
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

 Chapter 8 – Data Models for Media Objects

Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Overview

n  Requirements and general approach
n  support for large media objects
n  media object types
n  data and relationship modeling

n  (Object-) Relational DBMS
n  LOBs vs. external storage
n  user-defined types and routines
n  SQL/MM

n  Object-oriented DBMS

Digital Libraries and Content Management
2

© Prof.Dr.-Ing. Stefan Deßloch

Support for Multimedia Data Types

Main aspects regarding data model support
1.  Support for managing large media objects

n  managing large data objects inside DBMS
n  file-based storage of media objects

n  managed by file system or DBMS?

n  only as "infrastructure", not sufficient!

2.  Introduction of new data types
n  TEXT, GRAPHICS, IMAGE, SOUND, VIDEO
n  including applicable operations

n  "abstract data type" (ADT)

3.  Inclusion in existing data models
n  relational
n  object-relational
n  object-oriented

➥ Usage of existing modeling constructs and query languages

Digital Libraries and Content Management
3

© Prof.Dr.-Ing. Stefan Deßloch

Basic Data Types

integer / real / float
n  operations:

+ , – , * , / , ... : integer × integer → integer
= , ≠ , ≤ , ≥ , ... : integer × integer → boolean

char
n  operations:

conversion to/from integer, output (print), ...

boolean / bit
n  operations:

and, or, …

i.e., types are defined through supported operations!

Digital Libraries and Content Management
4

© Prof.Dr.-Ing. Stefan Deßloch

Composite Types / Type Constructors

("generic" or "parameterized" types)
n  listOf Typ (min, max)

n  operations:
determine length, access elements, concatenate, sublist, …

n  examples:
 byte = listOf boolean (8,8)
 string = listOf char (0,*)

n  canonical continuation of all element-level operations:
 List3 := List1 * List2
 pairwise, element-by-element operation

n  setOf Typ (min, max)
n  operations :

element count, for each, union, difference, add/remove element,

Digital Libraries and Content Management
5

© Prof.Dr.-Ing. Stefan Deßloch

Text Data Type

n  Applicable operations (in Java
notation):

n  read access:
 interface Text {

 public int length ();
 public int alphabet ();
 // 0 == ISO Latin-1, …
 public int alphabetSize ();
 public int language ();
 // 0 == English, 1 == German, …
 public char charAt (int n);
 public byte [] getASCII ();
 public byte [] getEBCDIC ();
 public String getUnicode (); … }

n  with whitespace, end of line:
 public byte [] word (int wordNo);
 public byte [] line (int lineNo);
 public int wordCount ();
 public int lineCount ();

n  complete text (e.g., print, display):
 public boolean print (Printer p);
 public boolean display (Window w);

n  modification (preserving consistency):
 public void replaceLine
 (int lineNo, byte [] newLine);
 public void insertLine
 (int lineNo, byte [] newLine);
 public void concatenate (Text t2);

n  General problem: procedure or
function?

n  procedure performs updates directly
(see above example)

n  function returns new object/value:
 public Text replaceLine
 (int lineNo, byte [] newLine);

Digital Libraries and Content Management
6

© Prof.Dr.-Ing. Stefan Deßloch

Text (2)

n  Create:
 class TextClass implements Text {

 public TextClass (
 int length,
 int charLength,
 int code, // 0 == ASCII, 1 == EBCDIC, …
 int formatter, // 0 == none, 1 == PostScript, …
 byte endOfLine,
 byte [] characters
) { … };
 …

 }
or in a specific context:

 public TextClass (String filename) { … };

n  Similar model/interfaces for image, audio, video

Digital Libraries and Content Management
7

© Prof.Dr.-Ing. Stefan Deßloch

Description Data and Comparisons

n  Content description
n  dependent component, constituents of the media object
n  requires additional operations

n  add, extend
n  read length, content
n  content search (over description)

n  Example: Image
 interface Image {

 …
 public void newDescr (String descr);
 public void extendDescr (String descr);
 public int descrLength ();
 public String getDescr ();
 public boolean contains (String query);

 }

Digital Libraries and Content Management
8

© Prof.Dr.-Ing. Stefan Deßloch

Generalization

n  Building a generalization hierarchy
n  generic operations defined in MediaObject

supertype
n  refinement of media object types

n  Example: Image
n  specialization as Bitmap, Greyscale, ColorImage
n  operations for conversion

n  Additional aspects
n  disjointness, completeness
n  subtype-specific constructors

n  Other, application-oriented
refinements possible

Digital Libraries and Content Management
9

MediaObject

Operationen:
newDescr
extendDescr
descrLength
getDescr
contains

Image
Operationen:
height
width
noOfColors

Greyscale-
Image ColorImage Bitmap-

Image

Operationen:
colormap
greyscale

Operationen:
greyscalemap
bitmap
color

Operationen:
greyscale

© Prof.Dr.-Ing. Stefan Deßloch

Object-Relational DBMS

n  Major development to extend relational DBMS to introduce object-oriented concepts
into the relational data model and query language

n  Main concepts
n  support for large objects and external data
n  composite data types (row types, collection types)
n  user-defined data types

n  distinct types: strong typing
n  structured data types for complex, nested data structures
n  type hierarchies with inheritance
n  typed table hierarchies

n  restricted notion of object identity

n  user-defined routines
n  stored procedures, user-defined functions, methods for structured types
n  overloading, overriding, dynamic binding
n  implementation using procedural SQL (PSM) or external programming language

n  Standardized: SQL:1999, SQL:2003
n  Systems: (University-)Ingres (1984), Postgres, Starburst, Illustra/Informix, DB2,

Oracle

Digital Libraries and Content Management
10

© Prof.Dr.-Ing. Stefan Deßloch

Large Object Data Types

n  LOBs store strings of up to gigabytes
n  maintained directly in the database

n  There are 2 LOB data types
n  BLOB - Binary Large Object
n  CLOB - Character Large Object

n  LOB size can be specified at column
definition time (in terms of KB, MB,
GB)
CREATE TABLE Booktable

(title VARCHAR(200),
book_id INTEGER,
summary CLOB(32K),
book_text CLOB(20M),
movie BLOB(2G))

n  Internally, LOBs are usually stored in a
separate storage space

n  i.e., out-of-line storage

n  LOBs may be retrieved, inserted,
updated like any other type

n  excluded from some operations

n  Functions that support LOBs
n  CONCATENATION string1 || string2
n  SUBSTRING (string FROM start FOR

length)
n  LENGTH (expression)
n  POSITION (search-string IN source-

string)
n  NULLIF/COALESCE
n  TRIM
n  OVERLAY
n  Cast
n  LIKE predicate

11
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

LOBs and Application Programs

n  LOBs may be unmanageable
in application programs

n  huge amounts of storage may be
needed to buffer their values

n  applications may want to deal with
LOBS a piece at a time

n  LOB locators
n  4-byte value stored in a host variable

that a program can use to refer to a
LOB value

n  LOB still resides in the SQL server
n  a locator may be used anywhere a LOB

value can be used

n  allows application to work with LOBs a
piece at a time

n  Example:
EXEC SQL BEGIN DECLARE SECTION;
 SQL TYPE IS BLOB AS LOCATOR
 movie_loc;
EXEC SQL END DECLARE SECTION;

EXEC SQL

 SELECT movie
 INTO :movie_loc
 FROM BOOKTABLE

 WHERE title = 'Moby Dick'

103

12
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Locators on LOB Expressions

n  Locators may also represent LOB
expressions

n  a LOB expression is any expression
that refers to a LOB column or results
in a LOB data type

n  may include LOB functions

n  may even reference other locators

n  Implementation
n  "smart LOB" support will avoid

unnecessary operations/copies on LOBs
n  only store a "recipe" (i.e., script of

operations)
n  materialize only if required

n  e.g., :Chapt1Loc is used in UPDATE,
INSERT, or retrieved into memory
buffer

n  Example: select chaper 1 into locator
 SELECT

 SUBSTRING(book_text,
 POSITION('Chapter 1' IN book_text),
 POSITION('Chapter 2' IN book_text)
 -
 POSITION('Chapter 1' IN book_text))

FROM Booktable
INTO :Chapt1Loc
WHERE title = 'Moby Dick';

105

13
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management

Managing External Data: Datalinks

Agenda slide
14

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management

DataLinks in SQL/MED

n  Goal
n  preserve external storage, manipulation of files
n  synchronize integrity control, recovery, and access control of files and associated SQL data

n  Concepts
n  datalink is an instance of the DATALINK data type

n  references a file (URL) that is not stored by the SQL server, but maintained by an external file
manager

n  datalink options (per column)
n  define the amount of management and control the SQL server has over the datalink values of a

column
n  integrity, read/write access, recovery

n  specifies the semantics of link/unlink behavior

n  datalinker
n  implementation-dependent
n  implements a number of mechanisms for guaranteeing datalink properties such as integrity

control, recovery, access control

15

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management

Functions and Operations

n  New SQL functions for datalinks"
n  constructor: DLVALUE, ..."
n  (components of) URLs: DLURLCOMPLETE, …"

n  SQL statements (examples)"
n  insert (“link”)"

INSERT INTO Movies (Title, Minutes, Movie) 
VALUES (‘My Life’, 126, 
DLVALUE(‘http://my.server.de/movies/mylife.avi’))"

n  select (incl. URL access token)"
SELECT Title, DLURLCOMPLETE(Movie) 

FROM Movies 
WHERE Title LIKE ‘%Life%’"

16

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management

Data Link Options

n  Link control (NO, FILE)
n  NO LINK CONTROL

n  URL-Format of datalink
n  no further control, file is not "linked"

n  FILE LINK CONTROL
n  file is "linked", file has to exist!
n  level of control can be specified using further options

n  Integrity control option (ALL, SELECTIVE, NONE)
n  INTEGRITY ALL

n  linked files cannot be deleted or renamed

n  INTEGRITY SELECTIVE
n  linked files can only be deleted or modified using file manager operations, if no datalinker is

installed

n  INTEGRITY NONE
n  referenced files can be deleted or modified using file manager operations

n  not compatible with FILE LINK CONTROL

17

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management

Data Link Options (continued)

n  Read permission option (FS, DB)
n  READ PERMISSION FS

n  read access is determined by file manager

n  READ PERMISSION DB
n  read access is controlled by SQL server, based on access privileges to the datalink value
n  involves read access tokens

n  encoded into the URL by the SQL server
n  verified by external file manager/data linker

n  Write permission option (FS, ADMIN, BLOCKED)
n  WRITE PERMISSION FS

n  write access controlled by file manager

n  WRITE PERMISSION BLOCKED
n  linked files cannot be modified

n  WRITE PERMISSION ADMIN [NOT] REQUIRING TOKEN FOR UPDATE
n  write access governed by SQL server (and datalinker)

n  requires READ PERMISSION DB

n  involves write access token for modifying file content
n  may have to be presented to the SQL server again

18

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management

Functions and Operations (continued)

n  “Update-in-place”"
SELECT Title, DLURLCOMPLETEWRITE(Movie) 

INTO :t, :url ..."

" open using URL, modify ...!

UPDATE Movies SET Movie = DLNEWCOPY(:url, 1) 
WHERE Title = :t"

n  DLNEWCOPY"
n  indicates to the SQL server that the file content has changed and should be managed

appropriately"
n  alternative: DLPREVIOUSCOPY – file content may have changed, but the application is

not interested in keeping the changes, original file is restored"

19

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management

Data Link Options (continued)

n  RECOVERY YES/NO
n  indicates whether SQL server coordinates recovery (jointly with datalinker) or not

n  Unlink option (RESTORE, DELETE, NONE)
n  ON UNLINK RESTORE

n  original properties (ownership, permissions) restored as well

n  ON UNLINK DELETE
n  file is deleted when unlinked

n  ON UNLINK NONE
n  ownership and permissions are not restored

n  SQL statement (example)"
n  “Unlink/Replace”"

UPDATE Movies SET Movie = 
DLVALUE(‘http://my.newserver.de/mylife.avi’) 
WHERE Title = ‘My Life’"

"RESTORE or DELETE for “.../movies/mylife.avi”"

"

20

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management

Valid Combinations

Integrity! Read permission! Write permission! Recovery! Unlink!

ALL FS FS NO NONE

ALL FS BLOCKED NO RESTORE

ALL FS BLOCKED YES RESTORE

ALL DB BLOCKED NO RESTORE

ALL DB BLOCKED NO DELETE

ALL DB BLOCKED YES RESTORE

ALL DB BLOCKED YES DELETE

ALL DB ADMIN NO RESTORE

ALL DB ADMIN NO DELETE

ALL DB ADMIN YES RESTORE

ALL DB ADMIN YES DELETE

SELECTIVE FS FS NO NONE

21

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
22

User-defined Types: Key Features

n  New functionality
n  Users can indefinitely increase the set of provided types
n  Users can indefinitely increase the set of operations on types and extend SQL to automate

complex operations/calculations

n  Flexibility
n  Users can specify any semantics and behavior for a new type

n  Consistency
n  Strong typing insures that functions are applied on correct types

n  Encapsulation
n  Applications do not depend on the internal representation of the type

n  Performance
n  Potential to integrate types and functions into the DBMS as "first class citizens"

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
23

User-defined Structured Types (ST)

n  User-defined, complex data types
n  definition of state (attributes) and behavior
n  can be used as data type wherever predefined data types can be used

n  type of domains or columns in tables
n  attribute type of other structured types
n  type of parameters of functions, methods, and procedures
n  type of SQL variables

n  strong typing

n  Structured Types can be used to define typed tables
n  types and functions for rows of tables

n  for modeling entities with relationships & behavior

n  explicit object identifier column to support flavor of "object identity"

id
name

emp stuff1 stuff2

... ... Column Type

name oid id

... Row Type

CREATE TYPE employee AS
(id INTEGER,
name VARCHAR (20))

© Prof.Dr.-Ing. Stefan Deßloch

Creating and Using Structured Types

n  Create structured type:
CREATE TYPE address AS (

street CHAR (30),
city CHAR (20),
state CHAR (2),
zip INTEGER) NOT FINAL

n  Create table using type for column:
CREATE TABLE properties(

price DECIMAL(9,2),
owner VARCHAR (50),
addr address)

n  Insert structured values using the NEW
operator

n  Invokes (system-supplied or user-
defined) constructor function

INSERT INTO properties
VALUES (… , NEW address, ...)

n  Access attributes using dot-notation
SELECT p.addr.street, p.addr.city,

p.addr.state, p.addr.zip
FROM properties p
WHERE price < 100000

n  Update attributes
UPDATE properties
SET addr.city = 'Los Angeles'
WHERE addr.city = 'LA'

Digital Libraries and Content Management
24

© Prof.Dr.-Ing. Stefan Deßloch

Type Hierarchies and Value Substitutability

n  Create type hierarchy:
CREATE TYPE german_addr UNDER address

(family_name VARCHAR(30)) NOT FINAL
CREATE TYPE brazilian_addr UNDER address

(neighborhood VARCHAR(30)) NOT FINAL
CREATE TYPE us_addr UNDER address

(area_code INTEGER, phone INTEGER) NOT
FINAL

CREATE TYPE us_bus_addr UNDER us_address
(bus_area_code INTEGER, bus_phone
INTEGER) NOT FINAL

n  Each row can have a column value of a
different subtype!

INSERT INTO properties (price, owner, location)
VALUES (100000, 'Mr.S.White', NEW us_addr
('1654 Heath Road', 'Heath', 'OH', 45394, ..))

INSERT INTO properties (price, owner, location)
VALUES (400000, 'Mr.W.Green', NEW
brazilian_addr ('245 Cons. Xavier da Costa',
'Rio de Janeiro', …, 'Copacabana'))

INSERT INTO properties (price, owner, location)
VALUES (150000, 'Mrs.D.Black', NEW
german_addr ('305 Kurt-Schumacher
Strasse', 'Kaiserslautern', 'Schwarz'))

Digital Libraries and Content Management
25

address

german_addr brazlian_addr us_addr

us_bus_addr price owner location

100000 Mr.S.White <us_addr> '1654 Heath Road', …

400000 Mr.W.Green <brazilian_addr> '245 Cons. Xavier …

150000 Mrs.D.Black <german_addr> '305 Kurt-Schumacher …

internal type tags

© Prof.Dr.-Ing. Stefan Deßloch

Routines: Procedures, Functions and Methods

n  Procedure
CREATE PROCEDURE getPropertiesCloseTo

 (IN addr VARCHAR(50),
 IN distance INTEGER,

 OUT results INTEGER) …
n  invoked exclusively using the SQL CALL

statement
 CALL getPropertiesCloseTo ('1234 Cherry
Lane …', 50, :number);

n  may return additional results in form of
result sets

n  Functions
CREATE FUNCTION distance

(loc1 address, loc2 address)
RETURNS INTEGER …;

n  invoked in an expressions within other SQL
statements (e.g., a SELECT or UPDATE
statement) using function invocation syntax
 SELECT price, addr, distance(addr, NEW
address('1234 Cherry Lane', …)) AS dist
 FROM properties
 ORDER BY dist

n  Methods
n  are regarded as a "special kind of function",

associated with structured types
CREATE TYPE address AS (

street CHAR (30),
city CHAR (20),
state CHAR (2),
zip INTEGER)
METHOD longitude()

 RETURNS DECIMAL(5, 2)
METHOD latitude() RETURNS DECIMAL(5, 2)
… ;

CREATE METHOD longitude () FOR address
BEGIN … END;

CREATE METHOD latitude () FOR address
BEGIN … END;

n  invocation similar to function, but using
method invocation syntax
 SELECT price, addr, addr.longitude(),
addr.latitude()
 FROM properties

Digital Libraries and Content Management
26

© Prof.Dr.-Ing. Stefan Deßloch

Combined Search Using UDTs/UDFs

n  User-defined types can be used for representing media object types
n  user-defined functions or methods for content search predicates

n  Query may range over "traditional" and multimedia data at the same time

Digital Libraries and Content Management
27

Artist, Music, Cover, Video, Sold
Video_Store
Rating = 'G' AND
Video.length < 120 AND
TextContains (Script, "Infinity")
Sold

SELECT
FROM

WHERE

ORDER_BY

UDF for text
search

description!
data

registration!
data for Type

"Video"

© Prof.Dr.-Ing. Stefan Deßloch Digital Libraries and Content Management
28

SQL Collection Types

n  Two kinds of collection types
n  Array (with optional maximum length)
n  Multiset

n  Collections are typed
n  all elements are instances of the specified element type
n  any element type admissible (including user-defined types and collection types)

n  Construction of collections
n  by enumeration
n  by query

n  UNNESTing of collections to access elements
n  Manipulation of collections

n  general: cardinality
n  arrays: element access, concatenation
n  multisets: turn singleton into element, turn into set (eliminate duplicates), multi-set union,

intersection, difference
n  Multiset predicates (member, submultiset, is a set)
n  Collections can be compared, assigned, cast

© Prof.Dr.-Ing. Stefan Deßloch

Working with Collection Types and Values

n  Example (for multisets):
CREATE TABLE properties (…,

owners VARCHAR(50) MULTISET, …)

n  Constructing multisets
n  by enumeration
n  by query
UPDATE properties
SET owners = MULTISET

 (SELECT name
 FROM people WHERE …)

WHERE …

n  Using multisets as table references
(UNNEST)
SELECT p.price, p.addr.print(), o.name
FROM properties p,

 UNNEST(p.owners) AS o(name)
WHERE o.name LIKE %Schmidt%

Digital Libraries and Content Management
29

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM – an SQL-Standard for Media Objects

n  Media objects and operations are used in many applications
n  ORDBMS extensibility concepts can be used to define media object types
n  Extensions can be provided in "packages"

n  easier management (installation, upgrade, removal) and reuse (package can use another
package)

n  Proprietary packages offered for numerous ORDBMS products
n  Informix: Excalibur Text Search DataBlade, Excalibur Image DataBlade, Informix Video

Foundation Data-Blade Module
n  DB2: Image Extender, Audio Extender, Video Extender, Text Extender
n  Oracle: Visual Information Retrieval (VIR) Cartridge, ConText Cartridge, InterMedia

n  Standardization, based on SQL:1999, SQL:2003:
n  common "language"
n  portability of applications
n  data exchange

Digital Libraries and Content Management
30

© Prof.Dr.-Ing. Stefan Deßloch

 SQL/MM Overview

n  Refers to SQL-Standard, but stand-alone
n  SQL: ISO/IEC 9075, SQL/MM: ISO/IEC 13249
n  full name: SQL Multimedia and Application Packages

n  Consists of multiple parts
n  Part 1: SQL/MM Framework (2000)
n  Part 2: SQL/MM Full Text (2000)
n  Part 3: SQL/MM Spatial (2000)
n  Part 5: SQL/MM Still Image (2001)
n  …

n  Part 1 provides overview, conformance details
n  Every other part

n  represents a "package" for specific type of media data
n  contains UDTs, methods, functions based on SQL:1999

Digital Libraries and Content Management
31

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM Full Text

n  Version as of December 2001
n  specifies

n  UDT FullText for text data and
n  UDT FT_Pattern for search patterns

n  FullText:
n  four search methods

n  two method pairs, each pair differing only regarding search parameter type: character string or
pattern if type FT_Pattern (Overloading)

n  Contains methods: boolean search ⇒ result: true/falsen
n  Rank methods: ranking ⇒ result: implementation-defined value of type REAL

n  two constructors
n  character string
n  character string, language

n  function FullText_to_Character two produce character string from FullText value

n  Language can be defined for FullText and some of the search patterns
n  used for language-specific processing during text preprocessing (see chapter 3)

Digital Libraries and Content Management
32

© Prof.Dr.-Ing. Stefan Deßloch

UDT Definitions

create type FullText as (
Contents character
varying(FT_MaxTextLength),
Language character
varying(FT_MaxLanguageLength),
…
)

method Contains (pattern FT_Pattern) returns
integer

method Contains (
pattern character
varying(FT_MaxPatternLength)
) returns integer

method Rank (pattern FT_Pattern)
returns double precision

method Rank …

method FullText (
String character
varying(FT_MaxTextLength)
) returns FullText

method FullText (
String ... ,
Language character
varying(FT_MaxLanguageLength)
) returns FullText;

create cast (FullText as
character varying(FT_MaxTextLength)
with FullText_to_Character);

create type FT_Pattern as
character varying(FT_MaxPatternLength);

n  FT_Pattern values have to comply with
BNF of pattern language

n  Search semantics "constrained" by a
set of rules

Digital Libraries and Content Management
33

© Prof.Dr.-Ing. Stefan Deßloch

Search Patterns for Contains and Rank

n  Text example
aText: "This paragraph introduces the SQL/MM standard. This standard defines types and

routines for media objects."

n  Single word
 aText.Contains (' "paragraph" ') = 1

n  Sets of words
n  wildcards
 aText.Contains (' "media_" ') = 0

n  thesaurus-based extension
 aText.Contains ('

 thesaurus "CompSci"
 expand synonym term of "norm"
') = 1

Digital Libraries and Content Management
34

© Prof.Dr.-Ing. Stefan Deßloch

Search Patterns for Contains and Rank (2)

n  Context pattern
 aText.Contains ('

 ("paragraph") near "standard" within 0 sentences in order
') = 1

n  Concept pattern
 aText.Contains ('

 is about "International Standard for Fulltext Search"
') = 1

n  Single phrase, combination of word/phrase search, arbitrary patterns using boolean
operators (|, &, NOT)

n  Example query:
 select * from myDocs

 where Doc.Rank(' "standard" ') > 0.8

Digital Libraries and Content Management
35

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM Spatial

n  Version as of December 2001 (581 pages)
n  Corresponds to graphics media type
n  Specifies UDTs for

n  2D data (point, line, polygon)
n  collections thereof

n  Defines routines
n  manipulation, search, comparison of spatial data
n  conversion among UDTs and character/binary representations

n  Geometry objects (ST_Geometry) are associated with SRIDs (spatial reference
system identifiers) that identify a spatial reference system

n  based on well-known reference systems
n  geographic coordinate system (long/lat)
n  projection coordinate systems: X, Y
n  geo-centric coordinate system: X, Y, Z

Digital Libraries and Content Management
36

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM Spatial: Types

n  0-dim: ST_Point
n  1-dim: ST_Curve

n  subtypes differ in the interpolation between element points
n  ST_LineString: linear interpolation
n  ST_CircularString: circular interpolation
n  ST_CompoundString: mix of both

n  2-dim: ST_Surface
n  ST_CurvePolygon: 1 external + n internal ST_Compound-String boundaries
n  ST_Polygon: only ST_LineString boundary

n  collection objects
n  same reference system for all elements
n  ST_MultiPoint
n  ST_MultiCurve, ST_MultiLineString
n  ST_MultiSurface, ST_MultiPolygon

Digital Libraries and Content Management
37

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM Spatial Methods

n  ST_Geometry methods:
n  intersection (sets of points), difference, union
n  distance
n  tests (contains, overlaps, touches, crosses, …)
n  determine reference system

n  additional methods on subtypes
n  ST_Curve: length
n  ST_Surface: area, perimeter

Digital Libraries and Content Management
38

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM Still Image

n  Version as of December 2001
n  Specifies

n  UDT SI_StillImage for image data,
n  UDT SI_Feature for image features
n  UDT SI_FeatureList for lists of features

n  SI_StillImage:
n  internal representation is revealed (ð no format independence)
n  two constructors (BLOB, BLOB + format)
n  two mutator (modification) methods: BLOB replacement + format change
n  two observer (read) methods for generating thumbnail images

Digital Libraries and Content Management
39

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM Still Image: UDT SI_StillImage

create type SI_StillImage as (
SI_content BLOB(SI_MaxContLength),
SI_contentLength integer,
SI_format character varying(8),
SI_height integer,
SI_width integer,
…
)

n  SI_content:
n  also contains registration data (header

fields, color map, etc.)
n  "container" for the complete image

n  SI_format:
n  built-in formats (DBS can read and

change format, extract properties and
features)

n  user-defined formats

method SI_StillImage (
content BLOB(SI_MaxContLength)
) returns SI_StillImage

method SI_StillImage (
content BLOB(SI_MaxContLength),
format character varying(…)
) returns SI_StillImage

method SI_setContent (
content BLOB(SI_MaxContLength)
) returns SI_StillImage

method SI_changeFormat (
targetFormat character varying(…)
) returns SI_StillImage

Digital Libraries and Content Management
40

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM Still Image: Features

n  Type SI_Feature has the following subtypes (also see chapter 4):
n  SI_AverageColor: single color for complete image
n  SI_ColorHistogram: percentages for groups of colors
n  SI_PositionalColor: grid segments with average segment color
n  SI_Texture: texture information

n  Features have a methods SI_Score for
n  computing the distance of an image to the feature, and
n  returning a REAL value in the range 0 to 1

n  Subtypes of SI_Feature have functions for performing feature extraction
n  Instances of SI_AverageColor and SI_ColorHistogram can also be constructed

explicitly using literal values

Digital Libraries and Content Management
41

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM Still Image: UDTs for Features

create type SI_Feature
method SI_Score (image SI_StillImage)
returns double precision

create type SI_AverageColor under SI_Feature
as (SI_AverageColorSpec SI_Color)
method SI_AverageColor (

 RedValue integer,
 GreenValue integer,
 BlueValue integer

) returns SI_AverageColor
create function SI_AverageColor (image

SI_StillImage) returns SI_AverageColor

n List of feature-value-pairs
n SI_Score returns weighted average:
self.SI_Features[1].SI_Score(img) * self.SI_Weights[1]
+ self.SI_Features[2].SI_Score(img) * self.SI_Weights[2]
+ …
/ (self.SI_Weights[1] + self.SI_Weights[2] + …)

create type SI_FeatureList as (
 SI_Features SI_Feature

 array[SI_MaxFeatureNumber],
 SI_Weights double precision

 array[SI_MaxFeatureNumber])
method SI_FeatureList (firstFeature SI_Feature,
 weight double precision)
 returns SI_FeatureList
method SI_Append (feature SI_Feature,
 weight double precision)
 returns SI_FeatureList
n  Example:

select * from Logos
where
 SI_FeatureList (
 SI_Texture (SI_StillImage(:bspLogo)), 0.8).

 SI_Append (
 SI_ColorHistogram

 (SI_StillImage(:bspLogo)), 0.2).
 SI_Score (Logo) > 0.7

Digital Libraries and Content Management
42

© Prof.Dr.-Ing. Stefan Deßloch

SQL/MM – Closing Remarks

n  Three parts standardized: FullText, Spatial, Still Image
n  no ongoing standardization work for video, audio

n  Some inconsistencies (Rank for FullText, Score for StillImage)
n  No full generalization pursued

n  MM_Object type with media object subtypes?

n  Questions
n  are vendors implementing the standard?
n  how big are the differences compared to existing vendor packages?

Digital Libraries and Content Management
43

© Prof.Dr.-Ing. Stefan Deßloch

Object-Relational Schema

n  Text, Image, …are possible atomic domains,
i.e. attributes can be of type Text, Image, …

n  Example:
n  Employee (EmpNo integer,

 … ,
 Photo image)

n  Inmate (I-Nr integer,
 … ,
 Front image,
 Side image,
 Fingerprint image)

n  Car (Make varchar(50),
 Year integer,
 … ,
 Photo image,
 EngineSound audio)

n  1:1-relationship, attribute relationship

Digital Libraries and Content Management
44

© Prof.Dr.-Ing. Stefan Deßloch

1:N Relationship Involving Media Objects

n  Alternative 1: based on foreign key
n  use separate relation (1NF) for variable

number of texts, images, etc. per entity
 Patient (Name varchar(100),

 … ,
 Picture image)
 XRay (PName varchar(100),

 Date date,
 Position varchar(30),
 BodyPart varchar(40),
 Picture image)

n  PName is a primary key component,
i.e., XRays only for known patients

n  Access:
n  to retrieve patient data with patient x-

rays: requires join operation

n  Alternative 2: using collection types,
structured types
Patient (Name varchar(100),

 … ,
 Picture image
 XRays XRay MULTISET)

CREATE TYPE XRay
 (Date date,

 Position varchar(30),
 BodyPart varchar(40),
 Picture image)

n  Again, XRays without a patient cannot
exist

n  Access:
n  to work with individual images:

requires UNNEST

Digital Libraries and Content Management
45

© Prof.Dr.-Ing. Stefan Deßloch

N:M-Relationships

n  Example: picture may show more than one entity:
relations for images, relationship

 Horse (Name varchar(50),
 Age integer)

 RacePhoto (Archivenr integer,
 Date date,
 Location varchar(80),
 Picture image)

 Is_depicted_on (Horsename varchar(50),
 Archivenr integer,
 Position varchar(10))

n  Photos are separate entities, i.e., they can be stored without an association to a subject
(here: horses)

n  Access:
n  two (usually expensive) join operations

n  Alternative approach for binary relationships: use collection types
n  e.g., multiset of archive numbers, multiset of horses

Digital Libraries and Content Management
46

© Prof.Dr.-Ing. Stefan Deßloch

Summary for Object-Relational DBMS

n  LOBs vs. file-based storage (datalinks)
n  management of large amounts of (raw) data

n  datalinks preserve file-based access, but allow gradual control/management by DBMS

n  no media object type semantics, operations

n  User-defined, structured types
n  important concept for defining media object types (structure and behavior)
n  enablement for SQL/MM standardized types

n  Relationships
n  different types of relationships (1 : 1, 1 : N, N : M) between MM objects and entities can

be represented
n  Media objects can be represented as attributes or entities

n  may be complicated if different types of entities are involved (ship, car, airplane, …)
may require multiple relationship tables

n  Advantages
n  stable, proven environment

n  smooth learning curve, upward compatibility

Digital Libraries and Content Management
47

© Prof.Dr.-Ing. Stefan Deßloch

Object-oriented DBMS Extensions

n  MM data objects are instances of classes
n  Class hierarchy and inheritance

n  simplified data modeling
n  more integrity control
n  inheritance, specialization, overriding

n  Applications
n  may pursue definition of subclasses

(extensibility)
n  "benefit" from MM methods

available in the MM classes

Digital Libraries and Content Management
48

raster
im age

photo

findLine

.....

from -
graph ic chart

X-Ray satellite
image

"is-a"

findBone findStreet

changeColor

crea te
heigh t
se tPixel
.... "has-subclass"

© Prof.Dr.-Ing. Stefan Deßloch

Example: ORION

n  Overview:
n  MCC (Austin, Texas)
n  since 1985: development of a Multimedia-DBMS
n  early decision for fully object-oriented architecture
n  prototype implementation in Common LISP on Symbolics and SUN,

commercial product (ITASCA), but little traction

n  Multimedia Information Manager (MIM)
n  packages of classes and methods

("class library" under ORION)
n  extensible:

developers can provide subclasses for special formats

n  Unique approach:
n  even devices (I/O, storage) modeled as objects

Digital Libraries and Content Management
49

© Prof.Dr.-Ing. Stefan Deßloch

Output Devices

Note: framed classes are not part of the MIM product, but represent possible user extensions

n  Instances of classes in the hierarchy also describe
n  presentation position on the device (e.g., position on screen)
n  which part of the MM object is presented

n  There may be multiple instances representing the same physical device
n  "presentation formats" for media objects

Digital Libraries and Content Management
50

presentation-device

spatial-pres-device linear-pres-device

image-pres-device text-pres-device pc-audio-device

screen-window

© Prof.Dr.-Ing. Stefan Deßloch

Input Devices

n  Instances are again more than specific devices:
n  which part of the MM object is captures
n  device configuration

Digital Libraries and Content Management
51

capture-device

spatial-
capture-device

linear-
capture-device

image-
capture-device

image-in-
LISP-file

keyboard pc-audio-device

© Prof.Dr.-Ing. Stefan Deßloch

Input and Output Devices – More Details

n  spatial-pres-device
attributes: !upper-left-x

 upper-left-y
 width
 height

(section of MM object)

n  screen-window (subclass of spatial-pres-
device)

attributes: 	

win-upper-left-x
 win-upper-left-y
 win-width
 win-height

(area on the screen)
methods: 	

present

 capture
 persistent-pres

n  spatial-capture-device
attributes: upper-left-x

 upper-left-y
 width
 height

n  image-capture-device (subclass of spatial-
capture-device)

attributes: cam-width
 cam-height
 bits-per-pixel

methods: capture

Digital Libraries and Content Management
52

© Prof.Dr.-Ing. Stefan Deßloch

Stored Objects

n  Attributes of captured-object:
 n  Attributes of spatial-captured-object:

n  width
n  height
n  row-major: row/column storage
n  bits-per-pixel

(registration data)

Digital Libraries and Content Management
53

captured-object

spatial-
captured-object

linear-
captured-object

captured-
image

captured-pc-
audio

captured-
 text

storage-object: refers to instance of class
storage-device

logical-
measure:

elementary unit for raw
data from user
perspective, e.g., seconds
for audio, frame for video

phys-logic-ratio: bytes per second, etc.

© Prof.Dr.-Ing. Stefan Deßloch

Storage Devices

n  Decribe only storage aspects used by MM objects
n  Attributes of mag-disk-storage-device:

n  block-list: block number of all physical blocks occupied by MM objects
n  allocated-block-list: blocks actually allocated (see versions)
n  min-object-size-in-disk-pages: number of blocks to be added when MM object has to

grow
n  seg-id: disc segment hosting new blocks

Digital Libraries and Content Management
54

storage-device

mag-disk-
storage-device

optical-disk-
storage-device

video-disk-
storage-device

pc-file-
storage-device

© Prof.Dr.-Ing. Stefan Deßloch

Input/Output Streams

n  Instances represent a read or write operation
n  generated dynamically

n  Attribute of disk-stream:
n  storage-object: references an instance of storage-device

n  Attribute of read-disk-stream:
n  read-block-list: cursor; next block to read for the MM objects

(similar for write-disk-stream)

Digital Libraries and Content Management
55

disk-stream

read-disk-stream write-disk-stream

© Prof.Dr.-Ing. Stefan Deßloch

Details of Output Operation (Example)

Digital Libraries and Content Management
56

Application:

Orion:

Car

image - pres - device

captured - image

Show - Picture
picture

present

read - disk - stream

open - for - read

start - offset

init

storage - object ,
start - offset

stream

get - next - block

storage - object get - block

address read - block - list

address

© Prof.Dr.-Ing. Stefan Deßloch

Summary for Object-Oriented DBMS

n  Complete proposal for a MMDBS
n  Application developer extends system by adding new subclasses
n  Open questions:

n  Is the class hierarchy adequate? Methods?
n  e.g., classification of MM objects as 1D (linear) and 2D (spatial)
n  why not visual vs. acoustic
n  or time-dependent vs. static?

n  many alternatives:
n  device x : show image Y
n  image y : present on device X
n  evaluation criteria?

n  Is differentiation of magnetic vs. optical disc required?
n  more abstract: random access memory, sequential storage, write-once-storage, …

n  Search?

Digital Libraries and Content Management
57

