Motivation

Todiy's Fequirements on dats mensgesent

daty siee and

FPGAs

Integrated Clroults reprograpmable to tit applications
needs

+Configurabie Loglc gates

 Input/Output circultry

« Programmed using Mardware Definition Languages (WOL)

architecture synthesizing

a
P 5
o

g in ey e,
o ! LT
i, it Ry

2] s

sialaniiey

Optimizing data management
on nhew hardware

Data processing on FPGAs

Network Stream Processing
Conclusion = o .

Data Stream Processing

o Al WL il Lt

Architectural
Integration

B7 Apbesieatpnn Perieitisn

Streum Processing

Co-Processing

St -NaPyw Jain

- o sk tashe Fepiticate Ealprtton and -—]
= P [T Tt Bete semeiaitn |
J ﬁ [: Co-Processor :
RS : = Architecture

= o

=
- g e
- —

Motivation

Today's Requirements on data management

- Large data size and
variety
- Realtime Analytics

- Utilizing
Technological \
Advances

Innovations in analytical processing

Software Oriented Solutions

Hardware Oriented Solutions
= Multi-Core Approac hes
« SIMD Operations
- GPU Acceleration
- Heterogeneous Hardware

~>

Innovations 1h analytical processing

Software Oriented Solutions

- MapReduce Style Engines
- Column Stores

Hardware Oriented Solutions

- Multi-Core Approaches
- SIMD Operations

- GPU Acceleration

- Heterogeneous Hardware

Analytics off General Purpose Processors

Avoids: |
« Von-Neumann bottleneck
« Memory wall
- Endangering Service Level
Agreements I

¢ OLAT + OLTP in one system
Benefits of FPGAs
Fie i Gate Arrays

1d Progranmahle

Wemary

- Flexibility » Low-level granularity
« Adaptability parallelism
« Scalability + Low latency
» High throughput rates
- Small power
consumption

Analytics off General Purpose Processors

Avoids:

« Von-Neumann bottleneck
- Memory wall il

- Endangering Service Level
Agreements

OLAT + OLTP 1n one system

Benefits of FPGAs

Field Programmable Gate Arrays

Memory

- Memory wall
- Endangering Service Level
Agreements

OLAT + OLTP 1n one system

Benefits of FPGAs

Field Programmable Gate Arrays

- Flexibility - Low-level granularity

- Adaptability parallelism

- Scalability - Low latency
- High throughput rates

- Small power
consumption

FPGAS

Integrated Circuits reprogrammable to fit applications
needs

- Configurable Logic gates

-« Input/Output circuitry

« Programmed using Hardware Definition Languages (HDL)

Architecture Synthesizing

High degree of S
parallelism Scalability

Architectural Structure

10 i

-

o B
& B
=

High degree of
parallelism

Il
I

Control Logic Block
- Collection of
- elementary logic
units (slice)
- Connection to the

fabric (switch box)

X0d YI1TMS

Slice

- Fixed number of
lookup tables (LUTSs)
+ Programmable =
- Realized using o Register
SRAM ~
- n inputs and one
output
- 1-bit register/latch
- Fast carry path
logic (carryin/

i ryOU t) Register/

Latch

I10B

- Periphery of the FPGA
- Connects the outside world with CLBs
- Support many I/0 standards

- Single-ended (e.g. PCI)

Input/Ouput Block

- Differential (e.g. PCIe, SATA)
- High-Speed I/0 with fast serial transceiver

Routing architecture

- Connects arbitrary CLBs and IOBs
« CLBs connected to interconnect
fabric via a switch box

Independent Processing Units

Fast Carry Paths

- Secondary communication path

- Faster

- Only includes small number of LUTs

- Can implement carry logic to build
arithmetic functions

Hard Intellectual Property Cores

BRAM Multipliers and Adders Full-fledged hard CPU

+ Dedicated RAM blocks + Main application area of FPGA for » Included on the FPGA
» Typically a few kilobytes in size long time: Digital Signal Processing « Connected to the interconnect
+ Fast access » Applications like Fourier Analysis fabric
« Configurable « Implementable by CLBs but better -E.g. PowerPC cores or ARM Cortex
- Single- or Dual-ported space allocation with hard wired cores
+ FIFO-queues components
« Word width - Data processing relevance e.g. hash-
join

Used in clock domain crossing or
bus width conversion

BRAM

- Dedicated RAM blocks
- Typically a few kilobytes 1n size
- Fast access
- Configurable
- Single- or Dual-ported
- FIFO-queues
- Word width

Used in clock domain crossing or
bus width conversion

Multipliers and Adders

- Main application area of FPGA for
long time: Digital Signal Processing
- Applications like Fourier Analysis
- Implementable by CLBs but better
space allocation with hard wired
components
- Data processing relevance e.g. hash-
joln

Full-fledged hard CPU

- Included on the FPGA

- Connected to the 1nterconnect
fabric

-E.g. PowerPC cores or ARM Cortex
cores

FPGAS

Integrated Circuits reprogrammable to fit applications
needs

- Configurable Logic gates

-« Input/Output circuitry

« Programmed using Hardware Definition Languages (HDL)

Architecture Synthesizing

High degree of S
parallelism Scalability

FPGA Synthesizing Process

Scalability

R FPGA Programming

¥ioin std_logic;
F: out std_logic
i

Rl AR Programming with hardware description
architecture hchav of AND_.ent is

b?ﬂ@mh‘y language e.g. Verilog or VHDL
egin .

)
if ((x="1")

feo N D SR Shos VHDL design statement:
else - Entity: I/0 ports definition

Bagt) ’ - Architecture: Behavior of an entity
end if;
end 1::1'01::355;
end hehawv:

Synthesis

Translate

FPGA Synthesizing Process

Synthesis

Turns HDL specifications
into gate-level netlists

Translate

Generates global-level
single netlist with
behavioral and time aspects
of the gate-level 1lists

UETs,

Maps the design to the
resources

Place &
Route

Considers mapping together

with timing constraints and
generates a final hardware
design

FPGA

Bitstream to configuration
SRAM
- Divided into frames
corresponding to
physical sites

Dynamic partial
reconfiguration

Architectural
Integration

Stream Processing

NIC/ Data Processing |
SATA ;
— — Main Memory

Co-Processing

Data Processing

e—— | J Main Memory

v

Main Memory

A J
v

> , . Main Memory

Architectural
Integration

Stream Processing

Network Stream Processing

Application Scenario: Network Intrusion Detection
- Suspicious patterns detectable via Regular Expression Matching
- Compare a sequence of characters and meta characters to all
strings in the network stream

E

Non-deterministic finite-state automaton of the RegExp ((a|b)*)(cd)

In software: Non-deterministic FS automaton
considered inefficilent
- Every candidate state and transition
considered iteratively

Hardware Implementation

On FPGA:
- States & transitions considered 1in
parallel

Hardware Implementation

One-hot encoding scheme

- FlipFlops represent states
- £ edges connected directly
- States with only e-edges incoming

eliminated completely
-« Multiple incoming edges connected

by OR operator

Benefits

« Easier to build

« Non-deterministic FA often with
fewer states (in hardware =
resources)

« More efficient:

Comparison FPGA RegExp matching and grep on a 2MB file:
- Grep: 64.76 - 74.76 ms
« FPGA: 43.44ms

Architectural
Integration

Stream Processing

Data Stream Processing

Glacier

- Component library
- Compiler

Compiles CQL expressions to VHDL expression in 3 Steps

1) Query to Algebraic Plan

2) Algebraic Plan to VHDL expressions

3) Optimization Heurisitics

Performance

CQL Algebra

- Assumes tuple structured —
Taq,...,an(q) Projections

ANpUtyEevents oa(q) Selection where a holds true
- Nested O PEY ators ti%?'a,:'(g, 4. b5) (g) Arithmetic or boolean operation
- Not the whole range of ¢iUga Union
relational algebra aggs:a(q) Aggregation
« Pre-Processing relevant q197P2|q2(x) Group operation
parts q1 B}, ; g2(x) Sliding window
1 o€ 2 Concatenation; “Join by position”

Operator Semantics

WeightedUBSTrades
1

tuple
EBm|4,1

SELECT wsum(Price, [.5,.25,.125,.125]) AS Wprice / \ -

FROM (SELECT = FROM Trades Jq WSllIﬂwpnce:(pﬂce’[...])
WHERE SYMBOL = "UBSN”)
[SIZE 4 ADVANCE 1 TUPLES] | I

INTO WeightedUBSTrades

@a:(Symbol,"UBS’N") z
I
Trades

Examplary Query: Financial trading application

|
Trades

Component Library

Wiring interface
- n-bit wide tuple + data valid
signal

Selection
- Actual Selection: data_valid= true/false
- Arithmetic/Boolean Operation: Extends g
by adding a new field a with the result
of the operation

Projection
« "Cutting" non-relevant data bits

Synchronization
« FIFO queues
- Delay operators

Windowing
-« Right-hand side sub-plan g2 wrapped
in template circuit

- Arithmetic/Boolean Operation: Extends g
by adding a new field a with the result
of the operation

Projection
« "Cutting" non-relevant data bits

Synchronization
- FIFO gueues
- Delay operators

Windowing
- Right-hand side sub-plan g2 wrapped
in template circuilt
- Additional eos ("end of stream")
signal
» Sliding window:
- Parallel computation of active
windows
+ CSR1 (Cyclic Shift Registers)
denote active/closed windows
+ CSR2 denotes the sub-plan were
the next eos signal will be send

(WIND)

Hardware Implementation of Example

Hardware Implementation of Example

way union

WeightedUBSTrades

tuple
EH;T, [4,1

e N

Oa WSUMWPrice: (Price, [+])

| |
@a:(Symbol,"UBSN") $
I
Trades

Optimization

- Reducing Clock synchronization
- IT no component inside a plan is clock bound, intermediate
registers can be eliminated
-« Increasing Parallelism
- With eliminated registers task parallelism can be increased

Performance

O FPGA W software (Linux 2.6) Network Data:
- H1gh package rates
- Actual applications
suffer from 1intra-
300,000 pkt/s 1,000,000 pkt/s host communication

data input rate

ackets processed
0
S
=X

In lab: High package rates difficult

FPGA not saturated

Data Processing

Main Memory

Co-Processing

Notifications

F
Data Processing

Main Memory

Inpurt--
Buffers

Co-Processor
Architecture

- Service Layer
- DMA Management
- PCIe Manhagement
- Job Management
« Application Logic
- Implementation of required
functionality

Assumption: In-Memory Database

Predicate Evaluation and
Row decompression

Central Element for query
execution:
- Decompressors
- Row Scanners
- Page buffer S —
o o -1 Predicate Evaluation Unit per Single
- Logic for extraction of Predicate R
- Speculative Writes into Qualified Row

single rows within Buffer

- Reduction Network: Tree of reducer

pages units performing logical operations

gy v

- Page buffer T T —— .
o - -1 Predicate Evaluation Unit per Single
- LoglC for extractlon Of Predicate

- Speculative Writes into Qualified Row

single rows within BUffer

- Reduction Network: Tree of reducer

pages units performing logical operations

Performance

CPU Time (Uncompressed) " Response Time (Uncompressed)

B Baseline Dw' FPGA

67.91% 64.15% ©61.95% _55.21% gd5.61% 0.86x 0.97x 0.96x 0.96x 0.99x

0.97x

1.7 27 6 12 % Row Processing Rate P 55 =

Rows qualified (%) Rows qualified (%)
10.7x @ Baseline O FPGA

CPU Time (Compressed)
B Baseline Ow' FPGA

90.2% 87.7% B0.4%

Response Time (Compressed)
_ Baseline Hw/ FPGA

6.2% 5.1x 4.6x 3.4x

8
g
§

1.7

1.7 2.7 6 L 27 6 12
Rows qualified (%) Customer 1 Customer 2 Rows quallfled (%)

Significant improvement with compressed data
- The lesser qualified records the better

Hash Joins

Build Phase Logic : .
- . « Classical Hash Join
- Dimension table must fit into FPGA

memory

« Build Phase:
- Hashed + Pointer to Actual Value

stored in address table /(also

fuidisss Table chaining scheme values)
channel 2 . . " .
- One Dimension Table or join column per

Address Table channel
Dimension Table i Address Table - PrObe Phase:
e e TaL e - Fact table streamed through the FPGA

Column

Hash (A) =1 L
Hash (B) = 1 =S) - Actual Values in the address table

Hash (C) = 4 1
R %k prevent false matches due to imperfect
Probe Phase

Bit Vector

Performance

FPGA v. Software Execution Time

Time (ms)

-6“00

of Pages

Worst Cases:
- Every column hashes to the same location

Tested with cycle accurate

simulator
- TPC-DS query: Multiple
dimension tables
-1 Channel for each table

Software implementation: 1.6 million rows/second

FPGA implementation: 18 million rows/second

- Every fact table tuple matches and must be joined

» Merge operation bottleneck

Sort-Merge Joln

Initial Sorting 1n practice most
expensive part

External Sorting

Hardware Sorting essential elements

Compare-Swap Element Select-Value Element

Compares two iInputs and swaps Compares two i1nputs and selects
depending on configuration depending on configuration

Compare-Swap Element Select-Value Element

Compares two inp‘UFS andlswap‘s Compares two 1nputs and selects
depending on configuration depending on configuration

Sorting networks FIFO-based merge sorter

BRAM based:

« BRAM elements used to implement FIFQ structures with sorted runs

A
B
C
D
E
F
G
H

Mathematical Model for sorting; here Even-odd sorting network
«Vertical lines represent compare-swap elements
- Usually only suited For smaller sorting problems Select value elenents
»0n FPGA: Large amount of parallel compare-swap elements +amaller (blgge r] -' lue forwarded Lo JIIUIT
availahle = Unsels (I od Valie kept Tor nexl eyels comparison

« Larger Sorting Problems selvable in cascade of FIF0 nerge soFters solves

par‘al]_e] bigger sorting problems in parallel

Sorting networks

Mathematical Model for sorting; here Even-odd sorting network
- Vertical lines represent compare-swap elements
- Usually only suited for smaller sorting problems
- On FPGA: Large amount of parallel compare-swap elements
available

Larger Sorting Problems solvable 1in
parallel

FIFO-based merge sorter

BRAM based:
- BRAM elements used to implement FIFO structures with sorted runs

Select value elements:
- Smaller (bigger) value forwarded to output
- Unselected Value kept for next cycle comparison

Cascade of FIFO merge sorters solves
bigger sorting problems in parallel

Conclusion

FPGAs offer flexible hardware with a
high degree of parallelism, low
latency and high throughput rates

Suitable for:
- Network Stream Processing

- Stream Processing
- Co-Processing

Existing Industrial Applications Eurther Research

Ketezza
- IBM appliance wtilizing FPGAs
- Streaning architecturs Concentrates on utilizing re-
“:;:I:r::;l?uresﬂ.un, Frojection and Row Selection conFlgurability of FRGAs:
»Fartial Reconfiguration
- toluwn Store T = T
- Co-Frocessar architecture *On-khe-fly composition of FRGA-
- coupled with MySQL DEMS based SQL query accelerators
+ ACID conpliant - Paraneterized circuits
- large fracticn of SQL processing »Netezza's FAST engine
o - Skeleton automata
- ¥tremebate's date warehouse appliance +E.g. ¥Path -> Implementable
- Co-Processor Architesture using FS automata >
- PastgrasiL OB anging - Generates a paransterized
«cluster with Infiniband support skeleton that can be
- Large partion of operators inplememtable on initialized along transition
e edpes

Existing Industrial Applications

Netezza

- IBM appliance utilizing FPGAs

- Streaming architecture

- Decompression, Projection and Row Selection
Kickfire

- Column Store

- Co-Processor Architecture

- coupled with MySQL DBMS

« ACID compliant

- Large fraction of SQL processing

DBX
- XtremeData's data warehouse appliance
- Co-Processor Architecture
- PostgreSQL DB engine
- Cluster with Infiniband support

- Large portion of operators implementable on
FPGA

Further Research

Concentrates on utilizing re-
configurability of FPGASs:
- Partial Reconfiguration
- On-the-fly composition of FPGA-
based SQL query accelerators
- Parameterized circuilts
- Netezza's FAST engine
- Skeleton automata
-E.g. XPath -> Implementable
using FS automata
- Generates a parameterized
skeleton that can be
initialized along transition
edges

Thank you for your attention!

Questions?

