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Foster B-Trees
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Motivation

Blink-Trees:
● multicore
● concurrency

Write-Optimized B-Trees:
● flash memory
● large-writes
● wear leveling
● defragmentation

Fence Keys:
● verification
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Latches
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Latches and Locks

Locks

● protect in-memory physical 
structures

● during critical sections

● embedded in the data structure 
(semaphore)

● deadlock avoidance

● shared and exclusive modes

● simple and efficient

● acquired by threads ● acquired by transactions

● protect database logical contents

● during entire transaction

● lock manager (hash table)

● deadlock detection and 
resolution

● shared, exclusive, update, 
intention, etc...

● complex and expensive
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B-trees
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Retrieval
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Insertion
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Insertion (node split)
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Insertion (worst case)
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● Merge underflowing nodes:
○ Reduce number of internal nodes
○ But complex and expensive
○ Database tend to increase rather than decrease

● Allow nodes to be completely emptied
● Operations must handle empty nodes
● Asynchronous utility for clean-up
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Deletion
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Blink-trees
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● Many-core processors
● Higher concurrency
● Avoid latch contention:

○ reduce number of latches
○ reduce granularity of critical sections

● “Link pointer”
○ additional method to reach any node
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Blink-trees
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Blink-trees Insertion
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Blink-trees Retrieval
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Blink-trees Insertion
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● 20~15 years ago: “90% reads, 10% writes”

● Today:
○ memory size grows: increased fraction of writes
○ “33% writes”

● Increase performance of writes!
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Write-optimized B-trees
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Write-optimized B-trees

● Classical File Systems:

Buffer:

Disk:

Clean page:

Dirty page:



● Log-Structured File Systems
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Write-optimized B-trees
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● Log-Structured File Systems:
○ Advantages:

■ large-write operation
■ reduced number of seek operations
■ as large as entire erase blocks of a SSD
■ wear leveling

○ Disadvantages:
■ mapping layer
■ old copies

● space reclamation
● defragmentation 

      
       write performance to the detriment of scan performance
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Write-optimized B-trees

NOT DESIRABLE IN MOST DATABASE SYSTEMS!



● Large-write operation into B-tree indexes
○ mapping overhead == B-tree operations
○ update in-place (read optimized)

OR
large-write (write optimized)
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Write-optimized B-trees

● Database and B-tree indexes over LSFS



● Classical File Systems:
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Write-optimized B-trees
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Disk:
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● Page migration:
○ large-write
○ defragmentation
○ free space reclamation
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Write-optimized B-trees



25

Write-optimized B-trees
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Write-optimized B-trees
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Write-optimized B-trees

● Symmetric fence keys concerns:
○ additional storage space in each node

■ prefix and suffix truncation of keys
■ additional compression methods
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Write-optimized B-trees

● Symmetric fence keys concerns:
○ accessing the parent node:

■ probe the buffer pool for the parent node

■ link nodes in the buffer pool to their parents

■ mixed approach
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Write-optimized B-trees

● Logging a page migration:
○ optimized and inexpensive
○ small log records 
○ a single log record for an entire operation
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Verification and Fence Keys

● Verification of physical integrity of a B-tree
○ in-page
○ cross-node

● Careful traversal of the whole B-tree 
structure
○ offline verification only :(

● Verification as part of regular maintenance
○ online verification
○ efficient
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Verification and Fence Keys

● In-page verification
○ checksum of each individual page

checksum
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Verification and Fence Keys

● Cross-node verification
○ Approach 1: navigate the whole index structure

■ from lowest to highest key value (depth-first)
■ matching forward and backward pointers with key 

ranges
■ advantage: simple
■ disadvantage: repeated read operations for each 

page deteriorate performance
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Verification and Fence Keys

○ Approach 2: aggregation of facts
■ Phase 1:

FACTS:

A

B C

“B is leaf with key range [a,b)”
“C is leaf with key range [b,c)”
“B is leaf with key range [a,b)”
“C follows B”
“C is leaf with key range [b,c)”
“C follows B”
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Verification and Fence Keys

○ Approach 2: aggregation of facts
⇒ Phase 2: stream the facts through a matching-

algorithm

MATCHING 
ALGORITHM

FACTS:

“B is leaf with key range [a,b)”
“C is leaf with key range [b,c)”
“B is leaf with key range [a,b)”
“C follows B”
“C is leaf with key range [b,c)”
“C follows B”

MATCHES:

“B is leaf with key range [a,b)”
“B is leaf with key range [a,b)”

“C is leaf with key range [b,c)”
“C is leaf with key range [b,c)”

“C follows B”
“C follows B”
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Verification and Fence Keys

○ Approach 2: aggregation of facts
■ Fact formats:

⇒ “node Y follows node X”
⇒ “node X at level N+1 has child Y for key range [a,b)”
⇒ “node X at level N has key range [a,b)”

■ “node Y follows node X”
⇒ all keys in Y are greater than X?
⇒ verification by transitivity
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Verification and Fence Keys

○ Approach 2: aggregation of facts
■ Cousin nodes
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Verification and Fence Keys

○ Approach 2: aggregation of facts
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Verification and Fence Keys

○ Approach 2: aggregation of facts
■ replace backward and forward pointers with symmetric fence keys
■ facts have a single format: 

“node X at level N has key value V as low/high fence key”
■ each fact is matched with a exact copy that was extracted from the 

parent node
■ only equality comparisons required for matching facts

○ Approach 3: bit vector filtering
○ fact = {node_id, node_level, key_value, (low,high)_fence}
○ hash fact to a value 
○ reverse the bit in the position indicated by this value in a bitmap
○ matching facts hash to the same value
○ facts match in even numbers
○ at end, bitmap should be back to its original state
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● Blink-trees
○ require link-pointer

● Write-optimized B-tree
○ avoid backward and forward pointers for inexpensive 

page migration

● There is a contradiction. How then?

41

Foster B-Trees



● Foster B-tree relax certain requirements
○ at an estimated small cost

● A Foster B-tree at an stable state looks like a 
Write-optimized B-tree

● Like a Blink-tree, nodes are split locally
○ no immediate upward propagation
○ intermediate states during a split
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Foster B-Trees
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Foster B-Trees
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● Foster relationship:
○ transient state
○ foster child act as an extension of foster parent node
○ root-to-leaf traversal may temporarily be longer
○ should be resolved quickly (avoid long foster chains)

■ adoption from foster child by permanent parent
● opportunistically at root-to-leaf traversal
● forced, by asynchronous utility

44

Foster B-Trees
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Foster B-Trees
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Performance Evaluation

● Shore-MT
○ designed for high concurrency
○ classical B-trees

● Environment
○ 8 CPU cores (64 hardware contexts)
○ 64GB of RAM
○ RAID-1
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Performance Evaluation
● Mixed workload

● Foster relations avoid latch 
contention

● No long chains of foster 
relations

○ adoption not required
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Performance Evaluation
● Mixed workload

○ single thread
○ 80% reads
○ 20% skewed updates

■ force adoption

● E-OPP: queries runtime 
remains the same

● None: unsolved foster 
relations, so runtime tend to 
increase
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Conclusion

● Blink-trees
○ high concurrency

● Write-optimized B-trees
○ high update rates

● Symmetric fence keys
○ efficient verification

Foster 
B-trees simpler



Thank you!

Questions?
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Write-optimized B-trees

● Symmetric fence keys concerns:
○ additional storage space in each node

■ prefix and suffix truncation of keys
■ additional compression methods

○ inefficient leaf-level scan (no pointers!)
■ ~1% of internal nodes
■ asynchronous read-ahead
■ prefetching of leaf nodes guided by ancestor 

nodes
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Write-optimized B-trees

● Logging a page migration:
○ “Fully-logged”

■ page contents written to log record
■ recovery copy page contents from log
■ expensive
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Write-optimized B-trees

○ “Forced-write”
■ log record = {old_location, new location}
■ single log record for the whole migration transaction:

⇒ transaction begin
⇒ allocation changes
⇒ page migration
⇒ transaction commit

■ requires forcing page contents to new location prior to 
writing log record(no write-ahead logging!)

■ update global allocation information only after writing log 
record (preserve old page location and contents)

■ if there is a log record, page is at new location
■ otherwise, migration did not took place and page is at old 

location 
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Write-optimized B-trees

○ “Forced-write”
■ advantages:

⇒ single and small log record
⇒ asynchronous write of log record

■ disadvantages:
⇒ forcing page contents to new location
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Write-optimized B-trees

○ “Non-logged”
■ similar to “fully-logged”
■ force page contents to new location
■ introduces a write dependency:

⇒ old page location is deallocated, but...
⇒ do not overwrite contents in older page location 

before writing page contents to new location
■ weakness: backup and recovery

⇒ backup of currently allocated pages of an index
⇒ log record must be complemented with updated 

page contents
⇒ same cost of “fully-logged”
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Verification and Fence Keys

○ Approach 2: aggregation of facts
■ Phase 2: stream the facts through a matching-

algorithm
⇒ From leaf-node X “node Y follows node X” matches from node 

Y “node Y follows node X”
⇒ From node X “node X at level N+1 has child Y from key range 

[a,b)” matches from node Y “node Y at level N has key range [a,
b)”
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Verification and Fence Keys

○ Approach 2: aggregation of facts
■ “node Y follows node X”
■ how to verify that all keys in Y are greater than all 

the keys in X?
⇒ done transitively by the separator key in the 

parent of X and Y
■ what if X and Y are neighbors but do not share the 

same parent, but share a high ancestor?
⇒ X and Y are cousin nodes
⇒ transitive verification is not guaranteed across 

skipped levels
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Performance Evaluation
● Selection queries

● Read-only

● No foster relations

● No logging

● No latch conflict

● Shore-MT has a higher 
compression

● Extra effort for 
reconstructing and compare 
a key for binary search
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Performance Evaluation
● Similar to previous experiment

○ increasing number of 
threads

● 80% reads
○ Foster B-trees perform 

better (as seen)


