
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 10 – Temporal Data Models

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Outline

 Overview
I. Object-Relational Database Concepts
1.  User-defined Data Types and Typed Tables
2.  Object-relational Views and Collection Types
3.  User-defined Routines and Object Behavior
4.  Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5.  Data Analysis in SQL
6.  Windowed Tables and Window Functions in SQL
III. XML
7.  XML Data Modeling
8.  XQuery
9.  SQL/XML
IV. More Developments
10.  Temporal Data Models

2

© Prof.Dr.-Ing. Stefan Deßloch

Outline

n  Motivation
n  Conceptual temporal data model

n  periods & Allen's operators
n  valid time, transaction time

n  Temporal data management in SQL:2011
n  time periods
n  application-time period tables
n  system-versioned tables

n  Summary

Recent Developments for Data Models
3

© Prof.Dr.-Ing. Stefan Deßloch

Motivation

n  Databases are models of the real world
n  focus is usually on the current state: updates change the DB to reflect current

state of the real world
n  information about the previous state(s) is no longer available

n  Consider the following application scenarios
n  for auditing purposes, a bank needs to keep logs of client record changes for the

last 5 years
n  for internal accounting, a company needs to track the department membership

times of an employee and to which projects she was contributing during which
time periods

n  a travel agency wants to detect inconsistencies in travel itineraries, e.g., booking a
hotel in New York for 8 days and a rental car in Rome for some of those days
doesn't make sense

Recent Developments for Data Models
4

© Prof.Dr.-Ing. Stefan Deßloch

A Common "Temporalization" Approach

n  Use a timestamp-based modelling approach
n  one additional column to represent since when the fact represented by a tuple was

true (or stored in the DB)
n  now we only know since when the current state holds and it is assumed to still hold
n  no record about past states, unless we "compute" it from next-higher timestamp of

another, value-equivalent tuple
n  no old state for deleted tuples (e.g., employee has left the company)

n  two additional columns to represent the time period during which the fact was
true/stored

n  how do we interpret the timestamps (included or excluded in the time period)?
n  how do we issue temporal queries? complex!
n  how can we avoid redundancies, i.e., two value-equivalent tuples with overlapping time

periods?
n  how can we avoid conflicts, i.e., two "versions" of the same "object" with overlapping

time periods? primary keys are "broken"! E.g., PK(empno, start, stop) doesn't help!
 example: EMP(emp1, dept1, day1, day7), EMP(emp1, dept2, day5, day6) ???

n  Adding real temporal support "on top of the DBMS" by using triggers,
constraints, stored procedures is expensive, if not impossible!

Recent Developments for Data Models
5

© Prof.Dr.-Ing. Stefan Deßloch

Time Periods

n  Definition: A period is a (mathematical) interval on the timeline, characterized
by start and end times

n  start time and/or end time may be included or excluded from the period
n  Notation: [a, b], [a, b), (a, b], (a, b)

n  Quantisation of time
n  we think of time as being continuous
n  quantisation turns a period into a finite set of discrete points (or "chronons")
n  the distance between the points is according to a chosen scale (e.g., days,

minutes, seconds, ...)
n  each point has a successor (next) and a predecessor (prior) point
n  bound points of a period: pre, begin, end, post
n  equivalence: [begin, end] = (pre, end] = [begin, post) = (pre, post)

n  Example:
n  scale is days, we're using integers in our example (d01, d02, ...)
n  [d02, d09] = (d01, d09] = [d02, d10) = (d01, d10)

Recent Developments for Data Models
6

© Prof.Dr.-Ing. Stefan Deßloch

Operators on Time Periods

n  Membership test of point in period
n  Union, intersection, minus, count

n  union, intersection are not defined for all periods! Why?

n  Comparison predicates: Allen's operators (are not symmetric!)
n  p1 meets p2

n  p1 starts p2

n  p1 during p2

n  p1 finishes p2

n  p1 overlaps p2

n  p1 before p2

n  p1 = p2

Recent Developments for Data Models
7

© Prof.Dr.-Ing. Stefan Deßloch

Conceptual Model for Temporal Relations

n  Tuples in a "classic" relation represent current state information
n  We extend the tuples by adding information about a time period

n  allows to keep historic information, track changes, represent validity periods, etc.
n  tuples are called value-equivalent, if they have the same values for all columns,

ignoring the time period
n  a snapshot relation is obtained by selecting for a given point in time the tuples for

which the point is contained in the associated time period
n  goal: a snapshot relation should meet all the properties of a "classic" relation

(primary keys, foreign key constraints have to hold!)

n  Example:

Recent Developments for Data Models
8

ENo EDept Start End

22217 3 d01 d04

22217 4 d05 d07

22217 3 d08 d012

ENo EDept

22217 3

d03-snapshot

© Prof.Dr.-Ing. Stefan Deßloch

Valid Time vs. Transaction Time

n  What is the semantics of the time period?
n  Tables with valid time semantics (also called "application time")

n  time period represents temporal validity information that is defined and interpreted
by the application of application domain

n  department membership period, period of marriage, coverage period for an insurance
policy, etc.

n  application specifies valid time period during insert, update, deletion of tuples

n  Tables with transaction time semantics (also called "system time")
n  time period represents the time during which a tuple was "current" in the database

n  tracks versions of tuples using a transaction-specific timestamp, keep history for auditing

n  DBMS is in charge of maintaining time periods of the tuples and possibly insert new
tuples to reflect tuple updates

n  the application cannot modify time periods

n  Bitemporal tables
n  tuples are associated with both, a valid time period and a transcation time period

Recent Developments for Data Models
9

© Prof.Dr.-Ing. Stefan Deßloch

SQL:2011 – Temporal Support

n  Time periods
n  supported through (named) period definition on a table
n  based on column pairs holding the start/end times

n  either of type DATE or TIMESTAMP (scale of the period), same datatype for both columns
n  uses a closed-open interval model – [start-col, end-col)

n  no new time period datatype added!

n  System-versioned tables
n  provide transaction time support
n  queries by default range over current system rows
n  FOR SYSTEM TIME clause allows for historical system row queries

n  Application-time period tables
n  provide support for valid time
n  primary key and referential integrity support
n  queries range over all rows, predicates over periods allow for temporal queries

n  Bitemporal tables are supported

Recent Developments for Data Models
10

© Prof.Dr.-Ing. Stefan Deßloch

Application-Time Period Tables

n  User/application is in charge of setting/updating valid time periods
n  CREATE/ALTER TABLE can specify an application-time period using the

PERIOD FOR clause
n  Example

CREATE TABLE Emp(
 ENo INTEGER,
 EStart DATE,
 EEnd DATE,
 EDept INTEGER,
 PERIOD FOR EPeriod (EStart, EEnd))

n  arbitrary period name can be used
n  start and end columns are regular columns of the table

n  INSERT statements now need to contain values for application-time period
n  Example

INSERT INTO Emp
VALUES (22217, DATE ‘2010-01-01’,DATE '2011-11-12', 3)

Recent Developments for Data Models
11

© Prof.Dr.-Ing. Stefan Deßloch

Application-Time – Updates and Deletions

n  Modifications can be specified for an effective time period
n  Consider table Emp:

n  changes are applied on all rows
with overlapping periods

n  rows may get split into two or
three consecutive rows

UPDATE Emp
FOR PORTION OF EPeriod

 FROM DATE '2011-02-03'
 TO DATE '2011-09-10'

SET EDept = 4 WHERE ENo = 22217

DELETE Emp
FOR PORTION OF EPeriod

 FROM DATE '2011-02-03'
 TO DATE '2011-09-10'

WHERE ENo = 22217

Recent Developments for Data Models
12

ENo EStart EEnd EDept

22217 2010-01-01 2011-11-12 3

ENo EStart EEnd EDept

22217 2010-01-01 2011-02-03 3

22217 2011-02-03 2011-09-10 4

22217 2011-09-10 2011-11-12 3

ENo EStart EEnd EDept

22217 2010-01-01 2011-02-03 3

22217 2011-09-10 2011-11-12 3

UPDATE

DELETE

© Prof.Dr.-Ing. Stefan Deßloch

Application-Time & Primary/Foreign Keys

n  Primary keys need to include the application-time period
n  otherwise there can be only one row for each entity with a single time period
n  just adding the start/end columns to the PK will not forbid overlaps!
ALTER TABLE Emp ADD PRIMARY KEY (ENo, EPeriod WITHOUT OVERLAPS)

n  Referential constraints can be generalized to hold for every valid point in time
n  Example where constraint does not hold for every point in time:

n  How to avoid this: include time period in both primary and foreign keys:
CREATE TABLE Dept
(DNo INTEGER, ..., PERIOD FOR DPeriod (DStart, DEnd),
PRIMARY KEY (DNo, DPeriod WITHOUT OVERLAPS))
ALTER TABLE Emp
ADD FOREIGN KEY (Edept, PERIOD EPeriod)
REFERENCES Dept (DNo, PERIOD DPeriod)

Recent Developments for Data Models
13

ENo EStart EEnd EDept

22218 2010-01-01 2011-02-03 3

22218 2011-02-03 2011-11-12 4

DNo DStart DEnd DName

3 2009-01-01 2011-12-31 Test

4 2011-06-01 2011-12-31 QA //

© Prof.Dr.-Ing. Stefan Deßloch

Query Support For Application Time

n  The regular SELECT syntax is used
n  time period start/end columns can be queried in the usual way

n  Additional support through special period predicates
n  Example (using CONTAINS for point membership):

SELECT Ename, Edept
FROM Emp
WHERE ENo = 22217 AND EPeriod CONTAINS DATE '2011-01-02'

n  Semantics of additional predicates (based on Allen's operators)
n  x CONTAINS y ~ (x contains y) or (x starts y) or (x finishes y) or (x equal y)
n  x OVERLAPS y ~ (x overlaps y) or (y overlaps x) or (x contains y) or (y contains x)

 or (x starts y) or (y starts x) or (x finishes y) or (y finishes x) or (x equals y)
n  x EQUALS ~ x equals y
n  x PRECEDES ~ (x before y) or (x meets y)
n  x SUCCEEDS y ~ (y before x) or (y meets x)
n  x IMMEDIATELY PRECEDES y ~ x meets y
n  x IMMEDIATELY SUCCEEDS y ~ y meets x

Recent Developments for Data Models
14

© Prof.Dr.-Ing. Stefan Deßloch

Temporal Joins Using Application-Time

n  Without additional predicates, a join operation does not consider temporal
aspects

n  Example: The following query return 3 rows
SELECT ENo, EDept, DName
FROM Emp, Dept
WHERE EDept = DNo

n  For temporal joins, period predicates need to be used
n  Example: The following query return 2 rows

SELECT ENo, EDept, DName
FROM Emp, Dept
WHERE EDept = DNo AND EPeriod OVERLAPS DPeriod

Recent Developments for Data Models
15

ENo EStart EEnd EDept

22218 2010-01-01 2011-02-03 3

22218 2011-02-03 2011-11-12 4

DNo DStart DEnd DName

3 2009-01-01 2011-12-31 Test

4 2009-06-01 2011-01-31 Quality

4 2011-02-01 2011-12-31 QA

© Prof.Dr.-Ing. Stefan Deßloch

System-Versioned Tables

n  System-versioned tables support the notion of transaction time
n  any table that contains a period definition with the standard-specified name,

SYSTEM_TIME, and includes the keywords WITH SYSTEM VERSIONING
 Example:
 CREATE TABLE Emp (
 ENo INTEGER,
 Sys_start TIMESTAMP(12) GENERATED ALWAYS AS ROW START,
 Sys_end TIMESTAMP(12) GENERATED ALWAYS AS ROW END,
 EName VARCHAR(30),
 PERIOD FOR SYSTEM_TIME (Sys_start, Sys_end))
 WITH SYSTEM VERSIONING

n  Only DBMS can (and has to) provide start and end times for the periods
n  standard does not defines what timestamp to use, only that it is the same for all

operations within a transaction

n  Any modification will result in an additional tuple that represents the old row
state before the update is performed

n  current system row: a row whose system period contains the current timestamp
n  historical system row: any row that is not a current system row

Recent Developments for Data Models
16

© Prof.Dr.-Ing. Stefan Deßloch

Changing System-Versioned Tables

n  INSERT
n  automatically sets the period start to the transaction timestamp and the period end

to the highest data value supported for the type
 INSERT INTO Emp (ENo, EName)
 VALUES (22217, 'Joe')

n  UPDATE and DELETE
n  only operate on the current row
n  will automatically insert a historical system row for every row that is updated or

deleted
n  historical row is a copy of the current row with the period end set to the transaction

timestamp

n  UPDATE implicitly sets the period start to the transaction timestamp
 UPDATE Emp
 SET EName = 'Tom'
 WHERE ENo = 22217

Recent Developments for Data Models
17

ENo Sys_start Sys_end EName

22217 2012-01-01
09:00:00

9999-12-31
23:59:59 Joe

ENo Sys_start Sys_end EName

22217 2012-01-01
09:00:00

2012-02-03
10:00:00 Joe

22217 2012-02-03
10:00:00

9999-12-31
23:59:59 Tom

© Prof.Dr.-Ing. Stefan Deßloch

Constraints & Queries

n  Primary key and foreign key constraints for system-versioned tables
n  only need to be enforced on the current system rows
n  system-time period does not need to be included in the key!

n  Queries on system-versioned tables
n  by default only retrieves the current rows
n  can address historical rows using the FOR SYSTEM TIME clauses
n  select rows that were current as of a given timestamp:

SELECT ENo, EName, Sys_Start, Sys_End
FROM Emp FOR SYSTEM_TIME AS OF TIMESTAMP '2011-01-02 00:00:00'

n  select rows that were current during a given time period, not including end TS
SELECT ENo, EName, Sys_Start, Sys_End
FROM Emp FOR SYSTEM_TIME
FROM TIMESTAMP '2011-01-02 00:00:00’ TO TIMESTAMP '2011-12-31 00:00:00'

n  select rows that were current during a given time period, including end TS
SELECT ENo, EName, Sys_Start, Sys_End
FROM Emp FOR SYSTEM_TIME BETWEEN TIMESTAMP '2011-01-02 00:00:00'

 AND TIMESTAMP '2011-12-31 00:00:00'

Recent Developments for Data Models
18

© Prof.Dr.-Ing. Stefan Deßloch

Bitemporal Tables

n  Application-time and system-versioned tables combined
n  results in the capabilities of both forms of temporal support
n  Example:

CREATE TABLE Emp(
ENo INTEGER, EStart DATE, EEnd DATE, EDept INTEGER,
PERIOD FOR EPeriod (EStart, EEnd),
Sys_start TIMESTAMP(12) GENERATED ALWAYS AS ROW START,
Sys_end TIMESTAMP(12) GENERATED ALWAYS AS ROW END,
EName VARCHAR(30),
PERIOD FOR SYSTEM_TIME (Sys_start, Sys_end),
PRIMARY KEY (ENo, EPeriod WITHOUT OVERLAPS),
FOREIGN KEY (Edept, PERIOD EPeriod) REFERENCES Dept (DNo, PERIOD DPeriod))
WITH SYSTEM VERSIONING

n  Queries can specify predicates on both application-time and system-time
periods

n  Example:
SELECT ENo, EDept
FROM Emp FOR SYSTEM_TIME AS OF TIMESTAMP '2011-07-01 00:00:00'
WHERE ENo = 22217 AND EPeriod CONTAINS DATE '2010-12-01'

Recent Developments for Data Models
19

© Prof.Dr.-Ing. Stefan Deßloch

Summary

n  Modelling temporal data is an important requirement in many application
areas

n  time periods, predicates – Allen's operators
n  valid and transaction time, bitemporal tables

n  Important previous efforts include
n  TSQL2
n  SQL/Temporal

n  SQL:2011 Capabilities
n  period definitions
n  application-time period tables for valid time support
n  system-versioned tables for transaction time support
n  combination – bitemporal tables

n  SQL future directions
n  outer join, grouping/aggregation involving periods
n  normalization – collapsing contiguous, value-equivalent rows
n  multiple application-time periods per table

Recent Developments for Data Models
20

© Prof.Dr.-Ing. Stefan Deßloch

Literature

n  K. Kulkarni, J.-E. Michels, "Temporal features in SQL:2011", in ACM SIGMOD
Record 41(3), September 2012, pp. 34-43.

n  J.F. Allen, "Maintaining knowledge about temporal intervals", Communications
of ACM 26(11), November 1983.

n  C. J. Date, H. Darwen, N.A. Lorentzos, "Temporal Data and the Relational
Model", Morgan Kaufman, 2003.

n  R.T. Snodgrass, et. al.," TSQL2 Language Specification". SIGMOD Record
(SIGMOD) 23(1):65-86 (1994).

Recent Developments for Data Models
21

