
Foster B-Trees
Lucas Lersch

14.07.2014

M. Sc. Caetano Sauer
Advisor

Foster B-Trees

2

Motivation

Blink-Trees:
● multicore
● concurrency

Write-Optimized B-Trees:
● flash memory
● large-writes
● wear leveling
● defragmentation

Fence Keys:
● verification

1. Background
2. Blink-Trees
3. Write-Optimized B-Trees
4. Verification and Fence Keys
5. Foster B-Trees
6. Performance Evaluation

Agenda

Latches

4

Latches and Locks

Locks

● protect in-memory physical
structures

● during critical sections

● embedded in the data structure
(semaphore)

● deadlock avoidance

● shared and exclusive modes

● simple and efficient

● acquired by threads ● acquired by transactions

● protect database logical contents

● during entire transaction

● lock manager (hash table)

● deadlock detection and
resolution

● shared, exclusive, update,
intention, etc...

● complex and expensive

5

B-trees

101 2 5 2321 28

7 12 27

23

2612 55

{key , DATA}

{key , pointer}

32101 2 5 2321 282612 5532

7 12 27

23

6

Retrieval

101 2 5 2321 3228

7 12 27

23

2612 55

S

S

S

12

RETRIEVE 12

7

Insertion

101 2 5 2321 3228

7 12 27

23

2612 55

S

S

21

X

17

INSERT 17

8

Insertion (node split)

101 2 5 2317 28

7 12 27

23

2612

S

S

21

X

553232 55

X

32

X

30

INSERT 30

X

9

Insertion (worst case)

27 55 93

S

... ...
...

61 74 85

...
......

87 90 91

S

X

X

X
88

X

X

90 91

X

X
INSERT 88

● Merge underflowing nodes:
○ Reduce number of internal nodes
○ But complex and expensive
○ Database tend to increase rather than decrease

● Allow nodes to be completely emptied
● Operations must handle empty nodes
● Asynchronous utility for clean-up

10

Deletion

1. Background
2. Blink-Trees
3. Write-Optimized B-Trees
4. Verification and Fence Keys
5. Foster B-Trees
6. Performance Evaluation

Agenda

12

Blink-trees

101 2 5 2317 3228

7 12 27

23

2612 5521

● Many-core processors
● Higher concurrency
● Avoid latch contention:

○ reduce number of latches
○ reduce granularity of critical sections

● “Link pointer”
○ additional method to reach any node

13

Blink-trees

14

Blink-trees Insertion

101 2 5 2317 28

7 12 27

23

2612

S

21 32 55

X

S

17 21

13

INSERT 13
STEP #1

X

15

Blink-trees Retrieval

101 2 5 2313 28

7 12 27

23

2612 32 5517 21

S

S

S S21

RETRIEVE 21

16

Blink-trees Insertion

101 2 5 2313 28

7 12 27

23

2612 32 5517 21

17

X

INSERT 13
STEP #2

1. Background
2. Blink-Trees
3. Write-Optimized B-Trees
4. Verification and Fence Keys
5. Foster B-Trees
6. Performance Evaluation

Agenda

● 20~15 years ago: “90% reads, 10% writes”

● Today:
○ memory size grows: increased fraction of writes
○ “33% writes”

● Increase performance of writes!

18

Write-optimized B-trees

19

Write-optimized B-trees

● Classical File Systems:

Buffer:

Disk:

Clean page:

Dirty page:

● Log-Structured File Systems

20

Write-optimized B-trees

Buffer:

Disk:

Clean page:

Dirty page:

Large-write block:

IN
V

A
LID

IN
V

A
LID

IN
V

A
LID

IN
V

A
LID

MAPPING LAYER

● Log-Structured File Systems:
○ Advantages:

■ large-write operation
■ reduced number of seek operations
■ as large as entire erase blocks of a SSD
■ wear leveling

○ Disadvantages:
■ mapping layer
■ old copies

● space reclamation
● defragmentation

 write performance to the detriment of scan performance

21

Write-optimized B-trees

NOT DESIRABLE IN MOST DATABASE SYSTEMS!

● Large-write operation into B-tree indexes
○ mapping overhead == B-tree operations
○ update in-place (read optimized)

OR
large-write (write optimized)

22

Write-optimized B-trees

● Database and B-tree indexes over LSFS

● Classical File Systems:

23

Write-optimized B-trees

Buffer:

Disk:

Clean page:

Dirty page:

Large-write block:

IN
V

A
LID

IN
V

A
LID

IN
V

A
LID

IN
V

A
LID

PAGE MIGRATION!

● Page migration:
○ large-write
○ defragmentation
○ free space reclamation

24

Write-optimized B-trees

25

Write-optimized B-trees

101 2 5 2317 28

7 12 27

23

2612 21 553230
32

101 2 5 1712 21

7 12

26

Write-optimized B-trees

5 23

7 12 27

23

2621 5532

32

2 10 12 17
- ∞

23 23

+ ∞

- ∞

- ∞

+ ∞

+ ∞28 3012 23 23 27 27 32 3277 12 17 21
valid record

26 55

27

Write-optimized B-trees

● Symmetric fence keys concerns:
○ additional storage space in each node

■ prefix and suffix truncation of keys
■ additional compression methods

28

Write-optimized B-trees

● Symmetric fence keys concerns:
○ accessing the parent node:

■ probe the buffer pool for the parent node

■ link nodes in the buffer pool to their parents

■ mixed approach

29

Write-optimized B-trees

● Logging a page migration:
○ optimized and inexpensive
○ small log records
○ a single log record for an entire operation

1. Background
2. Blink-Trees
3. Write-Optimized B-Trees
4. Verification and Fence Keys
5. Foster B-Trees
6. Performance Evaluation

Agenda

31

Verification and Fence Keys

● Verification of physical integrity of a B-tree
○ in-page
○ cross-node

● Careful traversal of the whole B-tree
structure
○ offline verification only :(

● Verification as part of regular maintenance
○ online verification
○ efficient

32

Verification and Fence Keys

● In-page verification
○ checksum of each individual page

checksum

33

Verification and Fence Keys

● Cross-node verification
○ Approach 1: navigate the whole index structure

■ from lowest to highest key value (depth-first)
■ matching forward and backward pointers with key

ranges
■ advantage: simple
■ disadvantage: repeated read operations for each

page deteriorate performance

34

Verification and Fence Keys

○ Approach 2: aggregation of facts
■ Phase 1:

FACTS:

A

B C

“B is leaf with key range [a,b)”
“C is leaf with key range [b,c)”
“B is leaf with key range [a,b)”
“C follows B”
“C is leaf with key range [b,c)”
“C follows B”

35

Verification and Fence Keys

○ Approach 2: aggregation of facts
⇒ Phase 2: stream the facts through a matching-

algorithm

MATCHING
ALGORITHM

FACTS:

“B is leaf with key range [a,b)”
“C is leaf with key range [b,c)”
“B is leaf with key range [a,b)”
“C follows B”
“C is leaf with key range [b,c)”
“C follows B”

MATCHES:

“B is leaf with key range [a,b)”
“B is leaf with key range [a,b)”

“C is leaf with key range [b,c)”
“C is leaf with key range [b,c)”

“C follows B”
“C follows B”

36

Verification and Fence Keys

○ Approach 2: aggregation of facts
■ Fact formats:

⇒ “node Y follows node X”
⇒ “node X at level N+1 has child Y for key range [a,b)”
⇒ “node X at level N has key range [a,b)”

■ “node Y follows node X”
⇒ all keys in Y are greater than X?
⇒ verification by transitivity

37

Verification and Fence Keys

○ Approach 2: aggregation of facts
■ Cousin nodes

38

Verification and Fence Keys

○ Approach 2: aggregation of facts

- ∞

+ ∞

- ∞

+ ∞

- ∞

+ ∞

39

Verification and Fence Keys

○ Approach 2: aggregation of facts
■ replace backward and forward pointers with symmetric fence keys
■ facts have a single format:

“node X at level N has key value V as low/high fence key”
■ each fact is matched with a exact copy that was extracted from the

parent node
■ only equality comparisons required for matching facts

○ Approach 3: bit vector filtering
○ fact = {node_id, node_level, key_value, (low,high)_fence}
○ hash fact to a value
○ reverse the bit in the position indicated by this value in a bitmap
○ matching facts hash to the same value
○ facts match in even numbers
○ at end, bitmap should be back to its original state

1. Background
2. Blink-Trees
3. Write-Optimized B-Trees
4. Verification and Fence Keys
5. Foster B-Trees
6. Performance Evaluation

Agenda

● Blink-trees
○ require link-pointer

● Write-optimized B-tree
○ avoid backward and forward pointers for inexpensive

page migration

● There is a contradiction. How then?

41

Foster B-Trees

● Foster B-tree relax certain requirements
○ at an estimated small cost

● A Foster B-tree at an stable state looks like a
Write-optimized B-tree

● Like a Blink-tree, nodes are split locally
○ no immediate upward propagation
○ intermediate states during a split

42

Foster B-Trees

43

Foster B-Trees

5

7 12 27

23

2 10

- ∞

23 23

+ ∞

- ∞

- ∞

+ ∞

28 3212 23 23 27 2777 12 2117 26 55

+ ∞
INSERT 30 S

S

+ ∞5532

30

foster
relationship

foster
parent

foster child

32

X

foster key

X

● Foster relationship:
○ transient state
○ foster child act as an extension of foster parent node
○ root-to-leaf traversal may temporarily be longer
○ should be resolved quickly (avoid long foster chains)

■ adoption from foster child by permanent parent
● opportunistically at root-to-leaf traversal
● forced, by asynchronous utility

44

Foster B-Trees

45

Foster B-Trees

5

7 12 27

23

2 10

- ∞

23 23

+ ∞

- ∞

- ∞

+ ∞

2812 23 23 27 2777 12 2117 26

+ ∞
ADOPTION

+ ∞5532

30 32

X

32

X

+ ∞553232

1. Background
2. Blink-Trees
3. Write-Optimized B-Trees
4. Verification and Fence Keys
5. Foster B-Trees
6. Performance Evaluation

Agenda

47

Performance Evaluation

● Shore-MT
○ designed for high concurrency
○ classical B-trees

● Environment
○ 8 CPU cores (64 hardware contexts)
○ 64GB of RAM
○ RAID-1

48

Performance Evaluation
● Mixed workload

● Foster relations avoid latch
contention

● No long chains of foster
relations

○ adoption not required

49

Performance Evaluation
● Mixed workload

○ single thread
○ 80% reads
○ 20% skewed updates

■ force adoption

● E-OPP: queries runtime
remains the same

● None: unsolved foster
relations, so runtime tend to
increase

50

Conclusion

● Blink-trees
○ high concurrency

● Write-optimized B-trees
○ high update rates

● Symmetric fence keys
○ efficient verification

Foster
B-trees simpler

Thank you!

Questions?

22

Write-optimized B-trees

● Symmetric fence keys concerns:
○ additional storage space in each node

■ prefix and suffix truncation of keys
■ additional compression methods

○ inefficient leaf-level scan (no pointers!)
■ ~1% of internal nodes
■ asynchronous read-ahead
■ prefetching of leaf nodes guided by ancestor

nodes

24

Write-optimized B-trees

● Logging a page migration:
○ “Fully-logged”

■ page contents written to log record
■ recovery copy page contents from log
■ expensive

25

Write-optimized B-trees

○ “Forced-write”
■ log record = {old_location, new location}
■ single log record for the whole migration transaction:

⇒ transaction begin
⇒ allocation changes
⇒ page migration
⇒ transaction commit

■ requires forcing page contents to new location prior to
writing log record(no write-ahead logging!)

■ update global allocation information only after writing log
record (preserve old page location and contents)

■ if there is a log record, page is at new location
■ otherwise, migration did not took place and page is at old

location

26

Write-optimized B-trees

○ “Forced-write”
■ advantages:

⇒ single and small log record
⇒ asynchronous write of log record

■ disadvantages:
⇒ forcing page contents to new location

27

Write-optimized B-trees

○ “Non-logged”
■ similar to “fully-logged”
■ force page contents to new location
■ introduces a write dependency:

⇒ old page location is deallocated, but...
⇒ do not overwrite contents in older page location

before writing page contents to new location
■ weakness: backup and recovery

⇒ backup of currently allocated pages of an index
⇒ log record must be complemented with updated

page contents
⇒ same cost of “fully-logged”

31

Verification and Fence Keys

○ Approach 2: aggregation of facts
■ Phase 2: stream the facts through a matching-

algorithm
⇒ From leaf-node X “node Y follows node X” matches from node

Y “node Y follows node X”
⇒ From node X “node X at level N+1 has child Y from key range

[a,b)” matches from node Y “node Y at level N has key range [a,
b)”

32

Verification and Fence Keys

○ Approach 2: aggregation of facts
■ “node Y follows node X”
■ how to verify that all keys in Y are greater than all

the keys in X?
⇒ done transitively by the separator key in the

parent of X and Y
■ what if X and Y are neighbors but do not share the

same parent, but share a high ancestor?
⇒ X and Y are cousin nodes
⇒ transitive verification is not guaranteed across

skipped levels

41

Performance Evaluation
● Selection queries

● Read-only

● No foster relations

● No logging

● No latch conflict

● Shore-MT has a higher
compression

● Extra effort for
reconstructing and compare
a key for binary search

44

Performance Evaluation
● Similar to previous experiment

○ increasing number of
threads

● 80% reads
○ Foster B-trees perform

better (as seen)

