]
I m  TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Foster B-Trees

Lucas Lersch

M. Sc. Caetano Sauer
Advisor

14.07.2014



Motivation

]
I m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Foster B-Trees

A

{

B'i"k_Trees:

multicore
concurrency

Write-Optimized B-Trees:
flash memory
large-writes
wear leveling
defragmentation

Fence Keys:
e verification




]
A enda I m  TecHNISCHE UNIVERSITAT
m KAISERSLAUTERN

1. Background

2. B'""k-Trees

3. Write-Optimized B-Trees

4. Verification and Fence Keys
5. Foster B-Trees

6. Performance Evaluation



atches and'Rocks I = sl

Locks

e acquired by transactions

Latches

e acquired by threads

e protect in-memory physical e protect database logical contents

structures
e during critical sections . e during entire transaction
e embedded in the data struct £ e lock manager (hash table)
(semaphore)

e deadlock detection and
resolution

e deadlock avoidance

%e shared and exclusive mogies e shared, exclusive, update,

intention, etc...

o _ ple and efficien e complex and expensive

.\_—‘_ o



||
B-trees I m  TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN




] [ |
Retrieval [ = sosevuen

7 y))

RETRIEVE 12

3%

)

LC

w))




] [ |
Insertion [ = sosevuen

7 y))

INSERT 17

3%

)

LC

¥4 o)

174
9¢
8¢
@
GG




Insertion (node split)

]
I m  TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

INSERT 30

¢l

ol

3%

x))

¢l

Ll

¥4

€C
9¢

<)
_
I\)OO‘
NN
L
+Q L)
X X
N||w] o c,oan
of|S]||> N| &




Insertion (worst case) [ = st
~

INSERT 88 {
/

~
X

N\

GG

/8
88
16
06
16
%)




Deletion [ = s

e Merge underflowing nodes:
o Reduce number of internal nodes
o But complex and expensive
o Database tend to increase rather than decrease

e Allow nodes to be completely emptied
e Operations must handle empty nodes
e Asynchronous utility for clean-up

10



]
A enda I m  TecHNISCHE UNIVERSITAT
m KAISERSLAUTERN

1. Background

2. B""K-Trees

3. Write-Optimized B-Trees

4. Verification and Fence Keys
5. Foster B-Trees

6. Performance Evaluation



B!'"k_trees

/

]
m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

3%

¢l

Ll

¥4

LC

€C
9¢

8¢

ce

GG

12



Bllnk_trees I :TECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

e Many-core processors
e Higher concurrency

e Avoid latch contention:

o reduce number of latches

o reduce granularity of critical sections
e “Link pointer”

o additional method to reach any node

13



B!'"k_trees Insertion | e

~
INSERT 13 S
STEP #1 E
S
~| 18] | S
| 1
| ﬂ 1
X
=[] 3 SIEIE || SAIHIE

—
Ll
X4
%D




B'i"k_trees Retrieval

/

]
m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

RETRIEVE 21

3%

w))

Ll

¥4

LC

%
oc

8¢
G
1°1°]

15



B!'"k_trees Insertion | e

INSERT 13
STEP #2 &
~|[3 3
1
SINIE 3 5 3% SIS




]
A enda I m  TecHNISCHE UNIVERSITAT
m KAISERSLAUTERN

1. Background

2. B'"_Trees

3. Write-Optimized B-Trees
4. Verification and Fence Keys
5. Foster B-Trees

6. Performance Evaluation



Write-optimized B-trees [ = et

e 20~15 years ago: “90% reads, 10% writes”

e Today:

o memory size grows: increased fraction of writes
o “33% writes”

e Increase performance of writes!

18



Write-optimized B-trees [ = et

° CIaSS|CaI F|Ie SyStemS Clean page: U

Dirty page: l

Buffer:

]

|
|

Disk:




Write-optimized B-trees [ = et

« Log-Structured File Systems Cloan page: U

Dirty page: l

Buffer:

Large-write block: [.]

MAPPING LAYER

-

¥

Disk:

QITVANI 7 3
QITVANI /

AINVvANI
AINVANI

20



Write-optimized B-trees [ = et

e Log-Structured File Systems:

o Advantages:
m large-write operation
m reduced number of seek operations
m as large as entire erase blocks of a SSD
m wear leveling

o Disadvantages:
m mapping layer
m old copies

e space reclamation
e defragmentation

write performance to the detriment of scan performance

|
NOT DESIRABLE IN MOST DATABASE SYSTEMS!

21



Write-optimized B-trees [ = et

0 =P Ee=aR =Rt O=HI OIS =Dty

e |arge-write operation into B-tree indexes
o mapping overnead == B-tree operations
o update in-place (read optimized)

OR
large-write (write optimized)

22



Write-optimized B-trees [ = et

« Classical File Systems:

Buffer:

Disk:

Clean page: U
Dirty page: l

] Large-write block: [.]

|

AINVvANI

AINVvANI

AINVANI

AINVANI

PAGE MIGRATION!

23



Write-optimized B-trees [ = et

e Page migration:
o large-write
o defragmentation
o free space reclamation



Write-optimized B-trees [ = et

3%

25



Write-optimized B-trees [ = et

€c

Y

valid record

26



Write-optimized B-trees [ = et

e Symmetric fence keys concerns:
o additional storage space in each node
m prefix and suffix truncation of keys
m additional compression methods



Write-optimized B-trees [ = et

e Symmetric fence keys concerns:
o accessing the parent node:
m probe the buffer pool for the parent node

m link nodes in the buffer pool to their parents

m Mmixed approach

28



Write-optimized B-trees [ = et

e Logging a page migration:
o optimized and inexpensive
o small log records
o a single log record for an entire operation



]
A enda I m  TecHNISCHE UNIVERSITAT
m KAISERSLAUTERN

1. Background

2. B'""k-Trees

3. Write-Optimized B-Trees

4. Verification and Fence Keys
5. Foster B-Trees

6. Performance Evaluation



Verification and Fence Keys /[ : st

e Verification of physical integrity of a B-tree
o in-page
O Ccross-node

e Careful traversal of the whole B-tree
structure
o offline verification only :(

e Verification as part of regular maintenance
o online verification
o efficient

31



Verification and Fence Keys /[ : i

e |[n-page verification
o checksum of each individual page

L checksum




Verification and Fence Keys /[ : st

e (Cross-node verification

o Approach 1: navigate the whole index structure
m from lowest to highest key value (depth-first)

m matching forward and backward pointers with key
ranges
m advantage: simple

m disadvantage: repeated read operations for each
page deteriorate performance

33



Verification and Fence Keys /[ : i

o Approach 2: aggregation of facts
m Phase 1:

A

8l

FACTS:

“B is leaf with key range [a,b)”
“C is leaf with key range [b,c)”

“C is leaf with key range [b,c)”
“C follows B”

34



Verification and Fence Keys /[ : i

o Approach 2: aggregation of facts

= Phase 2: stream the facts through a matching-

algorithm

FACTS: \

“C is leaf with key range [b,c)”
“C follows B”

I

MATCHING
ALGORITHM

MATCHES: \

“C is leaf with key range [b,c)”

“C follows B”

35



Verification and Fence Keys /[ : st

o Approach 2: aggregation of facts

m Fact formats:
= “node Y follows node X"
= “node X at level N+1 has child Y for key range [a,b)”
= “node X at level N has key range [a,b)”

m ‘node Y follows node X"
= all keys in Y are greater than X?
= verification by transitivity

36



Verification and Fence Keys /[ : i

o Approach 2: aggregation of facts
m Cousin nodes

|
T

37



Verification and Fence Keys /[ : i

o Approach 2: aggregation of facts

38



Verification and Fence Keys /[ : i

o Approach 2: aggregation of facts
m replace backward and forward pointers with symmetric fence keys
m facts have a single format:

‘node X at level N has key value V as low/high fence key”

m each fact is matched with a exact copy that was extracted from the
parent node
m only equality comparisons required for matching facts

o Approach 3: bit vector filtering

fact = {node id, node level, key value, (low,high) fence}
hash fact to a value

reverse the bit in the position indicated by this value in a bitmap
matching facts hash to the same value

facts match in even numbers

at end, bitmap should be back to its original state

O O O O O O

39



]
A enda I m  TecHNISCHE UNIVERSITAT
m KAISERSLAUTERN

1. Background

2. B'"_Trees

3. Write-Optimized B-Trees

4. Verification and Fence Keys
5. Foster B-Trees

6. Performance Evaluation



Foster B-Trees [ = sosesvneem

e B'"ktrees
o require link-pointer

e \Write-optimized B-tree

o avoid backward and forward pointers for inexpensive
page migration

e [There is a contradiction. How then?

41



Foster B-Trees [ = sosesvneem

e Foster B-tree relax certain requirements
o at an estimated small cost

e A Foster B-tree at an stable state looks like a
Write-optimized B-tree

e Like a Blink-tree, nodes are split locally

o no immediate upward propagation
o intermediate states during a split

42



Foster B-Trees [ = sosesvneem

~
INSERT 30 S
N
9
S
< |- N foster
parent
| R
l o
X
N o = =l > o8]
| foster
fosjer key relationship
~
X
foster child <:I o

43



Foster B-Trees [ = sosesvneem

e Foster relationship:

O

O
O
O

transient state

foster child act as an extension of foster parent node
root-to-leaf traversal may temporarily be longer
should be resolved quickly (avoid long foster chains)

m adoption from foster child by permanent parent
e opportunistically at root-to-leaf traversal
e forced, by asynchronous utility

44



Foster B-Trees [ = sosesvneem

ADOPTION

€c

S
X

/

1]

3
Y
X
—_ =11 N N||W] |Ww (6)]
N||o o ~N| = o)) o =1 A LS 13

45



]
A enda I m  TecHNISCHE UNIVERSITAT
m KAISERSLAUTERN

1. Background

2. B'""k-Trees

3. Write-Optimized B-Trees

4. Verification and Fence Keys
5. Foster B-Trees

6. Performance Evaluation



Performance Evaluation [ = sosesvneem

e Shore-MT

o designed for high concurrency
o classical B-trees

e Environment
o 8 CPU cores (64 hardware contexts)
o 64GB of RAM
o RAID-1



Performance Evaluation [ = sosssineen

Mixed workload

Foster relations avoid latch 300
contention ‘ »
No long chains of foster 250 —
relations )
o adoption notrequired & 200 | DK
=, Shore-MT —+F—
S 450 L X None ——X<— |
£ Opp —X—
S X E-Opp ~—f—+—
2 100 | X
S
50 ‘%jﬁ** + + + + +
O 1 1 I ] ] 1

0 10 20 30 40 50 60
Concurrent Streams [MPL]

48



Performance Evaluation

]
I m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Mixed workload
o single thread
o 80% reads
o 20% skewed updates
m force adoption

E-OPP: queries runtime
remains the same

None: unsolved foster
relations, so runtime tend to
increase

Runtime of 100k queries [sec]

|

NAS

Shore-MT —+— |
None —>X—
E-Opp —X— 7

O = N W H 00 O N 0 ©

2 3 4 5 o6 7 8 9 10
Queries Completed [100Kk]

49



] [ |
Conclusion [ = s

o B'"ktrees
o high concurrency

e Write-optimized B-trees Foster
o high update rates - B-trees} simpler

e Symmetric fence keys
o efficient verification

50



Thank you! [ = Gt

Questions?



Write-optimized B-trees [ = et

e Symmetric fence keys concerns:
o additional storage space in each node
m prefix and suffix truncation of keys
m additional compression methods

o inefficient leaf-level scan (no pointers!)
m ~1% of internal nodes
m asynchronous read-ahead

m prefetching of leaf nodes guided by ancestor
nodes

22



Write-optimized B-trees [ = et

e |Logging a page migration:
o “Fully-logged”
m page contents written to log record
m recovery copy page contents from log
m expensive



Write-optimized B-trees [ = et

o “Forced-write”

m log record = {old_location, new location}

m single log record for the whole migration transaction:
= transaction begin
= allocation changes
= page migration
= transaction commit

m requires forcing page contents to new location prior to
writing log record(no write-ahead logging!)

m update global allocation information only after writing log
record (preserve old page location and contents)

m if thereis alog record, page is at new location

m otherwise, migration did not took place and page is at old
location

25



Write-optimized B-trees /

]
m TeECHNISCHE UNIVERSITAT
m KAISERSLAUTERN

o “Forced-write”
m advantages:
= single and small log record
= asynchronous write of log record
m disadvantages:
= forcing page contents to new location

26



Write-optimized B-trees [ = et

o “Non-logged”
m similar to “fully-logged”
m force page contents to new location
m introduces a write dependency:
= old page location is deallocated, but...

= do not overwrite contents in older page location

before writing page contents to new location
m Wweakness: backup and recovery
= backup of currently allocated pages of an index

= log record must be complemented with updated

page contents
= same cost of “fully-logged”

27



Verification and Fence Keys /[ : st

o Approach 2: aggregation of facts

m Phase 2: stream the facts through a matching-
algorithm

=

=

From leaf-node X “node Y follows node X” matches from node
Y “node Y follows node X’

From node X “node X at level N+1 has child Y from key range
[a.b)” matches from node Y “node Y at level N has key range [a,

b)’

31



Verification and Fence Keys /[ : st

o Approach 2: aggregation of facts
m ‘node Y follows node X”

m how to verify that all keys in Y are greater than all
the keys in X?
= done transitively by the separator key in the
parentof X and Y

m what if Xand Y are neighbors but do not share the

same parent, but share a high ancestor?
= Xand Y are cousin nodes

= transitive verification is not guaranteed across
skipped levels

32



Performance Evaluation

]
I m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

e Selection queries
e Read-only

e No foster relations
e No logging

e No latch conflict

e Shore-MT has a higher
compression

e Extra effort for
reconstructing and compare
a key for binary search

Throughput [k gps]

900

800 f
700
600 [
500 |
400 r
300 |

200
100
0

" Shore-MT ——+—
Foster B-tree —<— % e
X
X
X
X + 7
-
X
X
sl

0 10 20 30 40 50
Concurrent Streams [MPL]

60

41



Performance Evaluation

]
I m TeCHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Similar to previous experiment

©)

increasing number of
threads

80% reads

©)

Foster B-trees perform
better (as seen)

Throughput [k gps]

700

600 |

500 |

400 |

300 |

200

100

0

Shore-MT —+—
E-Opp —X—
X
X
X
Y 4 -+ +
£
b
0

10 20 30 40 50
Concurrent Streams [MPL]

60

44



