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1 Introduction

1.1 Motivation

Traditional database systems follow the design principle that all data is stored
on hard disk where records are accessible via indexing structures and loaded
into main-memory as soon as they are requested. Since memory prices have
dropped significantly during the last three decades, new database systems have
been designed that allow faster access to the data by storing all data inside the
main-memory, e.g. H-Store [9].

Notwithstanding the above, also durable storage technologies have made con-
siderable progress towards larger capacity, more input/output operations per
second as well as reduced cost per storage unit at the same time. Solid-state
drives (SSDs) have entered the market and, using the non-volatile NAND-flash
technology, convince by their reading and writing speed, although they are still
about ten times more expensive than common HDDs. Another promising tech-
nology is phase-change memory (PCM), but it is still in research state.

Now one could ask, why all the data is stored in memory. If there are records
that are not accessed that frequently, would it not be cheaper to store them on
a secondary storage device such as HDD or SSD? Moreover, energy consump-
tion would decrease and more space would be available to temporarily store
intermediate results thereby accelerating query processing.

To answer this question, Gray and Putzolu proposed in [5] the 5-minute rule,
which says, that a record should be kept in memory if it has accessed at least
every 5 minutes (the break-even interval). The n-minute rule is defined as follows:

BEInterval =
StoragePrice[$]

IO/s
· 1

ItemSize[byte] ·RAMPrice[$/byte]
(1)

Levandoski et al. derived in [7] an updated version of the 5 minute rule, where
the break-even interval is increased to 60 minutes given a record size of 200 bytes,
when an SSD is used. Under the assumption, that SSD prices will continue to
fall, the 60 minutes are not a final value, but will still diminish as well.

Let us now consider OLTP workloads. OLTP is an acronym for “online trans-
action processing” and means that these applications are characterized by rela-
tively short running transactions, which access in general only very limited data
volume [6].

These workloads often have a certain characteristic: on one side, there are
datasets that are accessed recurrently (so called “hot” records), on the other
side, there are datasets which are accessed only sporadically (“cold” records)
and in between some “lukewarm” records [7].

As an example, imagine a flight booking agency, where customers, e.g. indi-
viduals and companies make reservations for flights of a certain airline. If a new
flight is inserted into the database, it will typically by “hot” in the beginning
when reservations are made and cancelled. Once the flight is accomplished, no
reservations are performed anymore. Hence, after a while this flight will become
a “cold” record.



In brief, an OLTP workload seems to be a good application for the use of
secondary storage in main-memory database systems.

1.2 Content Overview

The aim of this paper is to investigate to what extent we can improve the
e�ciency of main-memory databases by means of the virtual paging mechanism
to balance hot and cold data in memory and HDD. In order to answer this
central question, we will mainly concentrate on the approach taken by Stoica et
al. in [8].

Therefore, we will first consider the architecture of the database system,
developed by Stoica et al., and the basic technologies they use in their approach.
In the second part, we will examine the mode of operation of this database
engine, thereby introducing the “exponential smoothing algorithm” developed by
Levandoski et al. [7] and its application. The last part is about the experimental
results of Stoica et al.’s approach.

1.3 Related Work

In contribution [4] Funke et al. present a technique that separates hot from cold
data. As HyPer is a one-size-fits-all database system, their goal is a di↵erent one.
They define cold data as data which is not modified, but still read by OLAP
queries. The classification is done by hardware-assisted monitoring in order to
keep the number of modified pages as small as possible. Secondary storage is
only used if the database size exceeds the memory’s capacity. Thus, they do not
want to migrate cold to secondary storage, instead, they compress it in order to
enlarge the available memory.

Hekaton [7] is an extension of SQL Server that enables the storage of entire
relations in memory. The focus of “Project Siberia” is to extend the Hekaton
system in a way that cold records can be relocated to secondary storage. But
this still is ongoing research.

DeBrabant et al. [3] switched the traditional storage hierarchy around, i.e.,
they come up with a new model, where main-memory is the principal storage
and only cold records are moved to a so-called “Anti-Cache”, if space is needed.
The main di↵erence is that they do not make use of the OS virtual paging
mechanism.



2 Architecture and Basic Technologies

Stoica et al. built a new database architecture by adding secondary storage to a
main-memory DBMS and using the OS paging mechanism to transfer the data.
Since they used VoltDB, we are going to take a closer look at this DBMS in the
first part of this chapter. Then we will discuss the virtual paging mechanism in
general and how it a↵ects a database system. In the third part, we are going to
discuss the extensions that are necessary to enable the e�cient use of secondary
storage as proposed in [8].

2.1 VoltDB

VoltDB [1] is an open-source commercial relational database management sys-
tem, which utilizes main memory as storage and can be installed on a single
machine or distributed on a cluster.

Data access is serialized, hence there is no need for locking, latching and bu↵er
management. Instead to improve scalability and performance, VoltDB makes
use of vertical partitioning and replication, e.g., small read-only tables can be
replicated to other partitions, whereas large (logical) tables, where single records
are mostly accessed via primary key, can be partitioned into several di↵erent
physical tables on di↵erent nodes. Finally, there exists one worker thread for each
physical table, which maintains its own data structures, namely index structures
and physical tables. If data from di↵erent partitions is needed, one node has
to coordinate the transaction by distributing the requests to the other nodes,
collecting the intermediate results and finally computing the complete result.

Durability is guaranteed by a snapshot mechanism which can be configured
by the user, as writing snapshots to a disk inhibits the database’s performance. In
addition to that, all commands can be logged to disk. So whenever the database
crashes, it can be restored by using the latest snapshot and replaying the com-
mand log.

Furthermore, there exists support for realtime analytics, Hadoop integration
and many more features, but these are not in the scope of this paper.

2.2 The Virtual Paging Mechanism

If the memory is exceeded, the operating system starts to look for areas that
have not been accessed for a while and migrates their content to hard disk (or
more general, to the next larger storage device). The benefit is, that space is
freed in memory, However, if this is not done in an e�cient way, the OS has to
start copying pages from memory to hard disk and back. This process heavily
slows down the performance, since much more additional I/O operations have
to be performed on disk, where they are much more expensive than in memory.

In databases, pages contain numerous tuples which are not uniformly ac-
cessed. Therefore, a standard virtual paging mechanism would not be su�cient
in case that the database size is bigger than the memory size. In consequence,
Stoica et al. implemented a data reorganization strategy, that places hot tuples



next to the other hot tuples and cold tuples next to cold tuples respectively. How
this strategy works in detail is discussed in section 3.

2.3 The modified VoltDB

First and foremost, Stoica et al. added an SSD as secondary storage device to
the database. Therefore they had to modify the memory management in such
a way that only tables and indexes can be moved to the secondary storage.
VoltDB provides an interface to get information about the address ranges of
code sections and other data structures. To apply the data reorganization strat-
egy, it is crucial that tables and indexes are stored sequentially in the virtual
address space. VoltDB supports this by assigning large memory chunks to the
relational objects and forbidding that these contain records of other data struc-
tures. Thus, the pages of the virtual memory always contain equally typed data.
The mlock()/munlock() methods then enable the user to make the system hold
or release appointed pages in memory. They are therefore used by Stoica et al.
to keep the hot pages and the front-end-related data structures in memory.

Pages, that are not fixed in memory, are then left to the OS virtual paging
mechanism.

Besides the memory management, Stoica et al. implemented an additional
component, that analyzes which records are classified as hot and which not
using an additional log. This component is independent of the DBMS engine
and should run on a seperate machine.

The resulting architecture is shown by figure 1.



3 Mode of Operation

As already mentioned in the beginning, the main idea of Stoica et al. [8] is to
store infrequently used (cold) data on cheaper secondary storage. In the first
part of this section, the utilized classification algorithm is presented. The second
part comprises its application to a given DBMS engine, as proposed in [8].

3.1 How to identify hot and cold data in main memory?

In other words, the issue is to retrieve the K hottest records out of a large
database in an e�cient way. To achieve this, Levandoski et al. [7] present two
di↵erent approaches, namely a forward and a backward algorithm. In a second
step, these two algorithms are parallelized in order two improve performance.

Before the two basic algorithms are presented, some preparatory issues have
to be discussed, starting with the database engine on which the algorithms have
been developed. Levandoski et al. used Hekaton, an engine which has to be com-
bined with SQL server. Its aim is to enable e�cient handling of OLTP workloads.
It is up to the user to decide, if he wants to have his table managed by Heka-
ton which means, that it is then entirely stored in main memory. Moreover, the
records are arranged on record level – not on page level – and can be accessed by
means of hash indexes or ordered indexes using range scans or index lookups [7].
The Hekaton engine allows to combine Hekaton tables with normal tables. In
contrast to VoltDB, Hekaton does not make use of partitioning. Instead, it allows
any thread to access any record without the use of locks and latches but guaran-
teeing no disturbance between transactions by “a new optimistic, multi-version
concurrency control technique” [7].

Another question that has to be answered is how to perform the analysis of
the record accesses. There are two di↵erent possibilities: inline and o✏ine. If
the analysis’ results, i.e., the estimations of the record’s access frequency, are
kept in main memory and updated each time a record is accessed. Alternatively,
the record accesses are written to a seperate log and analyzed later. Levandoski
et al. preferred this approach, since they considered caching to impose to much
overhead, whereas a simple logging mechanism does not have much impact on
the database’s performance. In addition to that, the database engine does not
have to be changed and there are more possibilities to adapt the system to special
requirements, as it is not prescribed “when, where and how to analyze the log
and estimate access frequencies”. They suggest to do the analysis on a separate
machine. Stoica et al. took up this idea, as we have already seen in section 2.3.

However, it might not be necessary to log every single access. As an alter-
native, one could speed up the analysis computation by sampling. This could
for example be done by defining a fixed probability p. Each worker thread has
to perform a Bernoulli experiment every time it recognizes record access, to log
this access with probability p or not (with probability 1� p). This will result in
a sampling rate of p. Levandoski et al. derived from experiments that a sampling
rate of 10% still delivers good results being 2,5% less precise.



Finally, in order to compute the estimated access frequency extr(tn) of a
record r at time slice tn, Levandoski et al. made use of expoential smoothing as
depicted in equation 2, because in their experiments, this approach was more
accurate than the caching techniques LRU-2 and ARC and thus led to less
misplaced records and better performance of the system.

extr(tn) = ↵ · �tn + (1� ↵) · estr(tn�1) (2)

In order to understand, this equation, we first have to understand the notion of
“time slice” used by Levandoski et al. According to them, a time slice [tn, tn+1)
is defined as the interval between two record accesses, i.e., the record accesses de-
termine when a new time slice begins. In the equation above and in the following,
the time slice [tn, tn+1) is denoted by the starting timestamp tn for simplicity.
In the log, the record ids are stored in the order of access, time markers delimit
the time slices’ boundaries. �tn is the characteristic function of the event “r has
been accessed during tn”, ↵ is a parameter which weights how significant new
observations are towards old estimates, the higher it is, the more relevant are
recent accesses. Typically, ↵ is bounded by [0.01, 0.05] [7].

Forward algorithm The “Forward algorithm” is the simplest approach to
determine the K hottest records. It scans the log from a beginning time slice
t0 into forward direction and applies the exponential smoothing equation in a
slightly modified way:

estr(tn) = ↵+ estr(tprev) · (1� ↵)tn�tprev (3)

Instead of always considering the previous time slice for all record, overhead is
reduced by using only the time slice tprev when r was accessed last. Hence, the
estimated value of a record is only updated when this record is updated and the
characteristic function �tn becomes superfluous as it always evaluates to 1 in
this setting. The other summand of the equation is normalized by the exponent
tn � tprev.

In a last step, the estimations of the records are ranked and the K highest-
estimated records are classified as “hot”, all others as “cold”.

To improve the performance of this algorithm, parallelization is taken into
account. Levandoski et al. present two di↵erent approaches.

On the one hand, the log could be split into several partitions by a hash
function on the record ids. The estimation and the ranking are then done on all
partitions independently and, finally, the best K results of all these partitions
together are classified as “hot”.

On the other hand, the log could by partitioned based on the time slices. To
understand this idea, we examine the non-recursive version of the exponential
smoothing equation

estr(tn) = ↵

tnX

i=t0

�tn�1(1� ↵)i�1 + (1� ↵)tn (4)



We can see that, by partitioning the log such that each partition consists of
successive time slices, only one summand is dependent on a result of the previous
partition. The rest can be be computed by a dedicated worker thread on each
partition in the serial manner. These partial results must then be aggregated in
an additional step and the ranking step finishes the estimation.

Backward algorithm The “Forward Algorithm” has two major disadvantages:
“it requires a scan of the entire log and it requires storage proportional to the
number of unique record ids in the acces log” [7]. To overcome these, Levandoski
et al. developed a backward algorithm that scans the log in reverse order and
updates a record’s backward estimation estbr at each time slice tn where it is
accessed. Once more, the exponential smoothing equation has to be adapted.

estbr(tn) = ↵(1� ↵)te�tn + estbr(tlast) (5)

estbr(tlast) denotes the previous estimation at time tlast when an access of r was
recognized in the log last before tn, so tlast > tn. te designates the last time slice
in the log, where the analysis is started.

Furthermore, two estimates have to be maintained which are shown by the
equations 6 and 7.

upEstr(tn) = estbr(tn) + (1� ↵)te�tn+1 (6)

loEstr(tn) = estbr(tn) + (1� ↵)te�t0+1 (7)

Equation 6 adds the current estimation of record r to the value the forward
estimation would have, if r was accessed in all time slices, i.e., the time slices,
that have not been evaluated by the backward algorithm so far. What we get, is
the highest, still possible access frequency that record r can have.

Analogously, equation (7) computes the lowest access frequency estimation
value, that record r can still have at time slice tn, assuming that is not contained
in the log any more.

So why are these estimates necessary? If the upper bound of a record ri is
lower than the lower bounds of min. K other records, the log entries of ri can be
skipped. Furthermore, if only K records remain, the algorithm can stop without
having analyzed the whole log and knowing the exact estimation values.

Still, the algorithm can be accelerated by means of parallelism. In this case,
partitioning by time slices would not make sence, as one main goal of the “Back-
ward Algorithm” is not to scan the whole log. Therefore, Levandoski et al. sug-
gest to partition the log by means of a hash function by record id. Several worker
threads perform the backward algorithm on the di↵erent partitions. One dedi-
cated controller thread then manages the execution, requesting the upper and
lower bounds and telling the workers which record ids to skip and when to stop
processing the log.



3.2 The data reorganization technique by Stoica et al. [8]

The data reorganization technique consists of five separate steps shown by figure
1. Its main goal is to prevent that hot records are paged out to the secondary
storage by the operating system.
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Figure 1: VoltDB throughput when paging to a SSD

re-organization is performed incrementally and only when
required by the workload.

We implement the data re-organization proposal in a state-
of-art, open source main-memory database, VoltDB [4]. Our
experimental results show that a TPC-C database can grow
50� larger than the available DRAM memory without a
noticeable impact on performance or latency, and present
micro-benchmark results that indicate that a system can de-
liver reasonable performance even in cases where the work-
ing set does not fully fit in memory and secondary storage
data is frequently accessed.

In this paper we make the following contributions:

1. We profile the performance of a state-of-art main-memory
DBMS and identify its ine�ciencies in moving data to sec-
ondary storage.

2. We propose an unintrusive data re-organization strat-
egy that separates hot from cold data with minimal over-
head and allows the OS to e�ciently page data to a fast
solid-state storage device.

3. We implement the data re-organization technique in a
state-of-art database and show that it can support a TPC-
C dataset that grows 50� bigger than the available physical
memory without a significant impact on throughput or la-
tency.

The remaining of this document is organized as follows.
Section 2 details the motivation for our work; Section 3 de-
scribes the architecture of the data re-organization proposal,
which is validated experimentally in Section 4; Section 5 sur-
veys the related work and, finally, Section 6 concludes.

2. MOTIVATION
Our work is motivated by several considerations: i) by

hardware trends that make storing data on solid-state stor-
age attractive; ii) by the workload characteristics of OLTP
databases; and iii) by the ine�ciencies of existing systems,
either traditional disk-based databases or newer main-memory
optimized DBMS.

2.1 Hardware trends
It is significantly cheaper to store cold data on secondary

storage rather than in DRAM. In previous work [17] we
computed an updated version of the 5-minute rule [10] and
found that it is more economically to store a 200B tuple on a
SSD if it is accessed less than approximately once every 100
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minutes. In addition to the price, the maximum memory
capacity of a server or the memory density can both pose
challenges. Today, a high-end workstation can fits at most
4TB of main memory, servers can handle around 256GB of
DRAM per CPU socket, while a 1U rack slot hosts less than
512GB of DRAM.

2.2 Skewed Accesses in OLTP workloads
Real-life transactional workloads typically exhibit consid-

erable access skew. For example, package tracking workloads
for companies such as UPS or FedEx exhibit time-correlated
skew. Records for a new package are frequently updated un-
til delivery, then used for analysis for some time, and after
are accessed only on rare occasions. Another example is
the natural skew found on large e-commerce sites such as
Amazon, where some items are much more popular than
others are or where some users are much more active than
the average. Such skewed accesses may change over time
but typically not very rapidly (the access skews might shift
over days rather than seconds).

2.3 Existing DBMS Architectures

2.3.1 Disk-based DBMS.
One possible option is to use a disk-based database archi-

tecture that optimizes for the case data is on secondary stor-
age. Traditional DBMS pack data in fixed-size pages, use
logical pointers (e.g. page IDs and record o�sets) that al-
lows the bu�er pool abstraction to move data between mem-
ory and storage transparently, and have specialized page re-
placement algorithms to maximize hit rates and reduce I/O
latency.

However, given current memory sizes and the lower la-
tency of SSDs compared to HDDs, such optimizations might
not be desirable. Stonebraker et al. [20] introduced a main-
memory database that is two orders of magnitude faster than
a general purpose disk-based DBMS, while Harizopoulos et
al. [12] showed that for transactional workloads the bu�er
pool introduces a significant amount of CPU overhead: more
than 30% of execution time is wasted due to extra indirec-
tion layer. This overhead does not even include latching
bu�er pool pages at every tuple access, or the overhead of
maintaining page-level statistics to implement the page re-
placement algorithm.

Fig. 1. System Architecture [8]

1st step: Sample accesses In order to be able to perform the analysis, tuple
accesses have to be sampled. As the system is based on VoltDB, where each
worker thread is responsible for its own partition, Stoica et al. decided that
every worker thread should have its own log structure – in their implementation
a circular bu↵er. Like Levandoski et al. they decided to split time into discrete
slices, here called time quanta. Each time quantum is indicated by a time stamp.

An access log entry consists of a time stamp and some information about the
accessed record, i.e., the id of the data structure that contains this record, the
key of it, given by the primary key or indexing key and a so called “FileO↵set”.
Instead of a primary key, also a direct tuple id can be used, if this is supported by
the database system. This o↵set field contains the memory o↵set from the record
to the beginning of the respective data structure. It is needed to determine if
the record’s position matches it’s assignment to be part of the hot or the cold
region.

Stoica et al. confirmed the 10% sampling rate suggested by [7] by their own
experiments. Nevertheless, they made some slight modification: the sampling
rate can be reduced, if too many log entries have to be written and the worker
thread is at risk to be braked by a full log.

2nd step: Write access logs One dedicated thread is responsible for writing
the access logs obtained from the 1st step either to a file or to the network. In



section 2.3, we have already mentioned that the processing of the access log is
done by a separate component, which is independent from the database engine
and performs the analysis o✏ine, as suggested by Levandoski et al. In brief, this
writer thread passes the log data to the external component in a manner that
the transactions executed on the database are not disturbed by additional I/O
overhead.

3rd step: Process access logs Stoica et al. suggest that the analysis should
be done on an external server in order to avoid that the computations might
reduce the query execution performance.

This step uses the exponential smoothing algorithm that we have already
discussed in the previous section, more precisely the parallel backward algorithm
is used, as Stoica et al. considered it to be more accurate than other caching
algorithms and because it is more e�cient for the reasons already mentioned in
section 3.1.

Having the estimations of the access frequencies, a normalization with re-
spect to the average tuple size of each object is done. This way, the so called
“access density” is maximized. Subsequently, the hot tuples of each object can
be distinguished and the memory budget for each object can be computed as
the product of the number of hot tuples and the average tuple size.

A misplaced tuple is then determined by comparing its memory o↵set to the
memory budget of the object, the tuple is contained in, since the memory is
allocated adjacently for relational objects.

The output of this step is a list containing the memory budget of each data
structure, i.e., tables and indexes, and for each object a list of hot misplaced
tuples (tuples that are not stored in memory though their access frequency
estimation is high enough) and respectively a list of cold misplaced tuples list.

4th step: Read optimal tuple placement The goal of this step is to prepare
the re-organization step by first reading and setting the target memory budget
of all objects. Afterwards, the lists of misplaced records are analyzed and passed
to the next step object by object.

5th step: Re-organization Figure 2 depicts how the data structures are allo-
cated in the virtual address space.

The head of a data structure is always part of the hot region and therefore
always stays in memory. The operating system controls then the remaining part
of this data structure according to its native paging policy.

Each data structure has a memory allocator that maintains a so called hot
free-space list and a cold free-space list. If a tuple is inserted, it can either be
placed inside the hot or inside the cold region. On a tuple deletion, a comparison
of the tuples o↵set with the hot/cold threshold determines, whether the tuple
was part of the hot or the cold region and the memory budget of this tuple as
well as its location is added to the respective free-space list.
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4 Read optimal tuple placement. A dedicated thread
reads the output of the processing step. It first reads and
sets the target memory budget for each object, then incre-
mentally reads the lists of misplaced tuples for each object
as needed by the tuple re-organization.

5 Re-organization. Each data-structure is allocated
memory sequentially in the virtual address space of the database
process using the facilities of the OS. The memory layout of
a data-structure is presented in Figure 3(a). The beginning
portion of the data file is logically considered “hot” and is
pinned in memory. The rest of the file is left to contend for
system RAM and uses the default OS paging policy. The
OS is left to manage at least 10% of available memory to
insure there is enough memory for other processes.

The tuple re-organization is performed without changing
the pointer structure or record formant of the relational ob-
jects – we change only how memory is allocated as depicted
in Figure 3(b). The memory allocator of each data-structure
has two free-space lists, one for the hot memory region, and
the other for the cold memory region. When inserting, the
data-structure can request either hot or cold memory; when
deleting, memory is reclaimed by comparing the memory o�-
set with the hot/cold threshold and appending the memory
region to the corresponding free space list. A tuple move-
ment can be logically thought of as a delete operation of the
misplaced tuple followed by its re-insertion in the appropri-
ate memory region.

Overall, the key insights of our technique are as follows: i)
we decouple, to the extent possible, all data re-organization
operations (logging, analysis, re-organization) from the crit-
ical path of query execution, ii) we optimize data locality
such that hot tuples are stored compactly in a contiguous
memory region, and iii) we restrict OS paging decisions by
preventing code memory sections and the hot data regions
of relational objects from being paged out.

4. EVALUATION
In this section, we evaluate experimentally how e�ective

is the data re-organization technique in reducing OS pag-
ing overhead. We first demonstrate the end-to-end perfor-
mance of a main-memory DBMS when running a TPC-C
benchmark where the majority of the database resides on
an SSD. We show that the data re-organization strategy and
paging-related I/O have little impact on the overall system
throughput or latency even when the database size outgrows
the RAM size by a factor of more than 50�. As a TPC-C
database has a predictable working set and data growth, we
then explore the impact of a full workload change on the
overall system performance through a micro-benchmark.

4.1 Experimental Setup
DBMS. We use the open-source commercial VoltDB [4]

DBMS (version 2.7) running on Linux to implement the data
re-organization technique. VoltDB uses data partitioning to
handle concurrency and insure scaling with the number of
cores. Each worker thread has its own set of data structures
(both tables and indexes) that it can access independently
of the other worker threads. Thus, each logical table is com-
posed of several physical tables, each worker thread being
assigned one such physical table. In all experiments, the
database is partitioned to match the number of available
cores.

Memory management. The core VoltDB functional-
ity is implemented in C++, while the front-end (network
connectivity, serialization of results, query plan generation,
DBMS API) are implemented in Java. The memory over-
head of the front-end is independent of the database size
and we found it crucial to keep memory resident the front-
end related objects and code. We pin in memory all code
mappings, front-end data structures, and Java heap and al-
low only the large relational data-structures (tables, hash
and binary tree indexes) to be paged out to the SSD. We
track which address ranges correspond to code sections or to
other data-structures by examining the /proc process infor-
mation pseudo-file system. For relational objects, we allo-
cate memory sequentially in the virtual address space of the
database process by using the mmap()-related system calls
and pin/unpin pages in memory using the mlock()/munlock()
system calls.

We note that the VoltDB core engine already optimizes
memory allocation. VoltDB allocates memory in large con-
tiguous chunks for each object in order to reduce malloc()
call overhead and reduce memory fragmentation. Each re-
lational data-structure has its own memory allocation pool
and memory chunks never contain data from more than one
table or index, which insures that virtual memory pages con-
tain data of the same type. Therefore, the performance ben-
efits of the data re-organization stem only from taking into
account access frequency rather than from other memory
management optimizations.

Query execution. Transactions run as stored proce-
dures (no query optimization is performed at runtime), with
query execution and result externalization being handled by
separate threads. The benchmark client, responsible for sub-
mitting transactions, is placed on a di�erent machine on the
same 10Gb local network. For throughput results, we make
sure the server is fully loaded by maintaining su�cient in-
flight transactions and measure throughput every second in
all experiments. The network bandwidth is never saturated
and the network latency does not a�ect any throughput re-

Fig. 2. The memory allocation strategy [8]

From a logical point of view, moving a tuple inside this data structure is a
deletion from the wrong region followed by a re-insert operation into the right
region by help of the free-space lists.

Figure 3 illustrates that the pointer structures of the logical index structures
are not altered, the only thing that changes is the placement of their entries
inside the memory.
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4 Read optimal tuple placement. A dedicated thread
reads the output of the processing step. It first reads and
sets the target memory budget for each object, then incre-
mentally reads the lists of misplaced tuples for each object
as needed by the tuple re-organization.

5 Re-organization. Each data-structure is allocated
memory sequentially in the virtual address space of the database
process using the facilities of the OS. The memory layout of
a data-structure is presented in Figure 3(a). The beginning
portion of the data file is logically considered “hot” and is
pinned in memory. The rest of the file is left to contend for
system RAM and uses the default OS paging policy. The
OS is left to manage at least 10% of available memory to
insure there is enough memory for other processes.

The tuple re-organization is performed without changing
the pointer structure or record formant of the relational ob-
jects – we change only how memory is allocated as depicted
in Figure 3(b). The memory allocator of each data-structure
has two free-space lists, one for the hot memory region, and
the other for the cold memory region. When inserting, the
data-structure can request either hot or cold memory; when
deleting, memory is reclaimed by comparing the memory o�-
set with the hot/cold threshold and appending the memory
region to the corresponding free space list. A tuple move-
ment can be logically thought of as a delete operation of the
misplaced tuple followed by its re-insertion in the appropri-
ate memory region.

Overall, the key insights of our technique are as follows: i)
we decouple, to the extent possible, all data re-organization
operations (logging, analysis, re-organization) from the crit-
ical path of query execution, ii) we optimize data locality
such that hot tuples are stored compactly in a contiguous
memory region, and iii) we restrict OS paging decisions by
preventing code memory sections and the hot data regions
of relational objects from being paged out.

4. EVALUATION
In this section, we evaluate experimentally how e�ective

is the data re-organization technique in reducing OS pag-
ing overhead. We first demonstrate the end-to-end perfor-
mance of a main-memory DBMS when running a TPC-C
benchmark where the majority of the database resides on
an SSD. We show that the data re-organization strategy and
paging-related I/O have little impact on the overall system
throughput or latency even when the database size outgrows
the RAM size by a factor of more than 50�. As a TPC-C
database has a predictable working set and data growth, we
then explore the impact of a full workload change on the
overall system performance through a micro-benchmark.

4.1 Experimental Setup
DBMS. We use the open-source commercial VoltDB [4]

DBMS (version 2.7) running on Linux to implement the data
re-organization technique. VoltDB uses data partitioning to
handle concurrency and insure scaling with the number of
cores. Each worker thread has its own set of data structures
(both tables and indexes) that it can access independently
of the other worker threads. Thus, each logical table is com-
posed of several physical tables, each worker thread being
assigned one such physical table. In all experiments, the
database is partitioned to match the number of available
cores.

Memory management. The core VoltDB functional-
ity is implemented in C++, while the front-end (network
connectivity, serialization of results, query plan generation,
DBMS API) are implemented in Java. The memory over-
head of the front-end is independent of the database size
and we found it crucial to keep memory resident the front-
end related objects and code. We pin in memory all code
mappings, front-end data structures, and Java heap and al-
low only the large relational data-structures (tables, hash
and binary tree indexes) to be paged out to the SSD. We
track which address ranges correspond to code sections or to
other data-structures by examining the /proc process infor-
mation pseudo-file system. For relational objects, we allo-
cate memory sequentially in the virtual address space of the
database process by using the mmap()-related system calls
and pin/unpin pages in memory using the mlock()/munlock()
system calls.

We note that the VoltDB core engine already optimizes
memory allocation. VoltDB allocates memory in large con-
tiguous chunks for each object in order to reduce malloc()
call overhead and reduce memory fragmentation. Each re-
lational data-structure has its own memory allocation pool
and memory chunks never contain data from more than one
table or index, which insures that virtual memory pages con-
tain data of the same type. Therefore, the performance ben-
efits of the data re-organization stem only from taking into
account access frequency rather than from other memory
management optimizations.

Query execution. Transactions run as stored proce-
dures (no query optimization is performed at runtime), with
query execution and result externalization being handled by
separate threads. The benchmark client, responsible for sub-
mitting transactions, is placed on a di�erent machine on the
same 10Gb local network. For throughput results, we make
sure the server is fully loaded by maintaining su�cient in-
flight transactions and measure throughput every second in
all experiments. The network bandwidth is never saturated
and the network latency does not a�ect any throughput re-

Fig. 3. Data re-organization for binary trees and hash indexes [8]



4 Evaluation

The new system architecture proposed by Stoica et al. has been tested against
the TPC-C benchmark and a micro-benchmark they developed on their own.

4.1 The experiment’s configuration

The DBMS used by Stoica et al. together with its extensions has already been
considered in section 2.

In the implementation, all transactions are executed as stored procedures
and, hence, queries are not optimized while running. There are di↵erent dedi-
cated threads for query execution and for externalizing the results.

The system was run on a 4 socket Quad-Core AMD Opteron with 16 cores
having a physical DRAM of 64GB. As secondary storage, a 160GB FusionIO
PCIe SSD was used. According to [8], it can handle up to 65,000 4kB random
read IOPS and 20,000 to 75,000 4kB random write IOPS.

Benchmark client and database are located within one 10Gb local network,
but run on di↵erent machines. Stoica et al. assured that this did not a↵ect the
measurement results.

4.2 The TPC-C benchmark

The TPC-C benchmark [2] has been designed to measure the performance of
OLTP systems. As application example, it simulates an order-entry environment
of a company. Figure 4 gives an overview of what the TPC-C database scheme
looks like.

The benchmark itself consists of 5 di↵erent transaction types, which can be
executed in parallel on the database, for example the “New-Order Transaction”:
Each of these transactions inserts a complete new order with 5 to 15 items into
the database. Each of these items has to be checked for disposability in the Stock -
table. The other four transactions types are “Payment Transactions” (entering
payments of a customer, thereby updating the statistics in the District- and
theWarehouse-table), “Order-Status Transactions” (read-only transactions that
check a particular customer’s order status) , “Delivery Transactions” (process ten
orders from the New-Order relation in batch mode, and delete them afterwards)
and “Stock-Level Transactions” (read-only transactions that supervise the stock
of recently ordered products) [6].

The TPC-C benchmark uses then the two following metrics.

1. The Performance: This metric is measured by the so called “Maximum Qual-
ified Throughput” (MQTh) which is given by the throughput of new-order -
transactions per minute.

2. The Price/performance: Here the overall cost for the system within three
years (i.e., initial price, maintanance, energy consumption) is divided by the
performance.
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Fig. 4. Entity-relationship-diagram of the TPC-C benchmark based on [6]

Stoica et al. used the TPC-C benchmark to measure throughput and latency
of their extended VoltDB. As the number of cores is 16, the scaling factor is set
to the same value. In this setting, the database can be divided into one partition
for each warehouse, each partition having one worker thread that handles all
transactions that access this warehouse. However, Stoica et al. decided to modify
the benchmark a little bit: the deletion of the “Delivery Transactions” is omitted,
since they intended to have as much growing tables as possible.

Throughput The throughput is measured in three di↵erent settings:

1. In-memory: The native VoltDB is run using the whole RAM (64GB, thereof
⇠62GB usable)

2. Default Paging: Still the unmodified version of VoltDB is used, but the RAM
is reduced to a size of 5GB (⇠3GB usable), so in case the database size
exceeds the RAM’s capacity, data is paged out to the SSD.



3. Data reorganization: The memory configuration is the same as in the second
setting, but now the modified version of VoltDB is used.

Fig. 5. TPC-C throughput [8]

Figure 5 illustrates, that in the third setting only ca.7% of the throughput is
lost compared to the first setting. Furthermore, the throughput remains stable
even when the database size grows to 160GB which is more than 50 times the size
of the available RAM. In contrast, at a database size of 160GB the throughput
in the reference setting (2) falls down to less than half the throughput of the
modified VoltDB.

Latency Figure 6 shows the result of the latency measurements, that have been
determined in a similar environment as the throughput measurements. However,
the throughput has been decreased to 50% of the maximal throughput in order
to avoid that waiting times falsify the results, since the only thing that shall be
measured is the overhead of the paging process.

Stoica et al. measured the latencies both at the client side and the server side
and calculated the average latency and the standard deviation for each of the 5
transactions.

More precisely, the “server latency” measures the time elapsed when a trans-
action is started directly on the database server until it is completed. In contrast,
the “client latency” indicates the latency in a client-server scenario, where the
transaction is initialized at the client, i.e., the time span between begin until its
end as percieved by the client is measured.

The results show that paging increases the average latency by up to ⇠101µs,
the standard deviation by ⇠60µs in average. But from the client side, the in-
creasing latencies are relatively small compared to the network latencies and
the additional I/O overhead and the server side transaction manangement. So
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Figure 4: TPC-C throughput.

Trx.Name
Server latency(µs) Client latency(µs)
No Paging Paging No Paging Paging
avg � avg � avg � avg �

NewOrder 283 135 318 182 3270 5430 3301 5509
OrderStatus 82 26 126 58 2950 5486 2990 5499
Payment 149 52 183 107 3027 5458 3094 5492
Delivery 314 152 347 214 3317 5331 3358 5513
StockLevel 797 243 898 348 3531 5372 3611 5570

avg = average, � = standard deviation

Table 1: TPC-C transaction latency

sults due to the batch-style processing architecture.
Hardware. In all our experiments we use a 4 socket

Quad-Core AMD Opteron (16 cores in total) equipped with
64GB of physical DRAM (the amount of memory visible to
the OS varies according to each experiment). The paging de-
vice is a single 160GB FusionIO PCIe SSD that can support,
according to our measurements, up to 65,000 4kB random
read IOPS and between 20,000 (long term throughput) and
75,000 (peak throughput) 4kB random write IOPS.

4.2 TPC-C Results
We use the TPC-C benchmark [3] to validate the overall

e�ciency of the data re-organization strategy. The scaling
factor is set to 16 to match the number of cores and the
database is partitioned on the warehouse ID (standard TPC-
C partitioning), where each worker thread is responsible for
executing all transactions related to its given warehouse. To
maximize the number of growing tables and the database
growing speed, we disable for the Delivery transaction the
deletions of fulfilled orders from the NewOrder table.

4.2.1 Throughput
We measure the TPC-C transaction execution throughput

in three scenarios. In the first case, we run the unmodified
VoltDB database with all of the 64GB of RAM available
to the OS (�62GB were useful for actual data storage). In
the second scenario, we run TPC-C on the same unmodified
engine but restrict the amount of physical memory to 5GB
(�3GB useful memory) and turn on swapping to the SSD.
In the third case, we run VoltDB modified with our data re-
organization technique and maintain the same memory con-
figuration (�3GB of useful memory); the memory mapped
data files are backed directly by the SSD without an in-
between file-system.

As shown in Figure 4, the hot/cold data separation stabi-
lizes throughput within 7% of the in-memory performance,
although the actual data stored grows 50� larger than the
amount of RAM available. On the other hand, the through-
put of the unmodified engine drops by 66% when swapping
to the SSD.

4.2.2 Latency
Paging potentially introduces I/O operations in the criti-

cal path of a transaction and a relevant question is how SSD
I/O changes transaction latency. We repeat the same TPC-
C experiments, only this time we throttle the maximum

number of transaction at 50% of the maximum through-
put (to prevent transaction latency from including queuing
times).

We show in Table 1 the transaction latency as measured
from both the server- and client- side and compute for each
transaction its standard deviation. As shown, paging in-
creases the average transaction latency by �50µs and its
standard deviation by �100µs. However, the variability in-
crease is small relative to the total transaction execution
time and becomes insignificant from the client perspective.
The transaction latency, as experienced by the client, is
dominated not by the actual transaction execution but rather
by the software overhead of submitting a transaction to the
server, by the overhead of the network I/O, and finally by
transaction management on the server side. To put the val-
ues into perspective, the advertised I/O latency for the Fu-
sion ioDrive SSD is 25µs and the network latency (round-
trip wire latency plus switching) is �30µs.

4.3 Response to workload changes
The TPC-C working set size is fixed (the size of the hot

data does not change over time) and only 4 tables out of 9
are growing. In addition, accesses show a predictable time
correlation: the newest tuples in the growing tables are also
the hottest. We expect that in most workloads such a time
correlation exits, nonetheless we want to understand the sta-
bility of the system if the working set shifts in unpredictable
ways or if the working set does not fully fit in RAM.

To answer these questions, we develop a micro-benchmark
with a dual purpose: to measure performance for the case
where the working set does not fully fit in memory, and to
test how fast the system reacts to workload changes. We
generate a database composed of 108 200B tuples indexed
by a 4B integer primary key. The total memory footprint of
the VoltDB DBMS (the table, index, plus VoltDB memory
overhead) is 26.2GB. The database size is constant and the
available memory is to 5GB (physical memory is �20% of
the total database size). We execute a single query that
retrieves single tuples of the form:

SELECT * FROM R WHERE PK = <ID> ;

The ID values for the select query are generated according
to a Zipfian distribution with skew factor 1 (80% of accesses
target 20% of data). To measure how fast the system adapts
to a workload change, we randomize the set of hot tuples

Fig. 6. TPC-C transaction latency [8]

paging does not add more than 2.27% (in case of the “Stock-Level Transaction”)
to the average latency under the bottom line.

4.3 The mircro-benchmark and its results

The TPC-C benchmark does not really focus on the workloads, where there are
hot and cold records that evolve over time. For that reason, Stoica et al. decided
to initiate their own simple benchmark. They generated a database of size 26.2
GB that consists of 108 200B tuples, which are identified by 4B integer primary
keys. Then a simple select query is executed, and, given a primary key, returns
the corresponding tuple including all its values. The distribution of the selected
primary keys follows a Zipfian distribution which means that the probability p
of the selection of a tuple is inversely proportional to the position of its key in
the list of all primary keys ordered by their number of occurences. The scaling
is implemented such that 80% of the selected primary keys access 20% of the
data.

As Stoica et al. try to measure the adaptivity of their system, they do a
workload shift, that means, at a given point of time, they select at random a
new set of hot tuples and measure how this a↵ects the throughput.

The evaluation then takes place in the same three settings as the TPC-C
benchmark, but in the second and the third setting, the database size is five
times larger than the memory size, which is increased such that 5GB are usable.

Figure 7 shows how the three di↵erent systems react to such a workload
change. The native VoltDB that holds all data in memory still performs best
and is not a↵ected, its throughput remains constant. In contrast, the VoltDB
of the second setting su↵ers from the high paging operation and “is unable to
execute any queries” [8].

The behavior of the modified VoltDB can be divided into five phases. In the
initial phase 1 , all data structures are adapted to the current set of hot tuples
and ca. 65,000 queries/sec can be executed. When the workload change happens,
the throughput falls down by 94% to about 4,500 queries/sec because most of
the new hot tuples are stored on SSD (phase 2 ). In phase 3 , the OS paging



Fig. 7. Throughput for a shifting Zipfian working set[8]

starts bu↵ering the most hot pages from SSD in memory. As a consequence, the
throughput increases to ⇠25,000 queries/sec and remains on this level (phase 4 )
until, after preconfigured 60 seconds, the data reorganization process starts.
Within about one minute, the throughput becomes stable again at the initial
throughput level of 65,000 queries/second (phase 5 ).



5 Conclusion

In the previous sections, we have discussed a technique for OLTP databases
that make use of the virtual paging mechanism for the purpose of storing cold
records on secondary storage. Its key aspects are that the reorganization process
is separated as much as possible from the query execution process, that hot
tuples are stored densely and in adjacent sections of the memory and finally,
that designated, important memory regions and also hot memory regions are
not paged out to secondary storage [8].

On the one side, an advantage of Stoica et al.’s approach is that it is portable
since it does neither modify the physical data structures nor the database en-
gine’s concurrency mechanism [8]. Aside from that, the benchmark results (sec-
tion 4) show that, in a given OLTP scenario, the standard paging mechanism
is outperformed as soon as the database size exceeds the memory’s capacity. In
case of the TPC-C benchmark, the database could even grow to a size of about
a factor of fifty of the memory size without any loss of performance, which is
quite remarkable.

On the other side, one might criticize that this approach is too OLTP cen-
tered – if the records cannot be divided into hot and cold, e.g., if the access
frequencies are uniformly distributed, the technique will not work anymore. In-
stead, the reorganization technique would increase the number of I/O operations
in addition to the already performed ones due to the OS paging mechanism per-
formed ones. Furthermore, the backward algorithm would have to scan the whole
log, since the variance of the access frequencies is much more limited.

Page faults in general are a problem of Stoica et al.’s approach. As in most in-
memory database engines, data access is serialized, a page fault delays all other
transactions in the queue. In VoltDB, the di↵erent partitions help to reduce this
problem, nevertheless, in the worst case, a transaction that accesses tuples on
all partitions, still stalls all other transactions, when it faces a page fault.

Another major drawback is the use of access frequencies in order to determine
which tuples are hot and which are not. Let us consider the following scenario:
in a binary search tree, one leaf is requested very frequently, whereas all the
other nodes are not. To find this node, all nodes from the root to this leaf are
accessed and are thus approximately as frequently accessed as the leaf itself. As
a consequence, the system considers the pages of the whole access path to be
“hot”, too, and the whole path is stored in memory, though only one tuple is
hot.

For the purpose of evaluating how e�cient Stoica et al.’s implementation is,
some measurements of the energy consumption in order to compare the three
settings (in-memory, default OS paging, data reorganization) would have been
interesting, since this factor has been one of the reasons in favor of the use of
secondary storage.

Moreover, all the measurements have only been performed on a system based
on SSDs. Though it is likely, that the same technique could also be applied
on a system using HDDs as secondary storage, where the perfomance gains
compared to native virtual paging would probably be even higher, some reliable



experiments and a comparison between these two storage devices would have
brought more insights, e.g., if it is more advisable to use HDD or SSD when the
database size is in a range of terabytes or petabytes.

So to sum up, the idea of using the data reorganization technique proposed
in [8] can enhance the performance and the capacity of in-memory databases to
a large extent, under the premise, that the workload equals to the one assumed
in [8] and [7].



6 Prospects

As already mentioned in the conclusion, Stoica et al.’s approach concentrates
only on OLTP workloads, where hot and cold records can be separated. But what
about OLAP (online analytical processing) workloads? In contrast to OLTP
workloads, they are characterized by complex queries such as aggregations and
joins in order to analyze large amounts of data. In consequence, a separation
into hot and cold data cannot be done so easily.

One possible solution would be to store only the query results in memory and
move tuples, that have been processed by all OLAP transactions, to secondary
storage. The results can then be updated incrementally. However, this approach
is hardly feasible by use of the virtual memory paging mechanism and it can only
be applied, if the OLAP queries are static and known, since loading the records
from secondary storage into memory would impact the system’s performance to
a large extent.

Briefly, a good solution to apply the idea of secondary storage to OLAP
workloads has not been found yet, thus, more research has to be done in this
domain.

In [3], another problem of Stoica et al.’s approach is adressed: page faults.
In this paper, DeBrabant et al. developed a system that integrated a so called

“Anti-Cache” into the main-memory database H-Store [9]. Like Stoica et al. the
database system runs in memory and cold tuples are migrated to secondary
storage, but in contrast to [8] without the use of virtual memory paging.

To achieve a replacement strategy at record level, each partition of the
database is assigned a so called “anti-cache storage manager”. Its task is to
maintain a “Block Table”, an “Evicted Table” and an “LRU Chain” of records
for each relation.

The “Block Table” contains the serialized tuples that have been removed
from memory. All blocks have the same size and are identified by a 4-byte key.
Furthermore, the name of the relation that contains the tuples and the creation
time are stored in the block. The metadata is stored in memory, the serialized
tuples with their size as prefix on disk.

The “Evicted Table” contains block id and tuple id of evicted tuples. The
tuple id is computed by its o↵set inside the block it is stored in. So as soon as
a tuple is ejected from memory to disk, the system creates dynamically a new
block which contains this tuple and appends it to the “Block Table”. The new
block id, as well as the tuple’s o↵set are then also added to the “Evicted Table”.

In contrast to [8] and [7], De Brabant et al. do not make use of an external
component in order to determine hot and cold tuples – H-Store keeps an “LRU
Chain” for each table, i.e., a tuple that has been accessed, is removed from the
chain and added at its tail. So whenever eviction has to be performed, the first
tuples of the LRU chain will be moved to disk first. For performance reasons,
the tuple accesses are sampled and such an “LRU Chain” is only maintained,
if the table is marked as “evictable”. In this way, tuples of relations that are
known to be entirely hot, are never transferred to disk.



A transaction is then executed as follows: First the selected keys are exam-
ined. If all selected records are in memory, the transaction is executed imme-
diately. Otherwise, it is aborted and enters a so-called “pre-pass phase” during
which the required evicted tuples are determined by the system and all write op-
erations, that have been performed, are rolled back. The transaction is restarted
as soon as all evicted records are reloaded into memory. The advantage of this
approach is that the following transactions do not have to wait. Thus, a higher
throughput can be achieved. The disadvantage is that, for a table scan, the whole
database has to be loaded into memory, which is not always possible.
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