomposition into elementary media objects
 - normalization for internal processing
 - segmentation based on semantics (e.g., image segments, video scenes)
 - type-specific feature recognition
 - feature processing for scaling, normalization of features
Multimedia Database Techniques

- Introduction of (elementary) data types
 - TEXT, GRAPHIC, IMAGE, SOUND, VIDEO,
 - with functionality (→ abstract data types, userdefined types)
- Extension of existing data models
 - relational model (as domains)
 - object-relational, object-oriented model (as UDTs, classes)
- Usage of existing modeling constructs
 - relations/classes
 - attributes-instance variables
 - primary keys, object identifiers
 - methods, inheritance, ...
- Extensions of query languages
 - relational algebra, SQL
Interfaces and Functionality

- Compared to traditional DBMS, programming interface differs from interactive interface
 - view image vs. analyze image in an application
 - in traditional DBMS, the query language is the common interface
- Example: RDBMS, extended with new data types IMAGE, TEXT, GRAPHICS, SOUND etc.

  ```sql
  create table Person
  (Name    char(30),
   ....,
   picture   Image,
   fingerprint Image)
  ```

- Access functions for the data type:
 - dependent on the type of interface
Programming Interface

(using extended SQL)

- Read a fingerprint to analyse it in the application:

  ```sql
  select fingerprint.height(), fingerprint.width()
  into :height, :width
  from Person
  where Name = "Miller";
  ```

 (allocation of memory for the image)

  ```sql
  select fingerprint.pixelmatrix()
  into :pixel
  from Person
  where Name = "Miller";
  ```

 (work on pixel matrix)
Programming Interface (2)

- **direct display:**
  ```sql
  exec sql
  select fingerprint.display(:window) into :error
  from Person
  where .... ;
  if ( error!= 0 )
  .... ;
  ```

- **write to file:**
  ```sql
  exec sql
  select fingerprint.toFile(:file) into :error
  from Person
  where .... ;
  if ( error != 0 )
  .... ;
  ```

- "side effects" in SQL statements
Interactive Interface

- Same example:
  ```sql
  select fingerprint
  from Person
  where Name = "Miller";
  ```
- Result is a table displayed on the screen
 - special character or icon to indicate value of type IMAGE
 - mouse-click or special command to display image on separate screen
 - (other approaches are possible)
Summary

- Different types of multimedia data
 - media object, MM object, MM document
 - raw data vs. metadata

- Classification of metadata
 - based on representation
 - based on content aspects
 - registration data vs. content description
 - content-independent, content-related, content-describing

- Requirements for storage and retrieval of multimedia objects
 - handling structured and unstructured data
 - device- and format-independent access to MM objects
 - representation of relationships
 - among MM objects, between MM objects and structured data
 - used for querying and navigation
 - content-based search
 - descriptive, similarity-based

- Overview of information retrieval and content-based search approaches
Literature References

Main references:

More:
- Ingo Schmitt: Retrieval in Multimedia-Datenbanksystemen, Datenbank-Spektrum (4), 2002