
Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Enhancing recovery using an SSD buffer pool
extension

Philipp Thau

University of Kaiserslautern

21-07-2014

Enhancing recovery using an SSD buffer pool extension 1 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Overview
What’s going to be said

• This presentation is about SSDs:
• Using SSDs to speed up the database system
• Involving recovery and speed it up as well

• In the introduction SSDs and some techniques to use them
will be presented

• After that I will focus on presenting an approach for using the
SSD as a read cache (“SSD buffer pool extension”)

• Based on that approach, recovery will be added and different
methods of reusing a previously filled cache will be presented

Enhancing recovery using an SSD buffer pool extension 2 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Overview
What’s going to be said

• This presentation is about SSDs:
• Using SSDs to speed up the database system
• Involving recovery and speed it up as well

• In the introduction SSDs and some techniques to use them
will be presented

• After that I will focus on presenting an approach for using the
SSD as a read cache (“SSD buffer pool extension”)

• Based on that approach, recovery will be added and different
methods of reusing a previously filled cache will be presented

Enhancing recovery using an SSD buffer pool extension 2 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Overview
What’s going to be said

• This presentation is about SSDs:
• Using SSDs to speed up the database system
• Involving recovery and speed it up as well

• In the introduction SSDs and some techniques to use them
will be presented

• After that I will focus on presenting an approach for using the
SSD as a read cache (“SSD buffer pool extension”)

• Based on that approach, recovery will be added and different
methods of reusing a previously filled cache will be presented

Enhancing recovery using an SSD buffer pool extension 2 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Overview
What’s going to be said

• This presentation is about SSDs:
• Using SSDs to speed up the database system
• Involving recovery and speed it up as well

• In the introduction SSDs and some techniques to use them
will be presented

• After that I will focus on presenting an approach for using the
SSD as a read cache (“SSD buffer pool extension”)

• Based on that approach, recovery will be added and different
methods of reusing a previously filled cache will be presented

Enhancing recovery using an SSD buffer pool extension 2 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Overview
What’s going to be said

• This presentation is about SSDs:
• Using SSDs to speed up the database system
• Involving recovery and speed it up as well

• In the introduction SSDs and some techniques to use them
will be presented

• After that I will focus on presenting an approach for using the
SSD as a read cache (“SSD buffer pool extension”)

• Based on that approach, recovery will be added and different
methods of reusing a previously filled cache will be presented

Enhancing recovery using an SSD buffer pool extension 2 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Outline

1 Introduction

Motivation

SSDs in Databasesystems

2 SSD-Caching

3 SSD-Caching and Recovery

4 Conclusion

Enhancing recovery using an SSD buffer pool extension 3 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Role of storage medium

The used storage medium has a great effect on the database
system:

• Affects how the system interacts with the drive

• Affects how fast the system is

• Affects how much money the system costs

• Affects how reliable the system is

Enhancing recovery using an SSD buffer pool extension 4 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Role of storage medium

The used storage medium has a great effect on the database
system:

• Affects how the system interacts with the drive

• Affects how fast the system is

• Affects how much money the system costs

• Affects how reliable the system is

Enhancing recovery using an SSD buffer pool extension 4 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Role of storage medium

The used storage medium has a great effect on the database
system:

• Affects how the system interacts with the drive

• Affects how fast the system is

• Affects how much money the system costs

• Affects how reliable the system is

Enhancing recovery using an SSD buffer pool extension 4 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Role of storage medium

The used storage medium has a great effect on the database
system:

• Affects how the system interacts with the drive

• Affects how fast the system is

• Affects how much money the system costs

• Affects how reliable the system is

Enhancing recovery using an SSD buffer pool extension 4 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Role of storage medium

The used storage medium has a great effect on the database
system:

• Affects how the system interacts with the drive

• Affects how fast the system is

• Affects how much money the system costs

• Affects how reliable the system is

Enhancing recovery using an SSD buffer pool extension 4 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Characteristics

In this work the focus was set on SSDs

SSDs are the most important storage medium next to hard drives:

• Store data permanent

• Have a high data density

• Are solid (technically and mechanical)

• Don’t consume much electrical power

Enhancing recovery using an SSD buffer pool extension 5 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Characteristics

In this work the focus was set on SSDs

SSDs are the most important storage medium next to hard drives:

• Store data permanent

• Have a high data density

• Are solid (technically and mechanical)

• Don’t consume much electrical power

Enhancing recovery using an SSD buffer pool extension 5 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Characteristics

In this work the focus was set on SSDs

SSDs are the most important storage medium next to hard drives:

• Store data permanent

• Have a high data density

• Are solid (technically and mechanical)

• Don’t consume much electrical power

Enhancing recovery using an SSD buffer pool extension 5 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Characteristics

In this work the focus was set on SSDs

SSDs are the most important storage medium next to hard drives:

• Store data permanent

• Have a high data density

• Are solid (technically and mechanical)

• Don’t consume much electrical power

Enhancing recovery using an SSD buffer pool extension 5 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Characteristics

In this work the focus was set on SSDs

SSDs are the most important storage medium next to hard drives:

• Store data permanent

• Have a high data density

• Are solid (technically and mechanical)

• Don’t consume much electrical power

Enhancing recovery using an SSD buffer pool extension 5 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Characteristics

In this work the focus was set on SSDs

SSDs are the most important storage medium next to hard drives:

• Store data permanent

• Have a high data density

• Are solid (technically and mechanical)

• Don’t consume much electrical power

Enhancing recovery using an SSD buffer pool extension 5 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Advantage

The most important benefit is the faster access time in terms of
IOPS (Input/Output operations per second)

• Modern SSDs reach up to 100.000 IOPS

• Modern HDDs reach up to 200 IOPS

• They can’t spin faster than a natural limit

Enhancing recovery using an SSD buffer pool extension 6 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Advantage

The most important benefit is the faster access time in terms of
IOPS (Input/Output operations per second)

• Modern SSDs reach up to 100.000 IOPS

• Modern HDDs reach up to 200 IOPS

• They can’t spin faster than a natural limit

Enhancing recovery using an SSD buffer pool extension 6 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Advantage

The most important benefit is the faster access time in terms of
IOPS (Input/Output operations per second)

• Modern SSDs reach up to 100.000 IOPS

• Modern HDDs reach up to 200 IOPS

• They can’t spin faster than a natural limit

Enhancing recovery using an SSD buffer pool extension 6 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Disadvantage

The most important drawback are the costs

For 90 euro you can get ...

• a modern SSD with 256 gigabyte

• or a modern HDD with 3 terabyte

Enhancing recovery using an SSD buffer pool extension 7 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Disadvantage

The most important drawback are the costs

For 90 euro you can get ...

• a modern SSD with 256 gigabyte

• or a modern HDD with 3 terabyte

Enhancing recovery using an SSD buffer pool extension 7 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs
Disadvantage

The most important drawback are the costs

For 90 euro you can get ...

• a modern SSD with 256 gigabyte

• or a modern HDD with 3 terabyte

SSD
HDD

Enhancing recovery using an SSD buffer pool extension 7 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs vs. HDDs
Final comparison

SSDs
• up to 100.000 IOPS

• around 1000 IOPS
Euro

• around 0.35 Euro
Gigabyte

HDDs

• up to 200 IOPS

• around 2 IOPS
Euro

• around 0.03 Euro
Gigabyte

Both have their strengths!

Enhancing recovery using an SSD buffer pool extension 8 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs vs. HDDs
Final comparison

SSDs
• up to 100.000 IOPS

• around 1000 IOPS
Euro

• around 0.35 Euro
Gigabyte

HDDs

• up to 200 IOPS

• around 2 IOPS
Euro

• around 0.03 Euro
Gigabyte

Both have their strengths!

Enhancing recovery using an SSD buffer pool extension 8 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs vs. HDDs
Final comparison

SSDs
• up to 100.000 IOPS

• around 1000 IOPS
Euro

• around 0.35 Euro
Gigabyte

HDDs

• up to 200 IOPS

• around 2 IOPS
Euro

• around 0.03 Euro
Gigabyte

Both have their strengths!

Enhancing recovery using an SSD buffer pool extension 8 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSDs vs. HDDs
Final comparison

SSDs
• up to 100.000 IOPS

• around 1000 IOPS
Euro

• around 0.35 Euro
Gigabyte

HDDs

• up to 200 IOPS

• around 2 IOPS
Euro

• around 0.03 Euro
Gigabyte

Both have their strengths!

Enhancing recovery using an SSD buffer pool extension 8 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Entire database on SSD

• Too expensive, as shown in the
previous section!

• HDDs are better suited as basic
storage medium

From now on: HDD on the lowest level in the storage hierarchy

Enhancing recovery using an SSD buffer pool extension 9 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Entire database on SSD

• Too expensive, as shown in the
previous section!

• HDDs are better suited as basic
storage medium

From now on: HDD on the lowest level in the storage hierarchy

Enhancing recovery using an SSD buffer pool extension 9 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Entire database on SSD

• Too expensive, as shown in the
previous section!

• HDDs are better suited as basic
storage medium

From now on: HDD on the lowest level in the storage hierarchy

Enhancing recovery using an SSD buffer pool extension 9 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD as disk on same level
System overview

• SSD is on the same level in the
storage hierachy level as the HDD

• Both storage mediums serve the file
requests

Enhancing recovery using an SSD buffer pool extension 10 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD as disk on same level
How it works

• SSD is just another storage medium
on the same level as the HDD

• Indexes or the fact table of a
data-warehouse may be saved there

Enhancing recovery using an SSD buffer pool extension 11 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD as disk on same level
How it works

• SSD is just another storage medium
on the same level as the HDD

• Indexes or the fact table of a
data-warehouse may be saved there

Enhancing recovery using an SSD buffer pool extension 11 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD as disk on same level
Disadvantages

• Data has to be moved manually!

• Admin may collect usage statistics
on runtime and decides what to
move then

• Data has to be moved again once
the access pattern changes

Enhancing recovery using an SSD buffer pool extension 12 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD as disk on same level
Disadvantages

• Data has to be moved manually!

• Admin may collect usage statistics
on runtime and decides what to
move then

• Data has to be moved again once
the access pattern changes

Enhancing recovery using an SSD buffer pool extension 12 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Write-back-cache
System overview

• SSD is on the level above the HDD

• HDD serves reads

• SSD supports writes

Enhancing recovery using an SSD buffer pool extension 13 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Write-back-cache
How it works

• Writes are buffered with the SSD

• With the help of the SSD the writes
get transformed into sequential writes

• When there is less load on the
system, the writes are handed over
to the HDD

• Exploits the strength of SSDs in terms
of random IO

• Exploits the strength of HDDs in
terms of sequential IO

Enhancing recovery using an SSD buffer pool extension 14 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Write-back-cache
How it works

• Writes are buffered with the SSD

• With the help of the SSD the writes
get transformed into sequential writes

• When there is less load on the
system, the writes are handed over
to the HDD

• Exploits the strength of SSDs in terms
of random IO

• Exploits the strength of HDDs in
terms of sequential IO

Enhancing recovery using an SSD buffer pool extension 14 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

Write-back-cache
How it works

• Writes are buffered with the SSD

• With the help of the SSD the writes
get transformed into sequential writes

• When there is less load on the
system, the writes are handed over
to the HDD

• Exploits the strength of SSDs in terms
of random IO

• Exploits the strength of HDDs in
terms of sequential IO

Enhancing recovery using an SSD buffer pool extension 14 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD buffer pool extension (“SSD-Cache”)
System overview

• SSD is on the level above the HDD

• Writes go primarily to the HDD

• SSD supports reads

Enhancing recovery using an SSD buffer pool extension 15 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD-Cache
How it works

• SSD acts as a read cache

• Gets filled with data automatically

• Access patterns are recognized

• Exploits the strength of SSDs in terms
of access time

• Exploits the strength of HDDs in
terms of cheap space

This approach combined with the recovery-aspect will be
presented!

Enhancing recovery using an SSD buffer pool extension 16 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD-Cache
How it works

• SSD acts as a read cache

• Gets filled with data automatically

• Access patterns are recognized

• Exploits the strength of SSDs in terms
of access time

• Exploits the strength of HDDs in
terms of cheap space

This approach combined with the recovery-aspect will be
presented!

Enhancing recovery using an SSD buffer pool extension 16 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation SSDs in Databasesystems

SSD-Cache
How it works

• SSD acts as a read cache

• Gets filled with data automatically

• Access patterns are recognized

• Exploits the strength of SSDs in terms
of access time

• Exploits the strength of HDDs in
terms of cheap space

This approach combined with the recovery-aspect will be
presented!

Enhancing recovery using an SSD buffer pool extension 16 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Outline

1 Introduction

2 SSD-Caching

System overview

Replacement logic

Metadata

Results

Possible extensions

3 SSD-Caching and Recovery

4 Conclusion

Enhancing recovery using an SSD buffer pool extension 17 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Overview

• An approach based on the
“SSD-Cache”-concept will be presented

• It is designed as a write-through-cache
(no buffering for writes)

• It uses a temperature based page
replacement algorithm (“TAC”)

Enhancing recovery using an SSD buffer pool extension 18 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Overview

• An approach based on the
“SSD-Cache”-concept will be presented

• It is designed as a write-through-cache
(no buffering for writes)

• It uses a temperature based page
replacement algorithm (“TAC”)

Enhancing recovery using an SSD buffer pool extension 18 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Overview

• An approach based on the
“SSD-Cache”-concept will be presented

• It is designed as a write-through-cache
(no buffering for writes)

• It uses a temperature based page
replacement algorithm (“TAC”)

Enhancing recovery using an SSD buffer pool extension 18 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

1st step: Read record from main
memory

• Check if the read can be served
from main memory

• If the memory can serve the
request: We are done

• If not: Go to step 2

Enhancing recovery using an SSD buffer pool extension 19 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

2nd step: Read page from SSD

• Update the temperature of the
region to read from

• Check if the read can be served
from the SSD

• If the SSD can serve the
request: We are done

• If not: Go to step 3

Enhancing recovery using an SSD buffer pool extension 19 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

3rd step: Read page from HDD

• All data is always present on the
HDD so the request will finally
be served

• Besides, the read data gets
passed on to the replacement
algorithm

Enhancing recovery using an SSD buffer pool extension 19 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

4th step: Write page to SSD

• If the page gets accepted by the
TAC-algorithm (meaning it is
warmer than the coldest page
cached) it will be saved to the
SSD

Enhancing recovery using an SSD buffer pool extension 19 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

5th step: Displace dirty pages

• When a dirty page gets
displaced from the main
memory: Go to step 6

Enhancing recovery using an SSD buffer pool extension 19 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

6th step: Update copy of page

• The page gets updated on the
HDD and (if present) in the
SSD-Cache

• This means the pages in the
SSD-Cache are always in the
same state as their copy on the
HDD

Enhancing recovery using an SSD buffer pool extension 19 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
How the algorithm works

Situation: Let pnew be a page read from the HDD (means: it is not
present on the SSD)

• Case 1: SSD-Cache is not full:

• Every page gets accepted
• pnew is saved on the SSD

• Case 2: SSD-Cache is full:

• If pnew is warmer than the coldest page pcold on the SSD:
pnew overwrites pcold

• Else: pnew gets rejected

Enhancing recovery using an SSD buffer pool extension 20 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
How the algorithm works

Situation: Let pnew be a page read from the HDD (means: it is not
present on the SSD)

• Case 1: SSD-Cache is not full:

• Every page gets accepted
• pnew is saved on the SSD

• Case 2: SSD-Cache is full:

• If pnew is warmer than the coldest page pcold on the SSD:
pnew overwrites pcold

• Else: pnew gets rejected

Enhancing recovery using an SSD buffer pool extension 20 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
How the algorithm works

Situation: Let pnew be a page read from the HDD (means: it is not
present on the SSD)

• Case 1: SSD-Cache is not full:

• Every page gets accepted
• pnew is saved on the SSD

• Case 2: SSD-Cache is full:

• If pnew is warmer than the coldest page pcold on the SSD:
pnew overwrites pcold

• Else: pnew gets rejected

Enhancing recovery using an SSD buffer pool extension 20 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
How the temperatures are calculated

• Temperatures get updated when pages are read from the
HDD or the SSD

• It is not relevant whether the page gets accepted or rejected by
the replacement algorithm

• This is how the system adapts to access patterns

• Temperatures are managed at the level of regions (e.g. 32
pages)

• This makes the temperatures meaningful faster and uses less
storage

• Random IO is prefered over sequential IO

• To detect if the access type is random or sequential, a
windowing technique is utilized

• If at least 2 out of 20 reads go to the same region, those reads
are declared as sequential IO

Enhancing recovery using an SSD buffer pool extension 21 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
How the temperatures are calculated

• Temperatures get updated when pages are read from the
HDD or the SSD

• It is not relevant whether the page gets accepted or rejected by
the replacement algorithm

• This is how the system adapts to access patterns

• Temperatures are managed at the level of regions (e.g. 32
pages)

• This makes the temperatures meaningful faster and uses less
storage

• Random IO is prefered over sequential IO

• To detect if the access type is random or sequential, a
windowing technique is utilized

• If at least 2 out of 20 reads go to the same region, those reads
are declared as sequential IO

Enhancing recovery using an SSD buffer pool extension 21 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
How the temperatures are calculated

• Temperatures get updated when pages are read from the
HDD or the SSD

• It is not relevant whether the page gets accepted or rejected by
the replacement algorithm

• This is how the system adapts to access patterns

• Temperatures are managed at the level of regions (e.g. 32
pages)

• This makes the temperatures meaningful faster and uses less
storage

• Random IO is prefered over sequential IO

• To detect if the access type is random or sequential, a
windowing technique is utilized

• If at least 2 out of 20 reads go to the same region, those reads
are declared as sequential IO

Enhancing recovery using an SSD buffer pool extension 21 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
Why not just use LRU?

• LRU: Replace the page that was not needed for the longest
time

• TAC: Replace the page that has the lowest probability of
being read

• With LRU, it may happen that a page which gets read only
once replaces a page which soon will be needed

• LRU makes no difference between random IO and sequential
IO

There will be some numbers shown in the “Results” section later

Enhancing recovery using an SSD buffer pool extension 22 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
Why not just use LRU?

• LRU: Replace the page that was not needed for the longest
time

• TAC: Replace the page that has the lowest probability of
being read

• With LRU, it may happen that a page which gets read only
once replaces a page which soon will be needed

• LRU makes no difference between random IO and sequential
IO

There will be some numbers shown in the “Results” section later

Enhancing recovery using an SSD buffer pool extension 22 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
Why not just use LRU?

• LRU: Replace the page that was not needed for the longest
time

• TAC: Replace the page that has the lowest probability of
being read

• With LRU, it may happen that a page which gets read only
once replaces a page which soon will be needed

• LRU makes no difference between random IO and sequential
IO

There will be some numbers shown in the “Results” section later

Enhancing recovery using an SSD buffer pool extension 22 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Temperature based replacement
Why not just use LRU?

• LRU: Replace the page that was not needed for the longest
time

• TAC: Replace the page that has the lowest probability of
being read

• With LRU, it may happen that a page which gets read only
once replaces a page which soon will be needed

• LRU makes no difference between random IO and sequential
IO

There will be some numbers shown in the “Results” section later

Enhancing recovery using an SSD buffer pool extension 22 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Metadata

• Metadata is saved in the main memory

• A hashtable is used to assign the position of the page on the
HDD to the position of the page on the SSD, if the page is
existing on the SSD

• The temperature statistics are also saved with a region based
hashtable

• To identify the coldest page a heap is maintained:

• When the coldest page needs to be identified, the temperature
of the root of the heap gets updated 5 times

• After that, the root is chosen as the coldest page
• The root may not be the absolute coldest page after the 5

updates, but the time needed is still logarithmic (O(n)
otherwise with heapify()):

O(5 ∗ log(n)) = O(log(n))

Enhancing recovery using an SSD buffer pool extension 23 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Metadata

• Metadata is saved in the main memory

• A hashtable is used to assign the position of the page on the
HDD to the position of the page on the SSD, if the page is
existing on the SSD

• The temperature statistics are also saved with a region based
hashtable

• To identify the coldest page a heap is maintained:

• When the coldest page needs to be identified, the temperature
of the root of the heap gets updated 5 times

• After that, the root is chosen as the coldest page
• The root may not be the absolute coldest page after the 5

updates, but the time needed is still logarithmic (O(n)
otherwise with heapify()):

O(5 ∗ log(n)) = O(log(n))

Enhancing recovery using an SSD buffer pool extension 23 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Metadata

• Metadata is saved in the main memory

• A hashtable is used to assign the position of the page on the
HDD to the position of the page on the SSD, if the page is
existing on the SSD

• The temperature statistics are also saved with a region based
hashtable

• To identify the coldest page a heap is maintained:

• When the coldest page needs to be identified, the temperature
of the root of the heap gets updated 5 times

• After that, the root is chosen as the coldest page
• The root may not be the absolute coldest page after the 5

updates, but the time needed is still logarithmic (O(n)
otherwise with heapify()):

O(5 ∗ log(n)) = O(log(n))

Enhancing recovery using an SSD buffer pool extension 23 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Metadata

• Metadata is saved in the main memory

• A hashtable is used to assign the position of the page on the
HDD to the position of the page on the SSD, if the page is
existing on the SSD

• The temperature statistics are also saved with a region based
hashtable

• To identify the coldest page a heap is maintained:

• When the coldest page needs to be identified, the temperature
of the root of the heap gets updated 5 times

• After that, the root is chosen as the coldest page
• The root may not be the absolute coldest page after the 5

updates, but the time needed is still logarithmic (O(n)
otherwise with heapify()):

O(5 ∗ log(n)) = O(log(n))

Enhancing recovery using an SSD buffer pool extension 23 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Replacement logic

The temperature based replacement algorithm was compared to:

• First in first out (FIFO)

• Least recently used (LRU)

• Clock

• Adaptive replacement (ARC)

• Optimal replacement (OPT / MIN)

• No cache at all

Enhancing recovery using an SSD buffer pool extension 24 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Replacement logic

The temperature based replacement algorithm was compared to:

• First in first out (FIFO):
First page written is the first page to be replaced

• Least recently used (LRU)

• Clock

• Adaptive replacement (ARC)

• Optimal replacement (OPT / MIN)

• No cache at all

Enhancing recovery using an SSD buffer pool extension 24 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Replacement logic

The temperature based replacement algorithm was compared to:

• First in first out (FIFO)

• Least recently used (LRU):
The page which was not used for the longest time gets
replaced

• Clock

• Adaptive replacement (ARC)

• Optimal replacement (OPT / MIN)

• No cache at all

Enhancing recovery using an SSD buffer pool extension 24 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Replacement logic

The temperature based replacement algorithm was compared to:

• First in first out (FIFO)

• Least recently used (LRU)

• Clock:
Every cached page has a flag indicating whether the page was
accessed. A pointer goes through every page then and
chooses the first page with disabled flag, but for each page
pointed at with enabled flag the flag also gets disabled.

• Adaptive replacement (ARC)

• Optimal replacement (OPT / MIN)

• No cache at all

Enhancing recovery using an SSD buffer pool extension 24 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Replacement logic

The temperature based replacement algorithm was compared to:

• First in first out (FIFO)

• Least recently used (LRU)

• Clock

• Adaptive replacement (ARC):
Two sets of pages: One for pages accessed recently and one
for pages accessed often (page was in the first set and got
accessed again). These two sets get resized automatically to
better utilize the available space.

• Optimal replacement (OPT / MIN)

• No cache at all

Enhancing recovery using an SSD buffer pool extension 24 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Replacement logic

The temperature based replacement algorithm was compared to:

• First in first out (FIFO)

• Least recently used (LRU)

• Clock

• Adaptive replacement (ARC)

• Optimal replacement (OPT / MIN):
A offline-algorithm which calculates the best page
replacement strategy by looking at all future page accesses.

• No cache at all

Enhancing recovery using an SSD buffer pool extension 24 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Replacement logic
Execution time with different page replacement algorithms

⇒ TAC is the best online-algorithm in terms of
execution time which means it is able to utilize the
cache the best way

Background:
• Main memory

bufferpool size:
160 MB

• SSD bufferpool
size: 320 MB

• Database size:
15 GB

• Recorded
TPC-H1 query
workload (500
queries)

1: TPC-H: Long running
queries with high complexity

Enhancing recovery using an SSD buffer pool extension 25 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System
Results for the whole system

• The execution of the testing
transactions needed up to 12x less
execution time with 8 queries
running parallel (3x less with one
query)

• The speed-up is greater if there are
more queries running parallel because
the temperature informations are
gathered faster and the SSD can be
exploited further

• The SSD-Cache was capable of
serving up to 83% of the reads
without the HDD in this environment

Background:
• Main memory

bufferpool size:
200 MB

• SSD bufferpool
size: 1.2 GB

• Database size:
5 GB

• Working set
size: 1.45 GB

Enhancing recovery using an SSD buffer pool extension 26 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System
Results for the whole system

• The execution of the testing
transactions needed up to 12x less
execution time with 8 queries
running parallel (3x less with one
query)

• The speed-up is greater if there are
more queries running parallel because
the temperature informations are
gathered faster and the SSD can be
exploited further

• The SSD-Cache was capable of
serving up to 83% of the reads
without the HDD in this environment

Background:
• Main memory

bufferpool size:
200 MB

• SSD bufferpool
size: 1.2 GB

• Database size:
5 GB

• Working set
size: 1.45 GB

Enhancing recovery using an SSD buffer pool extension 26 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Finding a cold page in constant time
Approach

• Finding the coldest page needs O(log(n)) time

• Most of the time, only a sufficient cold page is needed, which
is possible in O(1)

• Temperatur range gets divided into a fixed amount of bands
realized as linked lists (50-100 bands are proposed)

• Pages get moved between linked lists when their temperature
gets updated

• To find a cold page, the first non-empty band is searched from
which the first element gets removed

Enhancing recovery using an SSD buffer pool extension 27 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Finding a cold page in constant time
Approach

• Finding the coldest page needs O(log(n)) time

• Most of the time, only a sufficient cold page is needed, which
is possible in O(1)

• Temperatur range gets divided into a fixed amount of bands
realized as linked lists (50-100 bands are proposed)

• Pages get moved between linked lists when their temperature
gets updated

• To find a cold page, the first non-empty band is searched from
which the first element gets removed

Enhancing recovery using an SSD buffer pool extension 27 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Finding a cold page in constant time
Approach

• Finding the coldest page needs O(log(n)) time

• Most of the time, only a sufficient cold page is needed, which
is possible in O(1)

• Temperatur range gets divided into a fixed amount of bands
realized as linked lists (50-100 bands are proposed)

• Pages get moved between linked lists when their temperature
gets updated

• To find a cold page, the first non-empty band is searched from
which the first element gets removed

Enhancing recovery using an SSD buffer pool extension 27 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Finding a cold page in constant time
Approach

• Finding the coldest page needs O(log(n)) time

• Most of the time, only a sufficient cold page is needed, which
is possible in O(1)

• Temperatur range gets divided into a fixed amount of bands
realized as linked lists (50-100 bands are proposed)

• Pages get moved between linked lists when their temperature
gets updated

• To find a cold page, the first non-empty band is searched from
which the first element gets removed

Enhancing recovery using an SSD buffer pool extension 27 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Finding a cold page in constant time

• Besides the gain in efficiency, the approach leads to a
smoothing-effect:

• Pages that belong together are more likely to have the same
temperature

• Without the smoothing, already read pages belonging to a
table scan may have a higher temperature than pages to be
read. This leads to a higher probability of the upcoming pages
to be overwritten.

• The downside of this extension is that it is only better in
theory. Measurements led to the realization, that the
heap-solution is better in practise.

• To combine the smoothing effect with the heap-solution, a
new page only gets accepted if it is at least 1% warmer than
the coldest page.

Enhancing recovery using an SSD buffer pool extension 28 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Finding a cold page in constant time

• Besides the gain in efficiency, the approach leads to a
smoothing-effect:

• Pages that belong together are more likely to have the same
temperature

• Without the smoothing, already read pages belonging to a
table scan may have a higher temperature than pages to be
read. This leads to a higher probability of the upcoming pages
to be overwritten.

• The downside of this extension is that it is only better in
theory. Measurements led to the realization, that the
heap-solution is better in practise.

• To combine the smoothing effect with the heap-solution, a
new page only gets accepted if it is at least 1% warmer than
the coldest page.

Enhancing recovery using an SSD buffer pool extension 28 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Finding a cold page in constant time

• Besides the gain in efficiency, the approach leads to a
smoothing-effect:

• Pages that belong together are more likely to have the same
temperature

• Without the smoothing, already read pages belonging to a
table scan may have a higher temperature than pages to be
read. This leads to a higher probability of the upcoming pages
to be overwritten.

• The downside of this extension is that it is only better in
theory. Measurements led to the realization, that the
heap-solution is better in practise.

• To combine the smoothing effect with the heap-solution, a
new page only gets accepted if it is at least 1% warmer than
the coldest page.

Enhancing recovery using an SSD buffer pool extension 28 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Write-back caching

• It is also possible to include the previously
presented write-back concept into the
SSD-cache approach

• 1st solution: A part of the SSD gets reserved
for dirty pages. When it is filled, the pages
get sorted by their location on the HDD and
written to the HDD sequentially.

Enhancing recovery using an SSD buffer pool extension 29 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Write-back caching

• It is also possible to include the previously
presented write-back concept into the
SSD-cache approach

• 2nd solution:

• No space gets reserved and the pages are
marked as dirty directly.

• When a certain threshold is exceeded, the
pages are sorted, written to the HDD and
marked as clean.

Enhancing recovery using an SSD buffer pool extension 29 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

Write-back caching
Results

⇒ The speed-up of the system can be even greater by
using write-back caching

Background:
• Recorded

TPC-C1 query
workload

• Only the writes
are considered

• Writes are
written to the
SSD

• When the cache
is filled, the
pages are sorted
and written to
the HDD

1: TPC-C: Trading transactions

Enhancing recovery using an SSD buffer pool extension 30 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Outline

1 Introduction

2 SSD-Caching

3 SSD-Caching and Recovery

Motivation

Update-Write-Update

Write-Update

Lazy-Update Following an Update-Write

4 Conclusion

Enhancing recovery using an SSD buffer pool extension 31 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Motivation
The Problem

• Prior to the crash, the cache was filled with the data currently
processed

• After the crash, the cache has to be handled as if it was
empty because the informations about the content (metadata)
were saved non-persistent in the main memory

• If the cache would still be available, it would likely contain the
data needed during recovery

Enhancing recovery using an SSD buffer pool extension 32 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Motivation
The Problem

• Prior to the crash, the cache was filled with the data currently
processed

• After the crash, the cache has to be handled as if it was
empty because the informations about the content (metadata)
were saved non-persistent in the main memory

• If the cache would still be available, it would likely contain the
data needed during recovery

Enhancing recovery using an SSD buffer pool extension 32 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Motivation
The Problem

• Prior to the crash, the cache was filled with the data currently
processed

• After the crash, the cache has to be handled as if it was
empty because the informations about the content (metadata)
were saved non-persistent in the main memory

• If the cache would still be available, it would likely contain the
data needed during recovery

Enhancing recovery using an SSD buffer pool extension 32 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Motivation
Recovery

But how often does the system crash? Is the increased complexity
worth it?

Situation:

• If the databasesystem crashes 3x a week ([3]) and each
recovery-process takes 6 minutes (time without a cache for
the system in the previous section)

• ... then the system is offline for around 16 hours per year only
because of recovery

• This means for example that the employees can’t work but
still get paid on two days per year

• A company with 100 employees relying on the database looses
more than 50,000 Euro/year then

⇒ The time needed for recovery is very important!
Enhancing recovery using an SSD buffer pool extension 33 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Motivation
Recovery

But how often does the system crash? Is the increased complexity
worth it?

Situation:

• If the databasesystem crashes 3x a week ([3]) and each
recovery-process takes 6 minutes (time without a cache for
the system in the previous section)

• ... then the system is offline for around 16 hours per year only
because of recovery

• This means for example that the employees can’t work but
still get paid on two days per year

• A company with 100 employees relying on the database looses
more than 50,000 Euro/year then

⇒ The time needed for recovery is very important!
Enhancing recovery using an SSD buffer pool extension 33 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Motivation
Recovery

But how often does the system crash? Is the increased complexity
worth it?

Situation:

• If the databasesystem crashes 3x a week ([3]) and each
recovery-process takes 6 minutes (time without a cache for
the system in the previous section)

• ... then the system is offline for around 16 hours per year only
because of recovery

• This means for example that the employees can’t work but
still get paid on two days per year

• A company with 100 employees relying on the database looses
more than 50,000 Euro/year then

⇒ The time needed for recovery is very important!
Enhancing recovery using an SSD buffer pool extension 33 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Motivation
Recovery

But how often does the system crash? Is the increased complexity
worth it?

Situation:

• If the databasesystem crashes 3x a week ([3]) and each
recovery-process takes 6 minutes (time without a cache for
the system in the previous section)

• ... then the system is offline for around 16 hours per year only
because of recovery

• This means for example that the employees can’t work but
still get paid on two days per year

• A company with 100 employees relying on the database looses
more than 50,000 Euro/year then

⇒ The time needed for recovery is very important!
Enhancing recovery using an SSD buffer pool extension 33 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Motivation
Recovery

But how often does the system crash? Is the increased complexity
worth it?

Situation:

• If the databasesystem crashes 3x a week ([3]) and each
recovery-process takes 6 minutes (time without a cache for
the system in the previous section)

• ... then the system is offline for around 16 hours per year only
because of recovery

• This means for example that the employees can’t work but
still get paid on two days per year

• A company with 100 employees relying on the database looses
more than 50,000 Euro/year then

⇒ The time needed for recovery is very important!
Enhancing recovery using an SSD buffer pool extension 33 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Approaches

I’m going to describe three approaches which all aim at keeping
the cache usable after the crash:

• Update-Write-Update (based on the SSD-Cache explained
previously)

• Write-Update (used by Facebook)

• Lazy-Update Following an Update-Write

Enhancing recovery using an SSD buffer pool extension 34 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
System setup

Step 4.1: Invalidate Metadata

• New step!

• The first “Update”

• If a new page gets
accepted by the
replacement algorithm or
a dirty page is updated
the slot where it will be
written in gets marked as
invalid

Enhancing recovery using an SSD buffer pool extension 35 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
System setup

Step 4.2: Write Page

• This step is not new

• The “Write”-part

• The new page is written
to the SSD

Enhancing recovery using an SSD buffer pool extension 35 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
System setup

Step 4.3: Update Metadata

• New step!

• The second “Update”

• After the write-process is
finished, the written page
gets marked as valid

• The whole process ensures
that the pages on the
SSD are always identical
to those on the HDD

Enhancing recovery using an SSD buffer pool extension 35 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
Metadata

• The information about the SSD-slots and which pages they
contain is saved to the SSD

• Its size is less than 1% of the whole SSD-Cache, so it may
even be saved on faster but also higher priced PCM-Memory

• The temperature statistics are also saved on the SSD so the
cache can be used after a crash like it was used before the
crash

Enhancing recovery using an SSD buffer pool extension 36 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
Metadata

• The information about the SSD-slots and which pages they
contain is saved to the SSD

• Its size is less than 1% of the whole SSD-Cache, so it may
even be saved on faster but also higher priced PCM-Memory

• The temperature statistics are also saved on the SSD so the
cache can be used after a crash like it was used before the
crash

Enhancing recovery using an SSD buffer pool extension 36 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
Metadata

• The information about the SSD-slots and which pages they
contain is saved to the SSD

• Its size is less than 1% of the whole SSD-Cache, so it may
even be saved on faster but also higher priced PCM-Memory

• The temperature statistics are also saved on the SSD so the
cache can be used after a crash like it was used before the
crash

Enhancing recovery using an SSD buffer pool extension 36 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
Results (1/4): Throughput after a crash

Background:
• Main memory bufferpool size: 1.2 GB

• SSD bufferpool size: 3.6 GB

• Database size: 48 GB

• TPC-C Benchmark

Results:

Without persistence:

• Recovery finishes after 5 minutes

• Performance stabilizes after 10
minutes

With persistence:

• Recovery finishes after 4 minutes

• Performance stabilizes after 8
minutes

⇒ Recovery needs 20% less time
with persistence

Enhancing recovery using an SSD buffer pool extension 37 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
Results (2/4): Reads after a crash

Background:
• Main memory bufferpool size: 1.2 GB

• SSD bufferpool size: 3.6 GB

• Database size: 48 GB

• TPC-C Benchmark

Results:

Without persistence:

• SSD-Cache gets used after 390
seconds

With persistence:

• SSD-Cache gets used right from
the beginning

• Most of the data needed gets read
from the SSD

• The recovery-process finishes
faster (compare the stable state)

⇒ The SSD-Cache is able to support
the recovery-process

Enhancing recovery using an SSD buffer pool extension 38 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
Results (3/4): CPU-load

Background:
• Dual core AMD CPU (3GHz)

• Main memory bufferpool size: 1.2 GB

• SSD bufferpool size: 3.6 GB

• Database size: 48 GB

• TPC-C Benchmark

Results:

Without persistence:

• The CPU-load sways around 15%

With persistence:

• The CPU-load sways around 30%

⇒ The higher complexity also
inceases the CPU-load

Enhancing recovery using an SSD buffer pool extension 39 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
Results (4/4): Impact on the I/O performance

Background:
• Main memory bufferpool size: 1.2 GB

• SSD bufferpool size: 3.6 GB

• Database size: 48 GB

• TPC-C Benchmark

Result:

Without persistence:

• “ramdisk”

With persistence:

• “fusionio 80GB SLC”

• “fusionio 320GB MLC”

⇒ In this scenario the I/O performance is
the same with and without persistence

Enhancing recovery using an SSD buffer pool extension 40 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
The idea

• Write-Update is used by Facebook with their
FlashCache-software

• Write-Update tries to drop the first “Update” (the
invalidation) from the “Update-Write-Update”-approach

• The purpose is to cut down the load on the system (IO- and
CPU-load)

• Besides, the cache will also be used to buffer writes to the
HDD

• In contrast to the previous approach, Write-Update does not
use a temperature based algorithm (FIFO or LRU is used)

Enhancing recovery using an SSD buffer pool extension 41 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
The idea

• Write-Update is used by Facebook with their
FlashCache-software

• Write-Update tries to drop the first “Update” (the
invalidation) from the “Update-Write-Update”-approach

• The purpose is to cut down the load on the system (IO- and
CPU-load)

• Besides, the cache will also be used to buffer writes to the
HDD

• In contrast to the previous approach, Write-Update does not
use a temperature based algorithm (FIFO or LRU is used)

Enhancing recovery using an SSD buffer pool extension 41 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
The idea

• Write-Update is used by Facebook with their
FlashCache-software

• Write-Update tries to drop the first “Update” (the
invalidation) from the “Update-Write-Update”-approach

• The purpose is to cut down the load on the system (IO- and
CPU-load)

• Besides, the cache will also be used to buffer writes to the
HDD

• In contrast to the previous approach, Write-Update does not
use a temperature based algorithm (FIFO or LRU is used)

Enhancing recovery using an SSD buffer pool extension 41 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
The idea

• Write-Update is used by Facebook with their
FlashCache-software

• Write-Update tries to drop the first “Update” (the
invalidation) from the “Update-Write-Update”-approach

• The purpose is to cut down the load on the system (IO- and
CPU-load)

• Besides, the cache will also be used to buffer writes to the
HDD

• In contrast to the previous approach, Write-Update does not
use a temperature based algorithm (FIFO or LRU is used)

Enhancing recovery using an SSD buffer pool extension 41 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
The approach

Like in the first approach, only the differences to the SSD-Cache
described earlier will be shown

A write to the SSD (dirty or updated page) is handled the
following way:

1 Write the data to the SSD and mark it as dirty (the dirty -flag
is not set before the write like with Update-Write-Update)

2 Write the dirty pages to the HDD with background-threads
based on FIFO (or LRU) and in sequential order ...

1 ... at an appropriate time
2 ... or if a certain threshold is exceeded
3 ... or if the data is buffered for too long (default: 15 minutes)

3 After the write of the dirty pages, mark them as valid

Enhancing recovery using an SSD buffer pool extension 42 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
The approach

Like in the first approach, only the differences to the SSD-Cache
described earlier will be shown

A write to the SSD (dirty or updated page) is handled the
following way:

1 Write the data to the SSD and mark it as dirty (the dirty -flag
is not set before the write like with Update-Write-Update)

2 Write the dirty pages to the HDD with background-threads
based on FIFO (or LRU) and in sequential order ...

1 ... at an appropriate time
2 ... or if a certain threshold is exceeded
3 ... or if the data is buffered for too long (default: 15 minutes)

3 After the write of the dirty pages, mark them as valid

Enhancing recovery using an SSD buffer pool extension 42 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
The approach

Like in the first approach, only the differences to the SSD-Cache
described earlier will be shown

A write to the SSD (dirty or updated page) is handled the
following way:

1 Write the data to the SSD and mark it as dirty (the dirty -flag
is not set before the write like with Update-Write-Update)

2 Write the dirty pages to the HDD with background-threads
based on FIFO (or LRU) and in sequential order ...

1 ... at an appropriate time
2 ... or if a certain threshold is exceeded
3 ... or if the data is buffered for too long (default: 15 minutes)

3 After the write of the dirty pages, mark them as valid

Enhancing recovery using an SSD buffer pool extension 42 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
The approach

Like in the first approach, only the differences to the SSD-Cache
described earlier will be shown

A write to the SSD (dirty or updated page) is handled the
following way:

1 Write the data to the SSD and mark it as dirty (the dirty -flag
is not set before the write like with Update-Write-Update)

2 Write the dirty pages to the HDD with background-threads
based on FIFO (or LRU) and in sequential order ...

1 ... at an appropriate time
2 ... or if a certain threshold is exceeded
3 ... or if the data is buffered for too long (default: 15 minutes)

3 After the write of the dirty pages, mark them as valid

Enhancing recovery using an SSD buffer pool extension 42 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
Recovery

• Write-Update distinguishes between a forced reboot and a
crash

• In case of a forced reboot, the metadata (and the dirty/valid
flags alongside) gets flushed to the SSD and a flag indicating
this is written

• After the reboot both the dirty and the valid pages are used

• In case of a crash, no flag is written and only the dirty pages
will be used

• The valid pages can not be used because they may just got
overwritten but the metadata (dirty -flag and page address on
the HDD) was not saved yet

• Partial writes will be detected by using checksums (address on
the HDD needed)

• Only around 14% of the cache can be used after a crash ([6])

Enhancing recovery using an SSD buffer pool extension 43 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
Recovery

• Write-Update distinguishes between a forced reboot and a
crash

• In case of a forced reboot, the metadata (and the dirty/valid
flags alongside) gets flushed to the SSD and a flag indicating
this is written

• After the reboot both the dirty and the valid pages are used

• In case of a crash, no flag is written and only the dirty pages
will be used

• The valid pages can not be used because they may just got
overwritten but the metadata (dirty -flag and page address on
the HDD) was not saved yet

• Partial writes will be detected by using checksums (address on
the HDD needed)

• Only around 14% of the cache can be used after a crash ([6])

Enhancing recovery using an SSD buffer pool extension 43 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Write-Update
Recovery

• Write-Update distinguishes between a forced reboot and a
crash

• In case of a forced reboot, the metadata (and the dirty/valid
flags alongside) gets flushed to the SSD and a flag indicating
this is written

• After the reboot both the dirty and the valid pages are used

• In case of a crash, no flag is written and only the dirty pages
will be used

• The valid pages can not be used because they may just got
overwritten but the metadata (dirty -flag and page address on
the HDD) was not saved yet

• Partial writes will be detected by using checksums (address on
the HDD needed)

• Only around 14% of the cache can be used after a crash ([6])

Enhancing recovery using an SSD buffer pool extension 43 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Lazy-Update Following an Update-Write (“LUFUW”)
The idea

The idea of LUFUW is to combine the advantages of
Update-Write-Update and Write-Update

• With Update-Write-Update the whole cache can be used even
after a crash

• Write-Update uses less operations and by this brings less load
to the system

Enhancing recovery using an SSD buffer pool extension 44 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Lazy-Update Following an Update-Write (“LUFUW”)
The approach

1st step: “Update”

• Write a dirty -flag indicating that the
data is going to be written

• The flag is written to the copy of the
metadata in the RAM and the SSD

Enhancing recovery using an SSD buffer pool extension 45 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Lazy-Update Following an Update-Write (“LUFUW”)
The approach

2nd step: “Write”

• After the page is written to the SSD,
the dirty -flag is disabled but only
inside the RAM

• After that, the write is reported as
being finished to the system

Enhancing recovery using an SSD buffer pool extension 45 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Lazy-Update Following an Update-Write (“LUFUW”)
The approach

3rd step: “Lazy-Update”

• The next time step 1 is executed or
other metadata is written to the same
block on the SSD, the dirty -flag gets
also reseted on the SSD

• This approach exploits the fact that one
4KB block of a SSD never only contains
the metadata of one page (in this
approach for example 240
metadata-entries fit in one block), but
still with every metadata-update the
whole block is overwritten

Enhancing recovery using an SSD buffer pool extension 45 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Lazy-Update Following an Update-Write (“LUFUW”)
Results

⇒With LUFUW the recovery-process needs only
around half of the time of Write-Update after a
crash

Background:
• BL: Restart with empty cache

(LUFUW)

• GR: Restart with flushed
metadata (LUFUW)

• FC-CR: Write-Update after a
crash

• LUFUW-CR: LUFUW after a
crash

• Database size: 100,000,000
rowsecsdr

• No information about
RAM/Cache-size

Enhancing recovery using an SSD buffer pool extension 46 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Outline

1 Introduction

2 SSD-Caching

3 SSD-Caching and Recovery

4 Conclusion

Enhancing recovery using an SSD buffer pool extension 47 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Summary and Bibliography

1 SSDs are fast and HDDs are
cheap – therefore both should
be combined!

2 SSD-Caching is a great way to
make the databasesystem faster
(up to 12x in some cases)
through faster I/O

3 The needed time for recovery is
critical, but with persistent
SSD-Caching it can be reduced
significantly

• BHATTACHARJEE, Bishwaranjan, et al.
Enhancing recovery using an SSD buffer pool
extension. In: Proceedings of the Seventh
International Workshop on Data Management on
New Hardware. ACM, 2011. S. 10-16.

• CANIM, Mustafa, et al. SSD bufferpool
extensions for database systems. Proceedings of
the VLDB Endowment, 2010, 3. Jg., Nr. 1-2, S.
1435-1446.

• HAERDER, Theo; REUTER, Andreas. Principles
of transaction-oriented database recovery. ACM
Computing Surveys (CSUR), 1983, 15. Jg., Nr. 4,
S. 287-317.

• SRINIVASAN, Mohan; CALLAGHAN, Mark.
FlashCache. 2010;
http://github.com/facebook/flashcache

• SRINIVASAN, M.; SAAB, P. Flashcache: a
general purpose writeback block cache for linux,
2011.

• YANG, Jing; YANG, Qing. A New Metadata
Update Method for Fast Recovery of SSD Cache.
In: Networking, Architecture and Storage (NAS),
2013 IEEE Eighth International Conference on.
IEEE, 2013. S. 60-67.

Enhancing recovery using an SSD buffer pool extension 48 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Summary and Bibliography

1 SSDs are fast and HDDs are
cheap – therefore both should
be combined!

2 SSD-Caching is a great way to
make the databasesystem faster
(up to 12x in some cases)
through faster I/O

3 The needed time for recovery is
critical, but with persistent
SSD-Caching it can be reduced
significantly

• BHATTACHARJEE, Bishwaranjan, et al.
Enhancing recovery using an SSD buffer pool
extension. In: Proceedings of the Seventh
International Workshop on Data Management on
New Hardware. ACM, 2011. S. 10-16.

• CANIM, Mustafa, et al. SSD bufferpool
extensions for database systems. Proceedings of
the VLDB Endowment, 2010, 3. Jg., Nr. 1-2, S.
1435-1446.

• HAERDER, Theo; REUTER, Andreas. Principles
of transaction-oriented database recovery. ACM
Computing Surveys (CSUR), 1983, 15. Jg., Nr. 4,
S. 287-317.

• SRINIVASAN, Mohan; CALLAGHAN, Mark.
FlashCache. 2010;
http://github.com/facebook/flashcache

• SRINIVASAN, M.; SAAB, P. Flashcache: a
general purpose writeback block cache for linux,
2011.

• YANG, Jing; YANG, Qing. A New Metadata
Update Method for Fast Recovery of SSD Cache.
In: Networking, Architecture and Storage (NAS),
2013 IEEE Eighth International Conference on.
IEEE, 2013. S. 60-67.

Enhancing recovery using an SSD buffer pool extension 48 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Summary and Bibliography

1 SSDs are fast and HDDs are
cheap – therefore both should
be combined!

2 SSD-Caching is a great way to
make the databasesystem faster
(up to 12x in some cases)
through faster I/O

3 The needed time for recovery is
critical, but with persistent
SSD-Caching it can be reduced
significantly

• BHATTACHARJEE, Bishwaranjan, et al.
Enhancing recovery using an SSD buffer pool
extension. In: Proceedings of the Seventh
International Workshop on Data Management on
New Hardware. ACM, 2011. S. 10-16.

• CANIM, Mustafa, et al. SSD bufferpool
extensions for database systems. Proceedings of
the VLDB Endowment, 2010, 3. Jg., Nr. 1-2, S.
1435-1446.

• HAERDER, Theo; REUTER, Andreas. Principles
of transaction-oriented database recovery. ACM
Computing Surveys (CSUR), 1983, 15. Jg., Nr. 4,
S. 287-317.

• SRINIVASAN, Mohan; CALLAGHAN, Mark.
FlashCache. 2010;
http://github.com/facebook/flashcache

• SRINIVASAN, M.; SAAB, P. Flashcache: a
general purpose writeback block cache for linux,
2011.

• YANG, Jing; YANG, Qing. A New Metadata
Update Method for Fast Recovery of SSD Cache.
In: Networking, Architecture and Storage (NAS),
2013 IEEE Eighth International Conference on.
IEEE, 2013. S. 60-67.

Enhancing recovery using an SSD buffer pool extension 48 / 48


	Introduction
	Motivation
	SSDs in Databasesystems

	SSD-Caching
	System overview
	Replacement logic
	Metadata
	Results
	Possible extensions

	SSD-Caching and Recovery
	Motivation
	Update-Write-Update
	Write-Update
	Lazy-Update Following an Update-Write

	Conclusion

