
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 9 – MM/Search Extensions for
Object-Relational DBMS

Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

(OR-)DBMS-Support for Content-based Search

n  Search engine coupling
n  separate, external search engine for content-based retrieval

n  Integrated search support
n  utilization of "conventional" index support (e.g., b*-trees)

n  "high-level indexing"

n  specialized (multi-dimensional) index support

n  Extensible indexing support

Digital Libraries and Content Management
2

© Prof.Dr.-Ing. Stefan Deßloch

Coupling of External Search Engines

n  Shallow Integration
n  Loose coupling of DB search and content-specific search/retrieval

n  content search engine is not integrated into DBMS
n  well-defined interfaces and interaction

n  Index data for media objects may still reside outside the DBMS
n  index is accessed during query evaluation by calling out to external search engine

n  Location/storage of media objects is not impacted
n  inside the DB, or outside (e.g., as a file)

n  Motivation
n  lack of appropriate index support in the DBMS

n  adding new index support is complex, expensive

n  optimized external search engine exists
n  costly migration

n  Potential problems
n  integrity
n  usability (in search and administration)
n  performance

3
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

proj-no title budget description

123 '....' 200000 'This project ..'

456 '....' 400000 'Objects are...'

789 '....' 700000 'A database...'

Projects

SELECT proj-no, title
FROM compschema.projects
WHERE contains (description,

' "database"
 IN SAME SENTENCE AS
 "object-relational" ') = 1

Example: DB2 Text Extender

n  Text is stored in char column (long
varchar, CLOB, …) or anything that can
be used to "produce" character strings

n  structured type (SQL/MM)
n  external storage

n  Search using scalar UDFs
n  CONTAINS
n  SCORE
n  NUMBER_OF_MATCHES

n  Remember: preprocessing is expensive!
n  CONTAINS function always needs to

access an external text index
n  performance issues

n  updates, inserts on text columns become
expensive

n  asynchronous index updates
n  decoupled from column update

4
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

 DB
 Server
 Engine

Text Search
Engine

'contains'
UDF

DB client

Application

DB

Text Index

contains
(<column>,
 <pattern>)

Text Extender System Architecture

n  Text index is stored outside the DB under
control of text search engine (TSE)

n  index scope: all documents in a text column
n  primary key of table used as document id

n  Separate TSE process for building and
incrementally updating the text index

n  configuration of update interval, etc.

n  Each index has a log table in the DB
n  holds information about updates that need

to be reflected in the index
n  populated using DB-triggers
n  used by asynchronous index update

process

n  Search UDF (implemented as a C function)
calls text engine, which returns a list of
doc-ids

n  may "miss" the latest updates!

trigger log
update

5
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Search – Performance Problems

n  Scalar UDFs (contains, etc.)
n  calls text search engine to retrieve search result

list
n  checks whether the document id is in that list

n  or returns the score, #of matches

n  for each tuple in PROJECTS!

n  First (big) improvement:
n  UDF can 'buffer' the result list to reduce text

engine API calls
n  TSE API only needs to be invoked for the first

tuple in PROJECTS

n  But: the DB engine still calls the UDF for every
row!

n  table scan
n  invocation overhead

Digital Libraries and Content Management
6

proj-no title budget description

123 '....' 200000 'This project ..'

456 '....' 400000 'Objects are...'

789 '....' 700000 'A database...'

Projects

SELECT proj-no, title
FROM compschema.projects
WHERE contains (description,

' "database"
 IN SAME SENTENCE AS
 "object-relational" ') = 1

© Prof.Dr.-Ing. Stefan Deßloch

Search Using Table Functions

n  Table function (TF)
n  (user-defined) function that returns a table structure instead of a single scalar value
n  can be invoked in the FROM clause of a SELECT statement using special syntax

n  Text search TF interacts with TSE, returns search results for specific index
n  input parameters for

n  scope of the text search (external index name or name of indexed table, column)
n  text search pattern
n  optional parameters for limiting the result set

n  result table has columns holding
n  primary key value (document id)
n  score (optional), number of matches (optional)

n  Example
 SELECT p.pro-no, p.title
FROM compschema.projects p,
 TABLE(containstable(‘COMPSCHEMA’, ‘PROJECTS’, ‘DESCRIPTION,
 ‘ “database” IN SAME SENTENCE AS “object-relational” ’)) AS restab

WHERE p.proj-no = restab.primarykey

7
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Table Functions - Evaluation

n  Advantages
n  performance!

n  avoids table scan

n  Disadvantages: usability!
n  asks end-user to make choice for the optimizer

n  in some situations, using the scalar function results in a better plan

n  lack of transparency
n  two different syntax alternatives for the same query

n  use of table functions
n  not "intuitive" to write
n  requires join of function result with document table, complicating the queries
n  potential lack of support by query tools, data access tools

n  view transparency lost
n  view definition may access multiple tables with text columns

n  involves multiple indexes, based on the base table columns

n  user has to know view definitions

8
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Query Rewrite/Optimization Support

n  Optimizer is made aware of additional
rewrite options

n  users continue to use scalar functions for
better usability

n  internally, the query is rewritten to exploit
table function for better performance

n  Based on correspondences
n  scalar function to table function
n  parameter correspondences

n  search argument
n  document/primary key columns

n  meta data
n  table/columns names as TF parameters

n  either hard-wired, or through syntax
extensions in "CREATE FUNCTION"

n  Further optimization opportunities
n  multiple scalar functions in the same

query mapped to the same TF
n  predicate/sorting "push-down"

 SELECT proj-no, title
FROM compschema.projects
WHERE contains (description,
' "database" IN SAME SENTENCE AS
"object-relational" ') = 1

 SELECT p.pro-no, p.title
FROM compschema.projects p,

 TABLE(containstable(
 'COMPSCHEMA', 'PROJECTS',
 'DESCRIPTION',
 ' "database" IN SAME SENTENCE AS
 "object-relational" ')) AS restab

WHERE p.proj-no = restab.primarykey

Digital Libraries and Content Management
9

© Prof.Dr.-Ing. Stefan Deßloch

High-Level Indexing - Motivation

n  Existing DB index mechanisms (e.g., b*-tree) may not support content search
predicates directly (e.g., within (shape, shape), overlaps (shape, shape) for spatial)

n  But it may be possible to exploit them to a certain degree
n  Example: spatial search

n  define a coordinate grid
n  b*-tree index entries for shape

n  grid cell coordinates
n  min. bound. rectangle (mbr)

n  for each cell touched by mbr

n  Search can be done in stages
n  compute grid cells, mbr for

search argument ('CA')
n  search index with cell

coordinates as arguments
n  filter false positives based on

mbr, eliminate duplicates
n  compute final result using exact shape

10
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Spatial Indexing Requirements

n  Index type for 'reuse' in index creation
n  Index entries

n  Not useful to store complete shape object in the index
n  Should contain information extracted from a shape object

n  grid cell coordinates
n  minimum bounding rectangle information

n  Multiple index entries for a single shape object have to be supported
n  a shape object may 'appear' in multiple grid cells

n  Index exploitation (search)
n  flexible search method for mapping a 'query shape' to a range search on the index
n  multiple levels of search (result set filtering)

n  grid coordinate match
n  mbr overlap or containment
n  full geometric overlap or containment

n  multiple search methods for the same index extension
n  overlap or containment

n  Index parameters
n  grid levels (determines granularity of the grid)
n  grid levels may vary for individual indexes

11
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Index Extension Support

n  Builds on top of existing B-Tree support
n  index plug-ins

n  DDL for creating named index extensions
n  define parameters to be supplied at ‘create index’ time
n  specify mapping of UDT to (multiple) index entries (Key Transformer)
n  define search methods that map a 'query literal' to a set of ranges over the index (Range

Producers)
n  provide filter functionality that further reduces answer set during index lookup (IDX Filter)

n  Specify how search UDFs can be mapped to search methods of the index extension
n  extended CREATE FUNCTION syntax to provide Predicate Specification, Index Exploitation
n  provide filter functionality that further reduces answer set during DMS predicate evaluation

(DMS Filter)

n  Extended ‘CREATE INDEX’ to allow usage of index extensions
n  create index using an index extension
n  supply required parameters (e.g., grid scale)

12
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

CREATE INDEX store_loc ON stores(loc)
EXTEND USING grid('10 100 1000')

CREATE INDEX EXTENSIONS grid (scale VARCHAR ...)
FROM SOURCE KEY (shapeCol shape)

GENERATE KEY USING (gridEntry (....)) ...
SEARCH METHODS

WHEN searchFirst(searchArg shape)
RANGE THROUGH gridRange(...)
FILTER USING checkDuplicates(...)

...

CREATE FUNCTION within (x shape, y shape) ..
....
PREDICATES

WHEN = 1
FILTER USING mbrWithin(...)
SEARCH BY INDEX EXTENSION grid

WHEN KEY(x) USE searchFirst(y)
...

Index Extension Architecture - DDL

13
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

CREATE INDEX store_loc ON stores(loc)
EXTEND USING grid('10 100 1000')

CREATE INDEX EXTENSIONS grid (scale VARCHAR ...)
FROM SOURCE KEY (shapeCol shape)

GENERATE KEY USING (gridEntry (....)) ...
SEARCH METHODS

WHEN searchFirst(searchArg shape)
RANGE THROUGH gridRange(...)
FILTER USING checkDuplicates(...)

...

CREATE FUNCTION within (x shape, y shape) ..
....
PREDICATES

WHEN = 1
FILTER USING mbrWithin(...)
SEARCH BY INDEX EXTENSION grid

WHEN KEY(x) USE searchFirst(y)
...

SELECT *
FROM stores

WHERE within (loc, circle(100, 100,
1))

Index Extension Architecture - Query

14
Digital Libraries and Content Management

© Prof.Dr.-Ing. Stefan Deßloch

Specialized Index Support

Digital Libraries and Content Management
15

n  Most interesting queries over media objects are
n  range queries, or
n  nearest-neighbor queries (top-k) involving similarity/distance measure
n  involving multiple dimensions

n  "Classic" index structures in DBMS (e.g., B-tree)
n  limited to a single dimension
n  can be leveraged only in a restricted manned, not suitable for high-dimensional space

n  Multi-dimensional index methods
n  large number of methods proposed over the last years
n  no clear winner

n  complexity (hard to understand/compare)
n  numerous criteria for optimality, performance
n  strong dependency on data/query

n  commercial systems
n  optimized, highly tuned implementation of a simple and robust index method
n  most popular: R-tree

n  More details: course on realization of database systems

© Prof.Dr.-Ing. Stefan Deßloch

Multi-dimensional Access Methods - History

Digital Libraries and Content Management
16

Gaede, V., Günther, O.:
Multidimensional Access Methods
ACM Computing Survey 30:2, 1998

© Prof.Dr.-Ing. Stefan Deßloch

Extensibility – User-defined Access Methods

Digital Libraries and Content Management
17

n  ORDBMS provides support for user-defined access methods
n  primary access methods

n  relational table interface for direct read/write access
n  data may be stored outside the DB

n  secondary access methods
n  index structure to support key-based retrieval of rows in a table
n  index entries may reside outside the DB

n  Based on generic interfaces
n  developers can supply their own implementation of access method APIs
n  implementation may utilize storage services of the DBMS (e.g., BLOB storage)

n  Example: IBM Informix Dynamic Server virtual tables/indexes
n  pioneered in POSTGRES DBMS
n  Oracle (Data Options) offers similar capabilities

© Prof.Dr.-Ing. Stefan Deßloch

Virtual Indexes in Informix Dynamic Server

Digital Libraries and Content Management
18

n  Virtual Index Interface
n  purpose functions

n  functionality to build, connect to, populate, query, and update the index
n  includes cost information for the optimizer

n  called by DBMS server to pass SQL statement specifications to the access method
n  example: CREATE INDEX …
n  to be implemented by the access method developer

n  descriptors
n  predefined data types used to exchange information

n  e.g., qualification descriptor contains a data structure describing the content of the WHERE-clause

n  parameters for API calls

n  accessor functions
n  obtain specific information from the descriptors
n  supplied by the DBMS

n  Programmer is responsible for implementing
n  index functionality (see above)
n  concurrency control on index
n  logging/recovery, unless index data resides in DB BLOBs

© Prof.Dr.-Ing. Stefan Deßloch

Important Purpose Functions - Overview

Digital Libraries and Content Management
19

Invoking Statement Purpose Function

all am_open(MI_AM_TABLE_DESC *) am_close(MI_AM_TABLE_DESC *)

CREATE INDEX am_create(MI_AM_TABLE_DESC *) am_insert(MI_AM_TABLE_DESC *,
MI_ROW *, MI_AM_ROWID_DESC *)

DROP INDEX am_drop(MI_AM_TABLE_DESC *)

INSERT am_insert(MI_AM_TABLE_DESC *, MI_ROW *, MI_AM_ROWID_DESC *)

DELETE am_delete(MI_AM_TABLE_DESC *, MI_ROW *, MI_AM_ROWID_DESC *)

SELECT
INSERT, UPDATE, DELETE
WHERE...

am_scancost(MI_AM_TABLE_DESC *, MI_AM_QUAL_DESC *)
am_beginscan(MI_AM_SCAN_DESC *)
am_getnext(MI_AM_SCAN_DESC *, MI_ROW **, MI_AM_ROWID_DESC *)
am_endscan(MI_AM_SCAN_DESC *)

SELECT with join am_rescan(MI_AM_SCAN_DESC *)

UPDATE am_update(MI_AM_TABLE_DESC *, MI_ROW *, MI_AM_ROWID_DESC *,
 MI_ROW *,MI_AM_ROWID_DESC *)

UPDATE STATISTICS am_stats(MI_AM_TABLE_DESC *,MI_AM_ISTATS_DESC *)

© Prof.Dr.-Ing. Stefan Deßloch

Operator Classes

Digital Libraries and Content Management
20

n  Operator class connects SQL operators, predicates, data types to an access method
n  which data types can be indexed using a specific secondary access method?
n  what predicates can be supported by the index?
n  how can the optimizer be provided with statistics?

n  Two types of functions
n  strategy functions

n  needed for optimizer to decide whether an index can be used for a specific operation on a data
type

n  lists operators that appear in SQL (e.g., "=", "contains", …) and are supported by the index

n  support functions
n  called by the access method, e.g., to traverse the index and obtain the results
n  example: "compare keys" for a B-tree index

n  Similar to high-level indexing for B-trees, but supports user-defined access methods
as well!

© Prof.Dr.-Ing. Stefan Deßloch

Extensibility – Generalized Search Trees

Digital Libraries and Content Management
21

n  Generalized Search Tree (GiST)
n  generalization of tree-based index structures

n  e.g., B*-tree, R-tree can be seen as special cases

n  framework
n  provides implementation of common, generic index functionality
n  adapted by providing/registering a key class implementation with six methods

n  Common GiST properties
n  balanced tree, high fanout
n  internal nodes are used as a directory

n  series of keys, pointers

n  leaf nodes point to the actual data
n  linked list storage

n  search for tuples that match a query predicate:
n  starting at the root, for each pointer on the node,

if the associated key is consistent with the query predicate,
then traverse the subtree

n  requirement: key must match every data item (transitively) stored "below" it

may be an arbitrary 'predicate'
that holds for each datum
below the key, e.g., an integer
range, or a bounding box

© Prof.Dr.-Ing. Stefan Deßloch

GiST Key Methods and Tree Methods

n  Key Methods (to be provided as an
extension)

n  consistent (entry, predicate)
n  false, if conjunction of key and query

predicate is unsatisfiable
n  may return false positives

n  union (set of entries)
n  return predicate that holds for the

union of all tuples stored 'below' all of
the entries

n  penalty (entry1, entry2)
n  domain-specific cost (penalty) for

inserting entry2 into entry 1 subtree
n  aids split and insert algorithms

n  picksplit (set of entries)
n  splits set of entries into two sets of

entries
n  compress
n  decompress

n  Tree methods (provided by
framework)

n  search
n  uses "consistent()"

n  search in linear ordered domains
(findMin, Next)

n  uses "consistent()"
n  requires further ordering guarantees,

"compare" method implementation

n  insert (insert, chooseSubtree, split,
adjustKeys)

n  uses "penalty", "pickSplit", "union"
n  maintains tree balance

n  delete
n  uses "union"

Digital Libraries and Content Management
22

© Prof.Dr.-Ing. Stefan Deßloch

Commercial Systems

n  Database Extenders (IBM DB2)
n  data types and functions

n  Text Search, Net Search Extender
n  Image, Audio, Video Extender
n  Spatial Extender (ESRI)

n  utilize search engine coupling, high-level indexing approaches
n  Data Blades (Illustra, IBM Informix Universal Server)

n  collection of data types and associated functions
n  Text, Spatial, Geodetic, Image Foundation, Video Foundation, Visual Information Retrieval (Virage)

n  utilize virtual indexes, operator classes, R-tree specialized index structure
n  largely provided by business partners, certified by IBM/Informix

n  Data Options (Oracle)
n  interMedia (text, image, audio, video), Spatial, Visual Information Retrieval
n  utilize virtual index approach

n  Status
n  similar functionality, but only partial standardization

Digital Libraries and Content Management
23

© Prof.Dr.-Ing. Stefan Deßloch

DB2 Extender – Application View

Digital Libraries and Content Management
24

■  Complex data types
■  New functions
■  Integrated search
■  Open architecture

Info

Cover
Video

Music

Non-MM-Daten Integration of MM-Daten

Title Artist
Lizzi
Dwayne
Miller
Nitecry

Decisions
Earthkids
Run for
Cover

Sold
165
76
65

52
100
30

On-
Hand

1
3
7

Rating

Bilder
Video

Audio
Text

© Prof.Dr.-Ing. Stefan Deßloch

Extended Data Model (Example: Image Extender)

Digital Libraries and Content Management
25

Handle1 Handle Format Width... Thumbnail

Image Attribute Table

Handle1
Stock_no Title Covers�

(DB2Image)

Business Table
Handle1 Handle Importer... Content

Image Base Metadata Table

--
--

Filename DB2
BLOB

Image Administration Tables (ExtenderInfo, ImportLogs, Triggers, DeleteLog)

MMDB Administration Tables (ExtenderInfo, MetaTableNames)

File
Server

hidden
through UDFs

© Prof.Dr.-Ing. Stefan Deßloch

Image Extender: Overview

n  Attributes stored in side tables, accessible through UDFs
n  format, thumbnail, length, width, ...

n  Support for common image formats
n  (BMP, EPS, EP2, GIF, IMG, IPS, JPG, PCX, PGM, PS, PSC, PS2, TIF, YUG, ...)

n  Format conversion routines
n  Support for internal and external storage of media objects
n  Utilizes the Query by Image Content (QBIC) search engine

n  average color, color histogram, positional color, texture
n  features are extracted in an explicit catalog run, then available for search

n  Ranking (scoring) of search results

Digital Libraries and Content Management
26

© Prof.Dr.-Ing. Stefan Deßloch

Video Extender: Overview

n  Supported (searchable) attributes:
n  format, duration, number of frames, ...

n  Support for AVI, MPEG1, MPEG2, QT
n  DB-storage for store-and-forward playback
n  External media-server storage for realtime playback
n  Import, export and update of videos
n  Support for Video Shot Change Detection

n  shot detection, management of a shot catalog in the DB, extraction of frames

n  In combination with QBIC:
n  "Find the sunset shot in the video most similar to a given image and start playback at that

shot"

Digital Libraries and Content Management
27

© Prof.Dr.-Ing. Stefan Deßloch

Summary

n  ORDBMS architectures and support for MM-search
n  cannot be limited to provision of data types and functions
n  requires additional infrastructure for efficient content-based search

n  Search engine coupling
n  separate, external search engine for content-based retrieval

n  cost, utilization and protection of competitive, optimized search engines
n  table functions, query rewrite approaches for performance/usability improvements

n  Integrated search support
n  utilization of "conventional" index support (e.g., b*-trees)

n  "high-level indexing" that provides mapping of UDTs and predicated to index capabilities
n  multi-level search

n  specialized (multi-dimensional) index support
n  Extensible indexing support

n  virtual indexes/access methods
n  need to implement "purpose functions" for index operations, index maintenance

n  rather complex undertaking (locking, recovery, …)
n  most powerful and flexible approach

n  generalized search trees (GiST)
n  reduced programming effort through search tree framework, class library

n  Commercial ORDBMS support
n  IBM DB2 Extenders, IBM Informix Data Blades, Oracle Data Options

Digital Libraries and Content Management
28

