
Prof. Dr.-Ing. Stefan Deßloch
AG Heterogene Informationssysteme
Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 2 – Object-Relational Views and
Composite Types

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Outline

 Overview
I. Object-Relational Database Concepts
1.  User-defined Data Types and Typed Tables
2.  Object-relational Views and Composite Types
3.  User-defined Routines and Object Behavior
4.  Application Programs and Object-relational Capabilities
II. Online Analytic Processing
5.  Data Analysis in SQL
6.  Windows and Query Functions in SQL
III. XML
7.  XML and Databases
8.  SQL/XML
9.  XQuery
IV. More Developments (if there is time left)
temporal data models, data streams, databases and uncertainty, …

2

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

stored procedures
user-defined functions

structured types
subtyping
methods

advanced datatypes SQL Routines
PSM
External Routines

The "Big Picture"

SQL99/2003

ISO

2.0 SQL92

SQLJ Part 1

SQLJ Part 2

JDBC

SQL OLB
ANSI

dynamic SQL

static SQL

Client DB Server Server-side
Logic

3

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Objects Meet Databases (Atkinson et. al.)

n  Object-oriented features to be supported by an (OO)DBMS
þ  Extensibility

n  user-defined types (structure and operations) as first class citizens
n  strengthens some capabilities defined above (encapsulation, types)

þ  Object identity
n  object exists independent of its value (i.e., identical ≠ equal)

þ  Types and classes
n  "abstract data types", static type checking
n  class as an "object factory", extension (i.e., set of "instances")

? Type or class and view hierarchies
n  inheritance, specialization

? Complex objects
n  type constructors: tuple, set, list, array, …

n  Encapsulation
n  separate specification (interface) from implementation

n  Overloading, overriding, late binding
n  same name for different operations or implementations

n  Computational completeness
n  use DML to express any computable function (-> method implementation)

4

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Views in Relational DBMS

n  Important concept for
n  achieving logical data independence
n  providing an application-specific representation of (a subset of) the DB
n  flexible authorization

n  Needs to be applicable in an object-relational context, too!
n  be able to use the advantages of views also in the presence of typed tables, table

hierarchies, references
n  start exploring and exploiting object-relational capabilities on existing data (and

schema)

5

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Object Views in SQL

n  Views have been extended to support
n  Typed views
n  View hierarchies
n  References on base

tables can be mapped
to references on views

properties people

propView peopleView
owner

owner

appart.

people

houses

properties
owner

table hierarchy

view hierarchy

apptView

people
View

housView

propView
owner

6

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Object Views – Design Points

n  Support the creation of a "closed" set of related object views that reference
each other

n  Mutually recursive references among object views
n  Object ids (REF values in self-referencing columns) must be unique and long-

lived (just like for typed tables)
n  Structured types as the foundation for object views

n  same type can be used for typed tables, column types, object views

n  Types used for defining object views don't have to be related to type of
underlying typed base tables

n  different attributes, behavior

n  Object views are like "virtual typed tables"
n  associated type, self-referencing column, scoped references
n  view hierarchies

7

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Object Views: Example
CREATE TYPE propViewType AS

(owner REF (person),
location address)
REF USING integer NOT FINAL

CREATE TYPE apptViewType UNDER
propVIewType ...

CREATE TYPE housViewType UNDER
propViewType ...

CREATE VIEW propView OF propVIewType
REF IS propID USER GENERATED
(owner WITH OPTIONS SCOPE peopleView)
AS (SELECT CAST (INTEGER(oid) AS
REF(propViewType)), owner, location
FROM ONLY (properties))

CREATE VIEW housView OF housViewType UNDER
propView
AS (SELECT owner, location FROM ONLY
(houses))

CREATE VIEW apptView OF apptViewType UNDER
propView
AS (SELECT owner, location FROM ONLY
(appartments))

n  Self-referencing column has to be
defined for the root view

n  if USER GENERATED is used, then the
view body has to include the oid column

n  only USER GENERATED and DERIVED
are supported

n  OIDs/references need to be cast to
compatible ref types in the view body

n  Values in self-referencing columns of
view hierarchies need to be unique
within the hierarchy

n  a view hierarchy can only be defined
over a single table hierarchy

n  multiple hierarchies, multiple untyped
base tables not supported

n  the FROM clause in the view body must
reference a single table, and must
specify ONLY for typed table reference

n  super/subviews must reference
corresponding proper super/subtables

apptView

people
View

housView

propView
owner

8

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Enhanced Object View Support

n  Limitations in SQL 1999 Object Views
n  restrictions in the view body
n  cannot define view hierarchies over one or more untyped base tables

n  DB vendors have developed extensions to address these limitations
n  Oracle, IBM

n  DB2 Object Views
n  less restrictions in view body
n  view hierarchies over single or multiple "legacy" tables
n  algorithm for static disjointness checking for subviews

n  guarantee uniqueness of oids in view hierarchies

n  UNCHECKED option for oid uniqueness
n  if multiple legacy tables are involved

M.Carey, S.Rielau, B.Vance: Object View Hierarchies in DB2 UDB, Proc. EDBT 2000

9

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

View Hierarchy Over a Single Legacy Table

n  Example
CREATE VIEW vdept of Vdept_t

(REF IS oid USER GENERATED)
AS SELECT Vdept_t(dno), name,
Vempt_t(mgrno) FROM dept

CREATE VIEW vperson of Vperson_t
(REF IS oid USER GENERATED)
AS SELECT Vperson_t(eno), name
FROM emp
WHERE salary IS NULL

CREATE VIEW vemp OF Vempt_t UNDER
vperson
(dept WITH OPTIONS SCOPE vdept)
AS SELECT Vemp_t(eno), name,
Vdept_t(deptno)
FROM emp
WHERE salary < 100000

ALTER VIEW vdept
ALTER COLUMN mgr
ADD SCOPE vemp

n  Migration path for exploiting OR
capabilities over legacy databases

n  Self-referencing columns derived from
primary keys of legacy table

n  Foreign keys are converted into scoped
references

n  Disjointness check for subviews in a
hierarchy

n  performed by analyzing the view
predicates

n  done statically at view definition time
n  conservative algorithm

n  UNCHECKED option
n  additional option for suppressing the

disjointness check
n  can be used if multiple legacy tables are

involved
n  uniqueness is now a user responsibility!

10

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Composite Types - Overview

homogenous elements

ordered elements

restricted
cardinality

duplicates?

ARRAY LIST MULTISET SET ROW UNION

yes

yes

yes yes

no

no

no no

11

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

SQL Row Types

n  ROW type constructor
n  CREATE TABLE person (

 name varchar(40),
 address ROW(street char(20), city char(20), state char(2), zip char(5)),
 …)

n  ROW value constructor
n  INSERT INTO person

 VALUES('Paul White', ROW('1234 Penny Lane', 'San Jose', 'CA', '95123')

n  Field access
n  SELECT * FROM person WHERE address.state = 'CA'

n  Comparison operations
n  requirement: same number of fields, pairwise comparable field types
n  ordering considers field order

12

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

SQL Collection Types

n  Collections are typed
n  all elements are instances of the specified element type
n  any element type admissible (including collection types)

n  Two kinds of collection types
n  Array (with optional maximum length)
n  Multiset

n  Construction of collections
n  by enumeration
n  by query

n  UNNESTing of collections to access elements
n  Manipulation of collections

n  general: cardinality
n  arrays: element access, concatenation
n  multisets: turn singleton into element, turn into set (eliminate duplicates), multi-set

union, intersection, difference
n  Multiset predicates (member, submultiset, is a set)
n  Collections can be compared, assigned, cast

13

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Collection Types: Arrays

n  Array characteristics
n  Maximal length instead of actual length

n  like CHARACTER VARYING
n  has become optional in SQL 2003

n  Any element type admissible
n  "Arrays anywhere"

n  Array operations
n  Element access by ordinal number
n  Cardinality
n  Comparison
n  Constructors
n  Assignment
n  Concatenation
n  CAST
n  Declarative selection facilities over arrays

14

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Arrays (cont.)

n  Tables with array-valued columns

CREATE TABLE reports
(id INTEGER,
 authors VARCHAR(15) ARRAY[20],
 title VARCHAR(100),
 abstract FullText)

n  Appropriate DML operations

INSERT INTO reports(id, authors, title)
 VALUES (10, ARRAY ['Date', 'Darwen'], 'A Guide to the SQL Standard')

INSERT INTO reports(id, authors, title)
 VALUES (20, ARRAY (SELECT name

 FROM authors
 WHERE …
 ORDER BY name)
 'Report with many authors')

15

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Access to array elements

n  By ordinal position
n  Declarative (i.e. query) facility

n  Implicitly transforms array into table
n  Selection by element content and/or position
n  Unnesting

n  Examples:

SELECT id, authors[1] AS name FROM reports

SELECT r.id, a.name
FROM reports AS r, UNNEST (r.authors) AS a (name)

 SELECT r.id, a.name, a.position
FROM reports AS r,

 UNNEST (r.authors) WITH ORDINALITY AS a (name, position)

16

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Collection Types: MULTISET

n  Complements the (unbound) ARRAY collection type
n  Varying-length, unordered collections of elements having specified type
n  No (specified) maximum cardinality
n  Usage examples:

n  numbers INTEGER MULTISET
n  addresses Address MULTISET
n  CREATE FUNCTION FOO (BAR CHAR(6))

 RETURNS CHAR(6) MULTISET
 ...

17

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

MULTISET Value Constructors

n  By enumeration:
n  MULTISET[2, 3, 5, 7]

n  Empty specification:
n  MULTISET[]

n  By query:
n  MULTISET(SELECT COL1

 FROM TBL1
 WHERE COL2 > 10)

n  Result is the multiset of resulting col1-values, not the multiset of result rows
n  degree of the subquery must be 1

n  To obtain a multiset of rows, use the ROW constructor
n  MULTISET(SELECT ROW(COL1, COL2)

 FROM TBL1
 WHERE COL2 > 10)

18

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

MULTISET Operators

n  Element reference (returns the only element in the multiset):
n  ELEMENT(MVE)

n  returns NULL iff
n  MVE is null
n  MVE has no elements
n  MVE has one element NULL

n  Set function (converts a multiset into a set; i.e., duplicates are eliminated):
n  SET(MVE)

n  Cardinality expression (returns the number of elements in the multiset):
n  CARDINALITY(MVE)

n  UNION, EXCEPT, and INTERSECT:
n  MVE1 MULTISET UNION [DISTINCT | ALL] MVE2

n  MVE1 MULTISET EXCEPT [DISTINCT | ALL] MVE2

n  MVE1 MULTISET INTERSECT [DISTINCT | ALL] MVE2
n  Similar to ordinary set operations, except ALL is the default

19

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Using MULTISETs as Table References

n  UNNEST operation:
n  UNNEST(MVE) AS correlation_name

n  Example 1:
n  UNNEST MULTISET (2, 3, 5, 7) AS P
produces the following table P:

 7
 5
 3
 2

n  Example 2:
n  SELECT T.K, SUM (M.E)

FROM T, UNNEST (T.M) AS M(E)
GROUP BY T.K

20

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

MULTISET Predicates

n  Comparison predicate (only equality and inequality)
n  Equal means

n  same number of elements
n  possible to match up the elements in pairs

n  DISTINCT predicate
n  MEMBER predicate

n  test for membership

n  SUBMULTISET predicate
n  test whether multiset is a sub-multiset of another

n  IS A SET predicate
n  test whether multiset contains any duplicates

21

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

MULTISET Aggregates

n  COLLECT
n  Transform the values in a group into a multiset.

SELECT Dept, COLLECT (Name)
FROM PERS
GROUP BY Dept

n  FUSION
n  Form a union of the multisets in a group.
n  Number of duplicates of a given value in the result is the sum of the number of

duplicates in the multisets in the rows of the group.

n  INTERSECTION
n  Form an intersection of the multisets in a group.
n  Number of duplicates of a given value in the result is the minimum of the number

of duplicates in the multisets in the rows of the group.

22

© Prof.Dr.-Ing. Stefan Deßloch Recent Developments for Data Models

Summary

n  Object-oriented features for a DBMS
n  Type or class hierarchies

n  inheritance, specialization

n  Complex objects:type constructors
n  tuple/row
n  union
n  collection types

n  set, list, array, …

n  … still to come
n  Encapsulation
n  Overloading, overriding, late binding
n  Computational completeness

n  SQL:2003
n  Typed views and view hierarchies

n  based on structured types
n  preserves references

n  Row types and collection types
n  ROW
n  no support for union
n  collection types

n  ARRAY, MULTISET

n  … see next chapters

23

