
University of Kaiserslautern
Department of Computer Science
Database and Information Systems

Seminar
Optimizing data management
on new hardware

Summer Semester 2014

Table of Contents

1 Motivation . 3
2 FPGAs - A Hardware Introduction . 4

2.1 Architecture of FPGAs . 5
2.2 Programming an FPGA . 7

3 Data Processing using FPGAs . 8
3.1 Architectural integration of FPGAs . 8
3.2 Network Stream Processing on FPGAs . 9
3.3 Data Stream Processing with FPGAs . 12
3.4 FPGAs as a Co-Processor . 15

4 Conclusions . 20

Data Processing on FPGAs

Stefan Hemmer

Technische Universität Kaiserslautern, Germany

Abstract. Ever growing data sets and rapid improvements in technology
together with the demand of faster, or even real-time analytics, have led the
database research community to revisit some of their oldest concepts. Of
special interests are often those concepts that can be combined with mod-
ern technology. An innovative example is the combination of database ma-
chines with field programmable gate arrays (FPGAs). The idea of database
machines was to use specialized hardware to process and analyze data. FP-
GAs, as a modern form of specialized hardware, are integrated circuits that
offer a series of unique advantages to the data processing world like adapt-
ability, low power consumption, a high degree of parallelism as well as low
latency and high throughput rates. For these striking reasons the following
report illustrates the structure of FPGAs to demonstrate their advantages.
Since there are several strategies of integrating an FPGA into a system, this
report focuses on the presentation of data processing scenarios for FPGAs
in context of these strategies.

1 Motivation

Technological advancements and enterprise growth have resulted in increasing quan-
tities of business data. In a time of such big data, data management is becoming an
increasingly difficult task. In order to gain valuable business insight and by that ac-
quire a better market responsiveness, customer satisfaction and overall competitive
advantage, companies are looking for ways to optimize online analytical processing
(OLAT) of data. Especially ad-hoc analytics queries tend to be rather resource con-
suming. In light of these requirements a series of innovations has been made, that
try to cope with increasing data sizes from different perspectives.

Until a few years back improvements were mostly made in software optimiza-
tion terms, including new software architectures like column stores [SAB+05] or
MapReduce-Style engines [DG08]. While these approaches all improve performance
in the context of large data sizes, the hardware side of the solution space was largely
ignored over several years.

More recently the database research community has started to look into those
hardware oriented solutions. This research includes approaches relying on tradi-
tional general-purpose hardware like utilization of multi-core architectures with tra-
ditional central processing units (CPUs) [AKN12], SIMD operations [CNL+08] and
graphics processing unit (GPU) acceleration [GGKM06]. Over and above there have
also been advances with data processing using heterogeneous hardware [MTA09a,
CO14, HSM+13] i.e. data processing using hardware were not all cores are equal.
These approaches follow the directive to map the hardware to the task at hand,
instead of mapping the task to a fixed general-purpose architecture.

The advances in memory technology (i.e. rapidly decreasing memory costs) have
made approaches that are apart from CPU-centered solutions especially interesting.
They allow a better utilization of memory bandwidth than data processing with
solely CPUs. A CPU in a von-Neumann-architecture often has to deal with problems
like the von-Neumann bottleneck (i.e. data transfer rate between CPU and memory
limited by a shared bus) or the memory wall (i.e. significant gap between CPU speed
and memory speed). By utilizing direct memory access (DMA) specialized hardware

4

is able to access system memory independently from the CPU. If the state of an
operation can be held by a device, specialized hardware does not suffer the effects of
the von-Neumann bottleneck or the memory wall and thus can improve the overall
memory bandwidth.

Moreover common database workloads do not solely provide methods for an-
alytical processing but are also responsible for the online transactional processing
(OLTP) part of business. These OLTP applications provide Service-Level-Agreements
(SLAs) for transactional processes that must not be interfered with by analytical
processing tasks since they are typically bound to revenue generation. As mentioned
above, typical analytics queries involve complex operations like sorting, aggregations
or join operations, which can consume a significant amount of CPU time. For this
reason businesses that try to utilize the advantages of growing consumer data typ-
ically rely on snapshot warehousing. With this technique a copy of the relevant
data is analyzed. However in order to realize the maximum benefits of analytical
processing, businesses are pushing toward real-time business intelligence. Offloading
OLAT tasks to dedicated hardware poses an attractive alternative to realize such
real-time analytics without endangering SLAs.

Therefore instead of utilizing additional general-purpose processors (GPPs) the
hardware accelerated data processing approach tries to utilize the benefits of het-
erogeneous hardware. One manifestation of heterogeneous hardware is the field pro-
grammable gate array (FPGA). A FPGA is an integrated circuit (IC) that can be
tailored to the application scenario. It consists of a large array of logic gates that
can be specified dynamically using a hardware description language (HDL), to im-
plement any complex logical function on hardware. By that, FPGAs represent a
bridge between the two extremes, the specialized and the general-purpose world.
Compared to application-specific integrated circuits (ASICs) and GPPs (CPUs and
GPUs), they can provide a higher adaptability, flexbility and scalability.

There are already several industrial solutions like IBM’s Netezza [Fra11] or
xTremeData’s dbX [SDCV10] that employ FPGAs in different variations and ar-
chitectural styles. In research there are several approaches that range from spe-
cialized FPGA implementations for certain data operations [TWN13,MVB+,BP05,
MSNT11,KT11,HSM+13] over query-to hardware compilers [MTA10,NSJ13,STM+13]
to general programming language (GPL) compilers [SG08,HHBR08]. Each product
and approach showcases the special benefits that can be realised by the FPGA’s
low-level granularity parallelism, low latency, flexibility and small power consump-
tion.

The remainder of this work is organized as follows. Chapter 2 provides a hardware-
oriented introduction of FPGAs and showcases how logic functions can be imple-
mented on an FPGA. The third chapter initially introduces the architectural alter-
natives of building a data processing system with FPGAs. In the following sections
a number of approaches is presented that utilize those architectural alternatives in
various ways.

2 FPGAs - A Hardware Introduction

Field-programmable gate arrays are integrated circuits that can be reprogrammed
to fit an application’s needs and can implement arbitrary digital logic provided that
the chip space is big enough. They consist of logic gates that can be configured and
combined to construct digital circuits. To that end they also contain input/output
circuitry and routing channels to combine more complex digital functions. They can
be (re-)programmed using HDLs. The architectural structure of an FPGA enables
high throughput rates, low latency and a high degree of parallelism. Flexibility and
adaptability of FPGAs are realized in the process of synthesizing an FPGA.

5

2.1 Architecture of FPGAs

The FPGA on its coarsest architectural level is a two-dimensional array of config-
urable logic blocks (CLBs, sometimes also called Logic Array Blocks or logic islands)
and several Input/Output blocks (IOBs). A CLB itself contains several elementary
logic units (also called slices or adaptive logic modules (ALM)) and a switch box
that is responsible for the connection of each CLB to the FPGAs interconnect fabric.
Fig. 1 shows a simplified architectural view of such an FPGA.

Fig. 1. Simplified architecture of an FPGAs: Array of CLBs, which each consists of 4 slices
as well as a switch box [MTA09a].

The interconnect fabric is the routing architecture of the FPGA. It allows com-
munication between arbitrary CLBs by providing bundles of wires that run across
the chip. At intersections points there are programmable links that can be config-
ured to route signal in every possible direction.

Each programmable slice consists of a fixed number of lookup tables (LUT) with
n inputs and one output, a number of 1-bit registers, arithmetic/carry logic and
multiplexers1. Figure 2 shows a simplified architectural view of a slice.

A LUT can implement any binary-valued function (e.g. NAND, XOR, Multiplexing)
with n inputs. The number of inputs depends on the manufacturer, but most com-
monly it is between 4 and 6. In essence, a LUT stores the outcome of an operation
for every possible combination of its input vector. Each n-input LUT requires 2n bits
to store the corresponding table. Typically LUTs are realized using static random
access memory (SRAM). Main advantage of this configuration is that an LUT can
be read asynchronously (i.e. independently from clock signals) in less than a cycle.
However writing a 2n SRAM takes 2n cycles. Moreover it sacrifices chip space for
better read performance since SRAM typically demand more space than dynamical
random access memory (DRAM). However, since the SRAM is the main component
of an LUT, each LUT can be configured to be used as distributed RAM, to provide
more memory space.

An LUT’s output can be wired to bypass or incorporate FlipFlops, fast carry
paths, feedback to the LUT’s input or the switchbox of the surrounding CLB. The
FlipFlops serve to cache a signal, to be able to process it in the next clock cycle
thereby facilitating pipeline designs. Fast dedicated lines (carry paths) are used
between neighboring LUTs. Most commmonly these are used as communication
channels called carry chains. Carry chains allow the combination of several LUTs
to implement complexer arithmetic functions. These carry chains can also contain

1 Device that selects one of several inputs and forwards it to a selected output channel

6

Fig. 2. Simplified architecture of a slice with two LUTs and two FlipFlops. Gray compo-
nents are programmable [MTA09a].

separate carry logic that helps to implement the building of several arithmetic func-
tions.

An IOB is located at the periphery of an FPGA and is connected to the same
interconnect fabric as the CLBs. Therefore the output and input of every CLB can
be routed to and from every IOB on the chip. Typically an FPGA supports many
I/O standards, classifiable into single-ended (e.g. PCI) and differential IO (e.g. PCI-
Express). With a large amount of IOBs, an FPGA can not only support a number
of different communication protocols but also very fast communication. High-speed
I/O can be supported using fast serial transceivers 2. As of today the world’s fastest
transceivers can handle up to 32 Gb/s [Fuj13]. FPGAs usually can contain multiple
of such transceivers, so that aggregate bandwidths of terabit per second can be
achieved (compare to Serial ATA Revision 3.0’s bandwidth of 6 Gb/s).

Commonly FPGAs are often shipped with other auxiliary components ranging
from dedicated block RAM (BRAM) structures over multipliers and adders up to
full-fledged CPU cores and Ethernet controllers. Figure 1 shows BRAM elements
and multipliers between the columns of CLBs and two PowerPC Cores (PPC) as
auxiliary elements.

BRAM elements usually can hold a few kilobytes of data and usual FPGAs hold
a few hundred of those blocks. Accessing a BRAM block i.e. reading or writing can
be done in single clock. Usually an FPGA holds several hundred of those BRAM
elements which can all be accessed in parallel. Sometimes they come in dual-ported
form i.e. the memory can be accessed from two sides concurrently. BRAMs can
be used to store larger data sets than distributed RAM since each block can be
combined with another one. On the one hand BRAM units offer advantages in
clock domain crossing (i.e. posing as a buffer), but are also prerequisite to leverage
FPGAs against the von-Neumann bottleneck or the memory wall.

Multipliers and adders are often added to an FPGA since for a long time FPGA’s
main application area was digital signal processing (DSP). Exemplary applications
of DSP like the Fourier Analysis rely heavily on mathematical operations and there-
fore many manufacturers include dedicated components in their FPGA that allow

2 Device consisting of transmitter and receiver

7

faster multiplication and addition operations. While an FPGA can implement mul-
tipliers and adders itself using its, CLBs a hard-wired programmed logic controller is
better in performance and space utilization. In terms of data processing, dedicated
multipliers become especially useful once databases need to execute hash functions
e.g. in a hash join.

Full-fledged CPU cores on the FPGA allow to direct more complex tasks to those
auxiliary units. The realization of complex tasks can occupy substantial amounts of
CLBs on the FPGA that might be needed to address other operations. To save chip
space and reconfiguration time it can be beneficial to give up a little parallelism in
order to realise the fastest computation possible.

Separate Ethernet controllers allow the FPGA to circumvent the von Neumann
bottleneck. For instance, an application that monitors network activities e.g. high-
frequence trading applications, doesn’t need to take a detour via system bus and
main memory. Using the Ethernet controller it can be directly plugged into the
network.

Ultimately the fine-grained configurability of an FPGA allows a truely paral-
lelized execution of operations, high I/O performance and the integration advan-
tages discussed. The architecture of separate LUTs, CLBs or other subareas that
are able to communicate with other CLBs and IOBs over fast carry paths and the
interconnect fabric enables the user to program independent processing units. These
processing units do not share any resource and therefore can execute operations in-
dependently from each other. With a number of IOBs the FPGA is able to provide
input and output to various independent processing units concurrently, while en-
abling a better memory bandwidth utilization or even circumvention of system bus
and memory.

Furthermore it is noteworthy that FPGAs have significantly less power con-
sumption than traditional GPPs. With the given hardware parallelism it is typi-
cally sufficient to solve a given problem with lower clock frequencies resulting in an
overall lower power consumption.

Table 1. Specifications of Xilinx’s XC5VFX200T

Virtex-7

Logic Cells 30.720
BRAM 16.416 Kb
Total Transceiver Bandwith 156 Gb/s
Hard Cores 2
DSP Slices (Multipliers, Accumulators, Adders, Subtractors) 384

Table 1 provides an overview of some statistics of the configuration of an FPGA
from Xilinx [Xil09], illustrating the size of common FPGAs.

2.2 Programming an FPGA

FPGAs are programmed using hardware description languages (HDL) like Verilog
or Very High Speed Integrated Circuit Hardware Description Language (VHDL).
Every VHDL design describes at least one entity/architecture pair or an entity and
multiple architectures. In the entity section I/O ports of the IC are defined. The
architecture part describes the behavior of an entity. Figure 3 shows an exemplary
implementation of an AND-Gate in VHDL.

8

entity AND ent i s
port (x : in s t d l o g i c ;

y : in s t d l o g i c ;
F : out s t d l o g i c

) ;
end AND ent ;

architecture behav of AND ent i s
begin

process (x , y)
begin

i f ((x= ’1 ’) and (y= ’1 ’)) then
F <= ’1 ’ ;

else
F <= ’0 ’ ;

begin
end i f ;

end process ;
end behav ;

Fig. 3. Example VHDL Definition of an ’AND’-Operator

Once HDL specifications are defined they are fed as input to a synthesizer.
The synthesizer turns HDL specifications into gate-level netlists3. These netlists
are then input to a translator, that provides a global single netlist that comprises
all behavioral aspects of the gate-level netlists and the constraints4. The elements
of the global netlist are mapped to physical FPGA elements such as CLBs, IOBs
or BRAMs. Next step in FPGA design is the the map, place and route processes,
which are also the most cost-intensive. The mapping process fits the design onto
available resources on the chip, whereas place and route processes map the design
to timing constraints. After elements of the global netlist are mapped to physical
elements, these elements need to be distributed on the concrete FPGA and then
interconnected. Depending on how many timing constraints exist, this task can
become the most time-consuming. Once the placement and routing procedure is
finished, a bitstream is created. This bitstream is loaded onto the FPGA’s configu-
ration SRAM. Some manufacturers provide SRAM that is divided into frames, each
of which corresponds to a physical site on the FPGA. This technique is the basis of
dynamic partial configuration, that allows parts of the FPGA to be reprogrammed
without interrupting other running parts of the FPGA. In DPC only the frames of
a particular partial reconfiguration region are updated. Using this process, special-
ized modules can be loaded during runtime with the result that they do not occupy
chip space when they are not needed. However these PRRs need to be configured
beforehand, i.e. during the design phase.

3 Data Processing using FPGAs

Before any data processing operation on FPGA can be executed it has to be inte-
grated into a common architecture. There are various different alternatives for such
an architectural infrastructure and each of them influences the way actual data pro-
cessing can be performed. On a high abstraction data processing on FPGAs can be
distinguished into two categories, Stream Processing and Co-Processing.

3.1 Architectural integration of FPGAs

In order to employ an FPGA as an accelerator in a database it should be connected
to the conventional setup i.e. memory, storage and CPU. In terms of physical place-
ment FPGAs offer three strategies as shown in Fig. 4.

3 Describes connectivity informations in electronic design
4 Assignment of special physical FPGA elements or timing specifications

9

Fig. 4. Different architectural options for placing an FPGA: (a) in the data path between
network and CPU (b) between a disk and the CPU (c) as a co-processor [MT09].

To utilize the low-latency of FPGAs, it can be placed between the Network
Interface (NIC) and the CPU (see Fig. 4(a)). In this configuration an FPGA is
responsible for filtering or aggregating data that comes in over the network such
that the CPU has a lower workload and smaller data sets to handle. A related
approach by Netronome [Net13] uses programmable network flow processors to ex-
ecute Regular-Expression Matching. These network processors however are designed
for a smaller set of applications and thus lack the flexibility of an FPGA.

A similar configuration is shown in Fig. 4 (b). Here the FPGA is placed between
the storage unit of an DBMS and the processing unit respectively the memory. This
would be the typical use case for a data warehouse. The FPGA again would be able
to perform operations like filter, aggregation or even join operations before the data
reaches the CPU thus reducing the CPU’s workload and increasing overall throug-
put. IBM’s Netezza Appliance [Fra11] is a industrial-level product, that implements
this architecture. The FAST engine (“FPGA-accelerated streaming technology”)
performs a fixed set of operations5 on data before it reaches the CPU.

Finally Fig. 4 (c) shows the most easily integrable approach. The FPGA poses
as a co-processor to the CPU which can offload tasks on-demand to the accelerator.
Communication between CPU and FPGA must be realized through interrupts and
shared memory. This approach’s problems arise from this communication pattern,
since not only does it not circumvent the von-Neumann-bottleneck but can actively
increase its severity.

3.2 Network Stream Processing on FPGAs

Since streaming applications readily match the strengths of programmable hard-
ware, big parts of the data processing research community initially concentrated on

5 Concrete operations are decompression, projection and selection.

10

these. In these scenarios data arrives in a continuous flow and needs to be processed
in real time. This flow oriented paradigm can leverage the specific I/O capabili-
ties of FPGAs along with its low latency and inherent parallelization such that
FPGA-based stream processing does not suffer from the von Neumann or memory
bottlenecks.

Following the architectural pattern of Fig. 4 (a) and (b) we now take a look at
using an FPGA as stream processor. An application for such an architecture are
network intrusion detection systems. To detect suspicious patterns in a network’s
data flow, such systems perform regular expression (RegExp) matching. RegExp
is a term coined by theoretical computer science and formal language theory. It
describes a sequence characters6 which can be used in string matching. Network
instrusion detection is not the only relevant application area for RegExp matching.
It can also be used in semantically more rich stream processing as for example a
filtering mechanism.

Fig. 5. Non-deterministic finite state automata for the expression ((a|b)∗)(cd) [SP01]. ε
is an empty string, q the initial state and f the final state. a,b,c are literals and ∗, | are
metacharacters.

Given a particular RegExp it’s possible to construct a finite-state automaton
(FA) from it. As an example Figure 5 shows a non-deterministic FA for the RegExp
((a|b)∗)(cd). FAs are models that illustrate processes as a series of states and tran-
sitions. In this case, the string matching process, edges represent transitions and
determine the necessary next character to switch to the next node(state) for each
state . Non-deterministic FAs, like the one shown in Fig. 5 are considered ineffi-
cient on GPPs since a software implementation has to consider all candidate states
and transitions iteratively. For this reason software RegExp implementations turn
non-deterministic representations into deterministic FAs. In an FPGA every logical
resource operates independently. Thus every candidate state and every transition
can be considered in parallel.

Based on the One-Hot-Encoding Schema, Sidu et al. [SP01] implement a non-
deterministic FA by using flip-flops that represent the state of FA (i.e. a flip-flop
holds a 1 if its active). This technique, originally developed for deterministic FAs,
can be extended to be used in a non-deterministic context. In contrast to a deter-
ministic implementation, the output of a flip-flop in a non-deterministic must be
routed to more than one following input requiring multiplexers. Furthermore can
non-deterministic FAs contain ε. On FPGAs the implementation of ε edges can be
done by simply wiring the output of a flip-flop to the input flip-flop directly. Sidu
et al. further observed that if all incoming edges of a state are ε edges the state can
be omitted completely. With a reduced automaton at hand, the hardware circuit
construction can be done in two steps:

– For each state of the FA a flip-flop needs to be instantiated.

6 Regular characters with their literal meaning and metacharacters denoting sequences,
repetitions etc.

11

– For each transition of the FA the combination logic that forwards an active
bit from flip-flop to flip-flop needs to be instantiated, such that a condition is
satisfied. If a state has multiple incoming edges those edges are to be combined
with a logical OR operator.

Fig. 6 shows the hardware implementation of the non-deterministic FA shown in
Fig. 5. The authors propose an algorithm that extracts simple logic structures out
of a RegExp, matches them to their hardware implementation and constructs the
IC by aligning the simple logic structures.

Fig. 6. Hardware implementation of the non-deterministic FA for ((a|b)∗)(cd) [SP01]. The
dashed boxes indicate separate logic structures.

Not only are non-deterministic FAs obviously easier to build (note the structural
similiarity between non-deterministic FA and the RegExp in Fig. 5) but they also
come more often than not with fewer states. In a hardware implementation these
states correspond to precious hardware resources which can be saved using the
non-deterministic implementation.

In their experiments Sidhu et al. [SP01] compared finding matches for a RegExp
(a|b) ∗ a(a|b)8 in a 2MB file using grep7 and their FPGA implementation. While
grep took between 64.76 ms to 74.76 ms, the FPGA implementation always took
43.44 ms. These tests included an ad-hoc construction of the non-deterministic FA
and the FPGA. It is however noteworthy that these times were acquired using a
relatively small 800 MHz Pentium III Xeon Processor.

7 Globally search a regular expression and print; a command-line utility of unixoid sys-
tems

12

3.3 Data Stream Processing with FPGAs

The architectural integration presented in Fig. 4 (a) and (b) suggests that FPGAs
can also be used in broader application areas than than just network intrusion
detection. Moving to such a broader application the goal of the Glacier system
[MTA09b,MTA10] is to compile queries from the continuous query language (CQL)8

to VHDL instructions that synthesize an FPGA hardware circuit. When loaded
on an FPGA it implements a given query in hardware and guarantees a specific
throughput rate. It consists of a component library and a compiler. The component
library stores building blocks for each stream processing operator (see Table 2).
The compiler takes a given query, instatiates the required modules and describes
the connection between those modules such that they can be translated into an
FPGA configuration.

Table 2. Stream Processing Operations adapted from [MTA10]. a,b,c are field names, q,qi
are sub plans and x is a parameterized sub plan input

Operator Semantics

πa1,...,an(q) Projections
σa(q) Selection where a holds true
~a:(b1,b2)(q) Arithmetic or boolean operation
q1 ∪ q2 Union
aggb:a(q) Aggregation
q1grpx|cq2(x) Group operation
q1 �t

x|k,l q2(x) Sliding window

q1 ∝ q2 Concatenation; “Join by position”

Glacier operates on the algebra shown in Tab. 2. This algebra assumes tuple
structured input events. Each operator can be nested. While it does not represent
the complete relational algebra, it supports those aspects of a query that can be
realized in a pre-processing step in the sense of the architecture presented in Fig. 4
(a) or (b). Like almost all query processors do, Glacier initially turns CQL state-
ments into an internal algebraic plan. Fig. 7 (a) shows an examplary CQL query
including a sliding window, aggregation and selection operation. Fig. 7 (b) shows
the corresponding algebraic plan.

(a) Example query (b) Algebraic Plan

Fig. 7. Example query and corresponding algebraic plan for a financial trading application
[MTA10]. Assuming there is an aggregation function wsum the query computes weighted
sums of the prices in the last 4 trades of UBS stocks.

8 An extension of SQL to support DSMS

13

This algebraic plan can now be fed to the Glacier compiler which derives VHDL
expressions for every operator in the plan. It is able to do so by assuming that for
every algebra expression the wiring interface follows a certain schema. An n-bit wide
tuple is represented in hardware by n parallel wires plus an additional data valid

that indicates if the signals on the wires should be regarded. To measure the per-
formance of individual operators Mueller et al. [MTA09b] use the units latency and
issue rate. While latency describes the number of clock cycles a circuit needs to pro-
duce an output, the issue rate describes the number of tuples that can be processed
per clock cycle. Naturally the latter is always ≤ 1.

The definition of the wiring interface makes defining selection and projection
operations straight forward. If the signal on the wires does not correspond to the
selection condition, the data valid line is set to false thus invalidating the tuple for
following operations. Projection operations are done by “cutting” the non-relevant
bit data of the wiring interface i.e. not forwarding their signals to any subsequent
module. Mueller et al. observed an interesting side effect of this implementation.
The interaction between Glacier and the compilation stages of an FPGA imple-
ments basically a projection pushdown for free. For many reasons synthesizers of
FPGAs optimize the layout such that there are no “dangling” wires. By leaving
non-relevant data bits on such “dangling” wires Glacier leaves the actual push-
down to the synthesizer. In the synthesizing process all sub-circuits whose output
is not connected to a port are eliminated. Both hardware implementations of these
operators have latency and issue rate of one. Arithmetic and boolean operations
that are preliminary to selection operations are directly translated into logic op-
erations. Most simple arithmetic or boolean functions produce an output within
a single clock cycle. However in case they don’t (e.g. multiplication, floating-point
arithmetic) the increased latency has to be countered by synchronization methods.

Glacier introduces two types of synchronization methods. Traditional FIFO queues
are short-term buffers to handle streams that have varying data rates. They buffer
data and emit it at a predictable rate, often the same as the issue rate of upstream
sub-circuits. Additionally delay operators can block data items for a fixed number
of clock cycles. For the aforementioned complex arithmetic operations this type of
synchronization is used.

Applications scenario for FIFO queues are union operators. To ensure the right
synchronization, the union operator implementation uses FIFO queues. These are
either implemented using flip-flop registers or BRAM. Since the union operation
itself has a latency of one and the FIFO queues add another latency cycle the
overall latency of the union operator is two.

To bridge the gap between stream and relational-style data processing CQL
provides a windowing operator. The operation uses the output of its left-hand sub-
plan and slices it into a set of windows. Subsequently it invokes the right-hand
sub-plan in parameterized fashion such that the operations in this sub-plan are
applied to all tuples in the current window. The compiler of Glacier wraps the right-
hand side sub-plans into a template circuit. Additional eos signals are introduced to
notify a sub-plan of the end of a window-stream. Common use case of this operation
are sliding windows. The parallelism of FPGAs can be used here. The right-hand
subplan is replicated as many times as there may be windows open concurrently
(in the definition of Tab. 2 n = k/l) plus one. A cyclic shift register CSR1 is used
to keep track of open windows. Whenever the end of a window is reached an adv

signal shifts the register to the right. This closes the oldest window and opens a
new one. In parallel to shifting the CSR1 the eos signal is send to the sub-plan that
processes the oldest window. By this the sub-plan starts to generate output, that is
fed to a union operation. To submit the signal to the correct (i.e. oldest) window a
second cyclic shift register CSR2 is maintained. This is synchronized with the first
one and keeps a bit that identifies said window.

14

Compared to the previously explained operations, aggregation operations as-
sume a finite set of input data. Therefore in DSMS aggregation operations are
typically applied to windows. The windowing operation however just streams in
tuples. The storage implementation therefore has to be applied by the aggregation
operation itself. Since this allows the optimizer to build storage in just the right
size for the function this concept is an advantage.

Fig. 8. Hardware implementation of the query presented in Fig. 7 [MTA09b].

Fig. 8 presents a hardware implementation generated by Glacier for the exam-
plary query in Fig. 7. The lower parts of the figure present the implementation of
projection, selection and arithmetic function of the left-hand side subplan in the
algebraic plan. The upper parts represent the windowing clause SIZE 4 ADVANCE

1 TUPLES. One can observe that the maximum window size is 4 and 5 copies of
the wsum sub-plan have been initialized. The counter is responsible for counting the
number of tuples and sends the adv signal if it reaches the number specified in the
ADVANCE part of the windowing clause.

Following the architectural pattern presented in Fig. 4 Mueller et al. imple-
mented a soft-core module on the FPGA that is responsible for decoding of UDP
datagrams. Result data is written into a FIFO accessible by the CPU via a CPU
Adapter. Whenever data is ready, the FPGA raises an interrupt and applications
are able to pick up the data. In general Mueller et al. define such (de-)serialization
modules under the term glue logic. Since every FPGA-based query processor has to
assume that the data to consume comes in a specific format, every hardware im-
plementation of data processing needs such logic. This glue logic not only requires
some chip space but also introduces additional latency. However if build right it
should be able to cooperate with a hardware plan in a pipelining fashion.

Alongside the basic layout and functional implementation of a query-to-hardware
compiler Mueller et al. also developed several optimization heurisitics. With the
observation that not all components are clock bound, the authors integrated an
asynchronous execution of sub-plans. By eliminating intermediate registers they
reduced the latency and saved a small amount of FPGA resources. Additionally
this approach allows a better task parallelism. Fig. 9 illustrates this idea with aid of

15

two boolean operations in parallel as well as the corresponding selection operation
all in one cycle.

Fig. 9. Reduced latency by asynchronous operations with task parallelism [MTA09b].

3.4 FPGAs as a Co-Processor

The previous chapters of this work concentrated on stream processing applications
since those tasks are the most natural way to utilize the hardware structure of FP-
GAs. However in an OLTP environment the architectural structure of streaming
applications interferes with SLA operations in a way that might make this architec-
ture unsuitable. As mentioned earlier not only do the actual operations introduce
more or less latency (depending on the complexity of the query) but also serial-
ization and deserialization of the data must be processed. Hence a writethrough
protocol in the I/O path of a traditional OLTP system can increase Input/Output
operations per second (IOPS). An increased IOPS measure can delay operations
of the SLA to unacceptable levels thus rendering the stream processing approaches
unsuitable in such systems.

Concurrently FPGAs pose an interesting alternative to support OLAP opera-
tions in such a system. Commonly systems that support analytical operations build
indexes to speed up those operations. Indexes that merely serve this purpose, how-
ever, can have a detrimental effect on OLTP operations. Every insert, update or
delete operation can entail index updates which results in heavier CPU and I/O
load thus impacting overall throughput. The FPGA as a mechanism to speed up
costly analytics operations could make these indexes obsolete.

Fig. 10. System architecture with FPGA as a Co-processor [SMT+12].

16

To this end Sukhwani et al. and Halstead et al. [SMT+12, HSM+13] employ
the architecture shown in Fig. 4 (c) to use FPGAs as processing accelerators. As
shown in Fig. 10 the FPGA is connected to the CPU and memory via PCIe (PCI
Express). Data access for the FPGA is gained via DMA. Thus FPGA can only work
on data that is already in memory. The CPU communicates with the FPGA using
a job queue, device drivers and service layer logic. The service layer logic is one of
two modules of the FPGA. It provides all logic responsible for DMA, PCIe and job
management. The application layer implements the functions required to process
queries from the DBMS. Between the two there is a set of well-defined interfaces
that include buses for I/O communication, queues for DMA requests and control
signals.

In their first attempt to utilize this architecture Sukhwani et al. [SMT+12] im-
plemented predicate evaluation and row decompression on FPGAs for row-based
DBMSs. Therefore the authors designed an architecture inside the application layer
shown in Fig. 11. A scan tile is the central element that enables the exploitation of
the parallelism on FPGAs. It contains a number of decompressors and row scanners
as well as buffers for input and output database pages. It also includes logic to
extract and write single rows within such a page. Decompression tasks are executed
through lookups in a dictionary which is shared by two decompression units. The
row scanner houses a number of predicate evaluation units (PE). The whole scan
tile can scan one database page at a time. Parallelism can be achieved by simply
replicating scan tiles on the chip.

Fig. 11. Row Processing architecture [SMT+12].

To utilize the full bandwidth of 8 lanes of PCIe 2.0 (i.e. 4000 MB/s) two scan
tiles are the minimal configuration to process uncompressed database pages. With
rising compression coefficients more scan tiles are needed to utilize this bandwidth.
The configuration presented allows to trade page parallel computation for query
complexity. A scan tile can be configured with differing amounts of row scanners and
decompressors thus allowing to utilize the FPGA’s space in the best way following
the given query.

Suhkhwani et al. observed, that performing decompression on FPGAs provides
numerous benefits. Database pages can be sent directly to the FPGA without any
need to prefilter or process on host architecture. Further an efficient FPGA imple-
mentation can utilize the inherent parallelism such that the decompression algo-
rithm becomes much more efficient. As shown in Fig. 11 the decompression algo-
rithm relies on a dictionary. Basically each compressed row consist of a set of tokens,
which get looked up in the dictionary and stitched together. A tokenizer module
fetches compressed rows from a compressed row buffer, one token at a time con-
trolled by a controller FSM. This token is fed to a a character decoder or a dictionary

17

data decoder that decodes the character-type or dictionary-type tokens and write
them into the uncompressed row buffer. This algorithm is not purely feed-forward
since no new token can be fetched until the previous one is completely decom-
pressed. To enable pipeline-parallelism the authors implemented a FIFO queue in
the tokenizer that prefetches 8 tokens, such that a new token is ready for processing
as soon as the current one is finished.

Fig. 12. Logic of the Row Scanner to evaluate predictates on database rows [SMT+12].

After the decompression of rows, the data is sent to predicate evaluation logic.
The corresponding row scanner is shown in Fig. 12. It consists of a series of PE
units that each evaluate a single predicate on a column of the database row. A
reduction network reduces the result of the evaluation to a 1-bit qualify signal.
To address the issue of high synthesis and place-and-route time consumption the
authors implemented a hardware image that can be fitted to various queries. The
PEs are designed to perform 6 inequality operations or to be excluded from the
current query. The reduction network is a binary tree of reduction units each of
which is a 2 to 1 reducer performing logical AND,OR, NOT and PASS operations. In an
initial query load phase the PE is configured in 5 dimensions:

1. Enabled/Disabled
2. Setting predicate values
3. Definition of the inequality operation
4. Determination of the offset of the first byte of the desired field within the row
5. Determination of the field

In the scan phase, rows of the database are streamed over the PEs in a rate of
one byte per cycle. Each byte is broadcasted to all PEs and speculatively written
into the qualified row buffer. If at the end of the stream of a row the row is qualified,
it is written to the page formating logic (see Fig. 10).

In further investigations in the field Halstead et al. [HSM+13] utilized the same
architecture to design and prototype an FPGA join operation. The relational join is
one of the most CPU intensive tasks of a DBMS, yet it needs to be used commonly.
The proposed architecture concentrates on FPGA Hash Joins where columns of
table are initially hashed in a build phase. In the following probe phase hashed
values of both tables are compared, through which a combination of fields from
two tables can be determined. As running example the architecture of many data
warehouses is used, where in a star-schema scenario a fact table holds the facts,
whereas the smaller dimension tables contain attributes.

This logical scheme is employed in hardware as shown in Fig. 13. In the build
phase (Fig. 13 (a)) the FPGA fetches the pages from a dimension table onto local
FPGA storage units in order to perform the row joining and output materialization
on FPGA. During this extraction the join attributes are extracted and their values
are hashed into a hash table (bit vector). The hashed value, the actual value and
the position of the row in local storage are stored in the address table. The collision

18

(a) Build Phase (b) Probe Phase

Fig. 13. Logical Scheme of Build and Probe Phase Hardware of a hash join on FPGAs
[HSM+13].

of hash values is handled with a chaining scheme whereby the hash table addition-
ally contains next and tail values. The parallelism of the FPGA allows to handle
multiple table joins in a data parallel way. Each channel in Fig. 13 (a) has its own
dedicated resources such that hashing and data table generation can be done con-
currently. The probe phase (Fig.13 (b)) begins with the streaming and concurrent
hashing of relevant columns of the fact table. The hash values are compared with
the values from the build phase. If matches are found the row is forwarded to the
address table for further processing. There the value of a qualified row of the fact
table is again checked against the stored value of the dimension table. With this
technique the fact table is simply streamed through the FPGA such that it doesn’t
need to be stored anywhere on the FPGA. By that the join operator can handle
fact tables of arbitrary sizes.

Another join algorithm for relational DBMSs is the sort-merge join. The central
concept of this join algorithm is to initially sort relations of a table, such that
an interleaved scan of both sets encounters equal values of the join columns at
the same time. In practice the initial sorting of the tuples is the most expensive
part. Thus the concept of external sort operations were introduced. FPGAs pose an
especially interesting alternative to the sorting problem since they can utilize sorting
networks or FIFO Merge sorters. In [KT11,MTA12] several approaches to sorting on
FPGAs using such techniques were investigated and introduced. A sorting network
is a mathematical model of a network that sorts a set of input values through
compare-swap elements. It is designed to exploit a high degree of parallelism since
each compare-swap operates independently from the others. A FIFO merge sorter
uses select-value elements where only one element (the larger resp. smaller one) is
selected and forwarded.

(a) Compare Swap Element (b) Select Value Element

Fig. 14. Circuits diagrams of logical elements for building sorting operations on FPGAs
[KT11].

19

A compare-swap element compares two input values and, if required, swaps the
value at the output. Fig. 14 (a) shows such an compare-swap element. It can be built
using comparators and multiplexers. Depending on the availability of carry-chain
logic on the FPGA comparators for more then 6-bit wide operands can be built
in a tree-like structure or using carry-chain logic, whereas carry-chain logic yields
the better latency rates. The comparator’s one bit output controls the output of a
multiplexer which is responsible for routing the correct (smaller or larger) signal on
the correct channel. It is noteworthy that the implementation of the multiplexers
can take up to 80% of the logic cost of implementing a compare-swap element.

Similarly a select-value element (see Fig. 14 (b)) compares two input values, but
instead of swapping the signals it selects the larger (or smaller depending on the
sorting task) value and forwards it. The construction of comparators underlies the
same limitations as mentioned before. Typically the select-value element is designed
in a way so that the not selected value can be kept for comparisons in the next cycle.

(a) Even-odd sorting network (b) Bitonic sorting network

Fig. 15. Different implementations of sorting networks for 8 elements [MTA12].

The idea of sorting networks on FPGAs is to stream unsorted data through a
number of compare-swap elements such that at the end of the sorting network the
signal paths contain a sorted order of the data. They do not require any control in-
structions and their simple data flow pattern makes them easy to parallelize. There
are several ways to implement such a sorting network. The most popular arrange-
ments are even-odd, bitonic sorting networks (see Fig. 15) and sorting networks
based on bubble sort. The circuit of a sorting network consists of horizontal wires
and vertical comparator elements. Each wire can hold an m-bit number. Each way
has different effects on resource consumption and ease of implementation.

Fig. 16. Cascading structure of a FIFO-based merge sorter [KT11].

Another approach to the sorting problem on FPGAs is a BRAM-based FIFO
merge sorter as proposed by Koch et al. [KT11]. This approach is able to handle
larger sorting problem sizes inside the FPGA than a sorting network would. At
the heart of the FIFO merge sorter a select-value element is utilized to merge to
sorted runs into a larger sorted run. Inputs of a select-value element are stored

20

in FIFO structures that hold the sorted runs. During execution the smaller (resp.
bigger) value is selected and written to an output FIFO. In the following cycle the
unselected value and another value from the FIFOs are compared and so on. A
cascade of such merge sorter can produce larger and larger sorted runs. Fig. 16
shows an examplary implementation of such a merge sorter.

4 Conclusions

In this report we’ve examined the structure of FPGAs and the usability and advan-
tages of data processing on such chips. The proposals by the research community
range from network oriented solutions over data stream processing engines to co-
processor units that can be plugged into any existing system provided a software
infrastructure is implemented.

At first we discussed the specific structure of FPGA. We showcased the dif-
ferent architectural layers and modules of the FPGA to illustrate how the FPGA
can provide a high degree of parallelism, low latency and high throughput rates.
Also the programmability of FPGAs was discussed to illustrate the flexibility and
adaptability an FPGA can provide.

A network stream processing solution was presented in form of the RegExp
matching using FPGAs. The high degree of parallelism allows the implementation of
non-deterministic FAs on FPGAs. Those non-deterministic FAs are not only easier
to build and more resource efficient, but do also offer better performance values in
direct comparison to a software implementation of RegExp matching. Furthermore
the proposed strategy is a good example of how specialized hardware can bypass the
von-Neumann bottleneck and the memory wall. By putting the RegExp matching
in the data path, the process (or for that matter any other process running on GPPs
in the system) does not suffer the effects of these problems.

A broader application area in terms of stream processing is covered by the
Glacier system. It was introduced as full-blown compiler for the data stream pro-
cessing language CQL that provides a variety of operations for stream processing.
Once more this approach circumvents the von-Neumann bottleneck and memory
wall by being applied directly in the data path thus eliminating any intra-host
communication efforts except the provisioning of result data.

Finally, several operator implementations were discussed that utilize the FPGA
as a co-processor. Approaches were introduced that use the FPGA to decompress
and project data in traditional DBMSs as well as approaches that utilize the FPGA
to implement hash join and selection operations. In context of sort-merge joins some
approaches on sorting on FPGAs were illustrated. Every one of these approaches was
introduced with the goal in mind to enable a OLTP platform to perform OLAP op-
erations without endangering any SLAs. The proposed architecture relies on DMA
to be able to bypass von-Neumann bottleneck and memory wall at least in terms of
data flow. Considering control flow instructions the FPGA needs to be connected
to the same bus system as memory and CPU. If such DMA controllers exist, the
FPGA can access memory addresses and initiate read/write cycles without inter-
fering with the GPP’s tasks. However this architecture presumes an in-memory
database scheme. As soon as database pages have to be picked from a hard drive,
the CPU is also involved in data provisioning.

Each of the approaches utilizes the high degree of parallelism available on FPGAs
in a different way. For instance the approaches made by Sukhwani et al. or Halstead
et al. realize efficient analytical processing on FPGAs using a data parallel approach,
whereas the Glacier system tends to realize more of a pipeline parallel approach.
Most of the comparable approaches document similar if not better performance
results for their proposed architectures compared to architectures that solely rely

21

on GPPs. Even further, since FPGAs do have lower clock rates than traditional
GPPs, they tend to considerably reduce overall power consumption of analytical
systems.

Up until this point however ASICs could provide the same characteristics while
concurrently offering even lower power consumptions, lesser transistors for specific
tasks and a higher clock speed. Main advantage of the FPGA compared to those
kinds of ICs is their flexibility, scalability and overall higher adaptability. FPGAs
offer the possibility to be modified and reconfigured to specific query loads at a
fine granular level. This circuit re-compilation time however is a CPU-intensive
operation. Several approaches cover these problems for instance through usage of
pre-compiled modules and partial reconfiguration. For example Dennl et al. [DZT12]
defined such modules for the relational algebra. Others utilize the idea of parame-
terized circuits, where operators are modelled in such a way that they can be fed
parameters to initialize them. Netezza [Fra11] uses this concept to initialize projec-
tion and selection operations during runtime. Also Teubner et al. [TWN13] used
this concept to cover a large subset of XPath, a query language for XML data.
The definition of the language itself allows the definition of so-called skeleton au-
tomata, that can be parameterized to run XPath queries as hardware non-finite
state automata.

Further work in the field even includes high-level synthesis approaches such as
LiquidMetal [HHBR08] or Kiwi [SG08] both of which are compilation approaches
that can turn Java, respectively C# programs, into hardware implemented programs
on FPGAs.

References

AKN12. Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Massively
parallel sort-merge joins in main memory multi-core database systems. Proc.
VLDB Endow., 5(10):1064–1075, June 2012. URL: http://dx.doi.org/10.
14778/2336664.2336678, doi:10.14778/2336664.2336678.

BP05. Zachary K. Baker and Viktor K. Prasanna. Efficient hardware data mining
with the apriori algorithm on fpgas. In Proceedings of the 13th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, FCCM ’05,
pages 3–12, Washington, DC, USA, 2005. IEEE Computer Society. URL: http:
//dx.doi.org/10.1109/FCCM.2005.31, doi:10.1109/FCCM.2005.31.

CNL+08. Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa
Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep
Dubey. Efficient implementation of sorting on multi-core simd cpu archi-
tecture. Proc. VLDB Endow., 1(2):1313–1324, August 2008. URL: http:

//dx.doi.org/10.14778/1454159.1454171, doi:10.14778/1454159.1454171.
CO14. Jared Casper and Kunle Olukotun. Hardware acceleration of database oper-

ations. In Proceedings of the 2014 ACM/SIGDA International Symposium on
Field-programmable Gate Arrays, FPGA ’14, pages 151–160, New York, NY,
USA, 2014. ACM. URL: http://doi.acm.org/10.1145/2554688.2554787,
doi:10.1145/2554688.2554787.

DG08. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008. URL: http:
//doi.acm.org/10.1145/1327452.1327492, doi:10.1145/1327452.1327492.

DZT12. Christopher Dennl, Daniel Ziener, and Jurgen Teich. On-the-fly composition
of fpga-based sql query accelerators using a partially reconfigurable module
library. In Proceedings of the 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines, FCCM ’12, pages 45–52,
Washington, DC, USA, 2012. IEEE Computer Society. URL: http://dx.doi.
org/10.1109/FCCM.2012.18, doi:10.1109/FCCM.2012.18.

Fra11. Phil Francisco. The netezza data appliance architecture: A platform for high
performance data warehousing and analytics, 2011.

http://dx.doi.org/10.14778/2336664.2336678
http://dx.doi.org/10.14778/2336664.2336678
http://dx.doi.org/10.14778/2336664.2336678
http://dx.doi.org/10.1109/FCCM.2005.31
http://dx.doi.org/10.1109/FCCM.2005.31
http://dx.doi.org/10.1109/FCCM.2005.31
http://dx.doi.org/10.14778/1454159.1454171
http://dx.doi.org/10.14778/1454159.1454171
http://dx.doi.org/10.14778/1454159.1454171
http://doi.acm.org/10.1145/2554688.2554787
http://dx.doi.org/10.1145/2554688.2554787
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/FCCM.2012.18
http://dx.doi.org/10.1109/FCCM.2012.18
http://dx.doi.org/10.1109/FCCM.2012.18

22

Fuj13. Fujitsu Laboratories Ltd. Fujitsu achieves world’s fastest transceivers of 32
gbps for inter-processor data communications. http://www.fujitsu.com/

global/about/resources/news/press-releases/2013/0218-01.html, 2013.
Accessed: July 7, 2014.

GGKM06. Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputera-
sort: High performance graphics co-processor sorting for large database man-
agement. In Proceedings of the 2006 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’06, pages 325–336, New York, NY,
USA, 2006. ACM. URL: http://doi.acm.org/10.1145/1142473.1142511,
doi:10.1145/1142473.1142511.

HHBR08. Shan Shan Huang, Amir Hormati, David F. Bacon, and Rodric Rabbah. Liq-
uid metal: Object-oriented programming across the hardware/software bound-
ary. In Proceedings of the 22Nd European Conference on Object-Oriented
Programming, ECOOP ’08, pages 76–103, Berlin, Heidelberg, 2008. Springer-
Verlag. URL: http://dx.doi.org/10.1007/978-3-540-70592-5_5, doi:10.
1007/978-3-540-70592-5_5.

HSM+13. R.J. Halstead, B. Sukhwani, Hong Min, M. Thoennes, P. Dube, S. Asaad, and
B. Iyer. Accelerating join operation for relational databases with fpgas. In
Field-Programmable Custom Computing Machines (FCCM), 2013 IEEE 21st
Annual International Symposium on, pages 17–20, April 2013. doi:10.1109/

FCCM.2013.17.

KT11. Dirk Koch and Jim Torresen. Fpgasort: A high performance sorting archi-
tecture exploiting run-time reconfiguration on fpgas for large problem sort-
ing. In Proceedings of the 19th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’11, pages 45–54, New York, NY,
USA, 2011. ACM. URL: http://doi.acm.org/10.1145/1950413.1950427,
doi:10.1145/1950413.1950427.

MSNT11. Roger Moussalli, Mariam Salloum, Walid Najjar, and Vassilis J. Tsotras. Mas-
sively parallel xml twig filtering using dynamic programming on fpgas. In
Proceedings of the 2011 IEEE 27th International Conference on Data En-
gineering, ICDE ’11, pages 948–959, Washington, DC, USA, 2011. IEEE
Computer Society. URL: http://dx.doi.org/10.1109/ICDE.2011.5767899,
doi:10.1109/ICDE.2011.5767899.

MT09. Rene Mueller and Jens Teubner. Fpga: What’s in it for a database? In
Proceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’09, pages 999–1004, New York, NY, USA, 2009.
ACM. URL: http://doi.acm.org/10.1145/1559845.1559965, doi:10.1145/
1559845.1559965.

MTA09a. Rene Mueller, Jens Teubner, and Gustavo Alonso. Data processing on fpgas.
Proc. VLDB Endow., 2(1):910–921, August 2009. URL: http://dl.acm.org/
citation.cfm?id=1687627.1687730.

MTA09b. Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on wires: A query
compiler for fpgas. Proc. VLDB Endow., 2(1):229–240, August 2009. URL:
http://dl.acm.org/citation.cfm?id=1687627.1687654.

MTA10. Rene Mueller, Jens Teubner, and Gustavo Alonso. Glacier: A query-to-
hardware compiler. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, pages 1159–1162, New
York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/1807167.
1807307, doi:10.1145/1807167.1807307.

MTA12. Rene Mueller, Jens Teubner, and Gustavo Alonso. Sorting networks on fpgas.
The VLDB Journal, 21(1):1–23, 2012. URL: http://dx.doi.org/10.1007/

s00778-011-0232-z, doi:10.1007/s00778-011-0232-z.

MVB+. Abhishek Mitra, Marcos R. Vieira, Petko Bakalov, Walid Najjar, and Vassilis J.
Tsotras. Boosting xml filtering with a scalable fpga-based architecture.

Net13. Netronome. 40gbps regular expression matching for network ap-
pliances. http://www.netronome.com/wp-content/upload/2013/12/

Netronome-40Gbps-RegEx-Matching-for-Network-Appliances-Whitepaper-4-10.

pdf, 2013. Accessed: July 7, 2014.

http://www.fujitsu.com/global/about/resources/news/press-releases/2013/0218-01.html
http://www.fujitsu.com/global/about/resources/news/press-releases/2013/0218-01.html
http://doi.acm.org/10.1145/1142473.1142511
http://dx.doi.org/10.1145/1142473.1142511
http://dx.doi.org/10.1007/978-3-540-70592-5_5
http://dx.doi.org/10.1007/978-3-540-70592-5_5
http://dx.doi.org/10.1007/978-3-540-70592-5_5
http://dx.doi.org/10.1109/FCCM.2013.17
http://dx.doi.org/10.1109/FCCM.2013.17
http://doi.acm.org/10.1145/1950413.1950427
http://dx.doi.org/10.1145/1950413.1950427
http://dx.doi.org/10.1109/ICDE.2011.5767899
http://dx.doi.org/10.1109/ICDE.2011.5767899
http://doi.acm.org/10.1145/1559845.1559965
http://dx.doi.org/10.1145/1559845.1559965
http://dx.doi.org/10.1145/1559845.1559965
http://dl.acm.org/citation.cfm?id=1687627.1687730
http://dl.acm.org/citation.cfm?id=1687627.1687730
http://dl.acm.org/citation.cfm?id=1687627.1687654
http://doi.acm.org/10.1145/1807167.1807307
http://doi.acm.org/10.1145/1807167.1807307
http://dx.doi.org/10.1145/1807167.1807307
http://dx.doi.org/10.1007/s00778-011-0232-z
http://dx.doi.org/10.1007/s00778-011-0232-z
http://dx.doi.org/10.1007/s00778-011-0232-z
http://www.netronome.com/wp-content/upload/2013/12/Netronome-40Gbps-RegEx-Matching-for-Network-Appliances-Whitepaper-4-10.pdf
http://www.netronome.com/wp-content/upload/2013/12/Netronome-40Gbps-RegEx-Matching-for-Network-Appliances-Whitepaper-4-10.pdf
http://www.netronome.com/wp-content/upload/2013/12/Netronome-40Gbps-RegEx-Matching-for-Network-Appliances-Whitepaper-4-10.pdf

23

NSJ13. Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen. Flex-
ible query processor on fpgas. Proc. VLDB Endow., 6(12):1310–1313, August
2013. URL: http://dl.acm.org/citation.cfm?id=2536274.2536303.

SAB+05. Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: A column-
oriented dbms. In Proceedings of the 31st International Conference on Very
Large Data Bases, VLDB ’05, pages 553–564. VLDB Endowment, 2005. URL:
http://dl.acm.org/citation.cfm?id=1083592.1083658.

SDCV10. Todd C. Scofield, Jeffrey A. Delmerico, Vipin Chaudhary, and Geno Va-
lente. Xtremedata dbx: An fpga-based data warehouse appliance. Com-
puting in Science and Engineering, 12(4):66–73, 2010. doi:http://doi.

ieeecomputersociety.org/10.1109/MCSE.2010.93.
SG08. Satnam Singh and David J. Greaves. Kiwi: Synthesis of fpga circuits from

parallel programs. In Proceedings of the 2008 16th International Symposium
on Field-Programmable Custom Computing Machines, FCCM ’08, pages 3–12,
Washington, DC, USA, 2008. IEEE Computer Society. URL: http://dx.doi.
org/10.1109/FCCM.2008.46, doi:10.1109/FCCM.2008.46.

SMT+12. Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna
Iyer, Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. Database ana-
lytics acceleration using fpgas. In Proceedings of the 21st International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’12, pages
411–420, New York, NY, USA, 2012. ACM. URL: http://doi.acm.org/10.
1145/2370816.2370874, doi:10.1145/2370816.2370874.

SP01. Reetinder Sidhu and Viktor K. Prasanna. Fast regular expression match-
ing using fpgas. In Proceedings of the the 9th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM ’01, pages 227–
238, Washington, DC, USA, 2001. IEEE Computer Society. URL: http:

//dx.doi.org/10.1109/FCCM.2001.22, doi:10.1109/FCCM.2001.22.
STM+13. B. Sukhwani, M. Thoennes, Hong Min, P. Dube, B. Brezzo, S. Asaad, and

D. Dillenberger. Large payload streaming database sort and projection on
fpgas. In Computer Architecture and High Performance Computing (SBAC-
PAD), 2013 25th International Symposium on, pages 25–32, Oct 2013. doi:

10.1109/SBAC-PAD.2013.21.
TWN13. Jens Teubner, Louis Woods, and Chongling Nie. Xlynx an fpga-based xml

filter for hybrid xquery processing. ACM Trans. Database Syst., 38(4):23:1–
23:39, December 2013. URL: http://doi.acm.org/10.1145/2536800, doi:

10.1145/2536800.
Xil09. Xilinx. Virtex-5 family overview. http://www.xilinx.com/support/

documentation/data_sheets/ds100.pdf, 2009. Accessed: July 7, 2014.

http://dl.acm.org/citation.cfm?id=2536274.2536303
http://dl.acm.org/citation.cfm?id=1083592.1083658
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.93
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.93
http://dx.doi.org/10.1109/FCCM.2008.46
http://dx.doi.org/10.1109/FCCM.2008.46
http://dx.doi.org/10.1109/FCCM.2008.46
http://doi.acm.org/10.1145/2370816.2370874
http://doi.acm.org/10.1145/2370816.2370874
http://dx.doi.org/10.1145/2370816.2370874
http://dx.doi.org/10.1109/FCCM.2001.22
http://dx.doi.org/10.1109/FCCM.2001.22
http://dx.doi.org/10.1109/FCCM.2001.22
http://dx.doi.org/10.1109/SBAC-PAD.2013.21
http://dx.doi.org/10.1109/SBAC-PAD.2013.21
http://doi.acm.org/10.1145/2536800
http://dx.doi.org/10.1145/2536800
http://dx.doi.org/10.1145/2536800
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

	Motivation
	FPGAs - A Hardware Introduction
	Architecture of FPGAs
	Programming an FPGA

	Data Processing using FPGAs
	Architectural integration of FPGAs
	Network Stream Processing on FPGAs
	Data Stream Processing with FPGAs
	FPGAs as a Co-Processor

	Conclusions

