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Overview
What’s going to be said

• This presentation is about SSDs:
• Using SSDs to speed up the database system
• Involving recovery and speed it up as well

• In the introduction SSDs and some techniques to use them
will be presented

• After that I will focus on presenting an approach for using the
SSD as a read cache (“SSD buffer pool extension”)

• Based on that approach, recovery will be added and different
methods of reusing a previously filled cache will be presented
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Motivation SSDs in Databasesystems

Role of storage medium

The used storage medium has a great effect on the database
system:

• Affects how the system interacts with the drive

• Affects how fast the system is

• Affects how much money the system costs

• Affects how reliable the system is
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Motivation SSDs in Databasesystems

SSDs
Characteristics

In this work the focus was set on SSDs

SSDs are the most important storage medium next to hard drives:

• Store data permanent

• Have a high data density

• Are solid (technically and mechanical)

• Don’t consume much electrical power
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SSDs
Advantage

The most important benefit is the faster access time in terms of
IOPS (Input/Output operations per second)

• Modern SSDs reach up to 100.000 IOPS

• Modern HDDs reach up to 200 IOPS

• They can’t spin faster than a natural limit
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SSDs
Disadvantage

The most important drawback are the costs

For 90 euro you can get ...

• a modern SSD with 256 gigabyte

• or a modern HDD with 3 terabyte
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Motivation SSDs in Databasesystems

SSDs vs. HDDs
Final comparison

SSDs
• up to 100.000 IOPS

• around 1000 IOPS
Euro

• around 0.35 Euro
Gigabyte

HDDs

• up to 200 IOPS

• around 2 IOPS
Euro

• around 0.03 Euro
Gigabyte

Both have their strengths!
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Entire database on SSD

• Too expensive, as shown in the
previous section!

• HDDs are better suited as basic
storage medium

From now on: HDD on the lowest level in the storage hierarchy
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Motivation SSDs in Databasesystems

SSD as disk on same level
System overview

• SSD is on the same level in the
storage hierachy level as the HDD

• Both storage mediums serve the file
requests
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How it works

• SSD is just another storage medium
on the same level as the HDD

• Indexes or the fact table of a
data-warehouse may be saved there
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Motivation SSDs in Databasesystems

SSD as disk on same level
Disadvantages

• Data has to be moved manually!

• Admin may collect usage statistics
on runtime and decides what to
move then

• Data has to be moved again once
the access pattern changes
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Motivation SSDs in Databasesystems

Write-back-cache
System overview

• SSD is on the level above the HDD

• HDD serves reads

• SSD supports writes
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Write-back-cache
How it works

• Writes are buffered with the SSD

• With the help of the SSD the writes
get transformed into sequential writes

• When there is less load on the
system, the writes are handed over
to the HDD

• Exploits the strength of SSDs in terms
of random IO

• Exploits the strength of HDDs in
terms of sequential IO
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Motivation SSDs in Databasesystems

SSD buffer pool extension (“SSD-Cache”)
System overview

• SSD is on the level above the HDD

• Writes go primarily to the HDD

• SSD supports reads
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Motivation SSDs in Databasesystems

SSD-Cache
How it works

• SSD acts as a read cache

• Gets filled with data automatically

• Access patterns are recognized

• Exploits the strength of SSDs in terms
of access time

• Exploits the strength of HDDs in
terms of cheap space

This approach combined with the recovery-aspect will be
presented!

Enhancing recovery using an SSD buffer pool extension 16 / 48
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Overview

• An approach based on the
“SSD-Cache”-concept will be presented

• It is designed as a write-through-cache
(no buffering for writes)

• It uses a temperature based page
replacement algorithm (“TAC”)
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System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

1st step: Read record from main
memory

• Check if the read can be served
from main memory

• If the memory can serve the
request: We are done

• If not: Go to step 2

Enhancing recovery using an SSD buffer pool extension 19 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

2nd step: Read page from SSD

• Update the temperature of the
region to read from

• Check if the read can be served
from the SSD

• If the SSD can serve the
request: We are done

• If not: Go to step 3
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System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

3rd step: Read page from HDD

• All data is always present on the
HDD so the request will finally
be served

• Besides, the read data gets
passed on to the replacement
algorithm
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System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

4th step: Write page to SSD

• If the page gets accepted by the
TAC-algorithm (meaning it is
warmer than the coldest page
cached) it will be saved to the
SSD
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System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

5th step: Displace dirty pages

• When a dirty page gets
displaced from the main
memory: Go to step 6
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System overview Replacement logic Metadata Results Possible extensions

System setup
How the system works

6th step: Update copy of page

• The page gets updated on the
HDD and (if present) in the
SSD-Cache

• This means the pages in the
SSD-Cache are always in the
same state as their copy on the
HDD
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Temperature based replacement
How the algorithm works

Situation: Let pnew be a page read from the HDD (means: it is not
present on the SSD)

• Case 1: SSD-Cache is not full:

• Every page gets accepted
• pnew is saved on the SSD

• Case 2: SSD-Cache is full:

• If pnew is warmer than the coldest page pcold on the SSD:
pnew overwrites pcold

• Else: pnew gets rejected
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Temperature based replacement
How the temperatures are calculated

• Temperatures get updated when pages are read from the
HDD or the SSD

• It is not relevant whether the page gets accepted or rejected by
the replacement algorithm

• This is how the system adapts to access patterns

• Temperatures are managed at the level of regions (e.g. 32
pages)

• This makes the temperatures meaningful faster and uses less
storage

• Random IO is prefered over sequential IO

• To detect if the access type is random or sequential, a
windowing technique is utilized

• If at least 2 out of 20 reads go to the same region, those reads
are declared as sequential IO

Enhancing recovery using an SSD buffer pool extension 21 / 48
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Temperature based replacement
Why not just use LRU?

• LRU: Replace the page that was not needed for the longest
time

• TAC: Replace the page that has the lowest probability of
being read

• With LRU, it may happen that a page which gets read only
once replaces a page which soon will be needed

• LRU makes no difference between random IO and sequential
IO

There will be some numbers shown in the “Results” section later
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Metadata

• Metadata is saved in the main memory

• A hashtable is used to assign the position of the page on the
HDD to the position of the page on the SSD, if the page is
existing on the SSD

• The temperature statistics are also saved with a region based
hashtable

• To identify the coldest page a heap is maintained:

• When the coldest page needs to be identified, the temperature
of the root of the heap gets updated 5 times

• After that, the root is chosen as the coldest page
• The root may not be the absolute coldest page after the 5

updates, but the time needed is still logarithmic (O(n)
otherwise with heapify()):

O(5 ∗ log(n)) = O(log(n))

Enhancing recovery using an SSD buffer pool extension 23 / 48
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• After that, the root is chosen as the coldest page
• The root may not be the absolute coldest page after the 5

updates, but the time needed is still logarithmic (O(n)
otherwise with heapify()):

O(5 ∗ log(n)) = O(log(n))
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Replacement logic

The temperature based replacement algorithm was compared to:
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Replacement logic

The temperature based replacement algorithm was compared to:

• First in first out (FIFO)

• Least recently used (LRU)

• Clock

• Adaptive replacement (ARC)

• Optimal replacement (OPT / MIN):
A offline-algorithm which calculates the best page
replacement strategy by looking at all future page accesses.

• No cache at all
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Replacement logic
Execution time with different page replacement algorithms

⇒ TAC is the best online-algorithm in terms of
execution time which means it is able to utilize the
cache the best way

Background:
• Main memory

bufferpool size:
160 MB

• SSD bufferpool
size: 320 MB

• Database size:
15 GB

• Recorded
TPC-H1 query
workload (500
queries)

1: TPC-H: Long running
queries with high complexity
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System
Results for the whole system

• The execution of the testing
transactions needed up to 12x less
execution time with 8 queries
running parallel (3x less with one
query)

• The speed-up is greater if there are
more queries running parallel because
the temperature informations are
gathered faster and the SSD can be
exploited further

• The SSD-Cache was capable of
serving up to 83% of the reads
without the HDD in this environment

Background:
• Main memory

bufferpool size:
200 MB

• SSD bufferpool
size: 1.2 GB

• Database size:
5 GB

• Working set
size: 1.45 GB
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Finding a cold page in constant time
Approach

• Finding the coldest page needs O(log(n)) time

• Most of the time, only a sufficient cold page is needed, which
is possible in O(1)

• Temperatur range gets divided into a fixed amount of bands
realized as linked lists (50-100 bands are proposed)

• Pages get moved between linked lists when their temperature
gets updated

• To find a cold page, the first non-empty band is searched from
which the first element gets removed
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Finding a cold page in constant time

• Besides the gain in efficiency, the approach leads to a
smoothing-effect:

• Pages that belong together are more likely to have the same
temperature

• Without the smoothing, already read pages belonging to a
table scan may have a higher temperature than pages to be
read. This leads to a higher probability of the upcoming pages
to be overwritten.

• The downside of this extension is that it is only better in
theory. Measurements led to the realization, that the
heap-solution is better in practise.

• To combine the smoothing effect with the heap-solution, a
new page only gets accepted if it is at least 1% warmer than
the coldest page.
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Write-back caching

• It is also possible to include the previously
presented write-back concept into the
SSD-cache approach

• 1st solution: A part of the SSD gets reserved
for dirty pages. When it is filled, the pages
get sorted by their location on the HDD and
written to the HDD sequentially.
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Write-back caching

• It is also possible to include the previously
presented write-back concept into the
SSD-cache approach

• 2nd solution:

• No space gets reserved and the pages are
marked as dirty directly.

• When a certain threshold is exceeded, the
pages are sorted, written to the HDD and
marked as clean.
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Write-back caching
Results

⇒ The speed-up of the system can be even greater by
using write-back caching

Background:
• Recorded

TPC-C1 query
workload

• Only the writes
are considered

• Writes are
written to the
SSD

• When the cache
is filled, the
pages are sorted
and written to
the HDD

1: TPC-C: Trading transactions
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1 Introduction

2 SSD-Caching

3 SSD-Caching and Recovery

Motivation
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Motivation
The Problem

• Prior to the crash, the cache was filled with the data currently
processed

• After the crash, the cache has to be handled as if it was
empty because the informations about the content (metadata)
were saved non-persistent in the main memory

• If the cache would still be available, it would likely contain the
data needed during recovery
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Motivation
Recovery

But how often does the system crash? Is the increased complexity
worth it?

Situation:

• If the databasesystem crashes 3x a week ([3]) and each
recovery-process takes 6 minutes (time without a cache for
the system in the previous section)

• ... then the system is offline for around 16 hours per year only
because of recovery

• This means for example that the employees can’t work but
still get paid on two days per year

• A company with 100 employees relying on the database looses
more than 50,000 Euro/year then

⇒ The time needed for recovery is very important!
Enhancing recovery using an SSD buffer pool extension 33 / 48
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Approaches

I’m going to describe three approaches which all aim at keeping
the cache usable after the crash:

• Update-Write-Update (based on the SSD-Cache explained
previously)

• Write-Update (used by Facebook)

• Lazy-Update Following an Update-Write
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Update-Write-Update
System setup

Step 4.1: Invalidate Metadata

• New step!

• The first “Update”

• If a new page gets
accepted by the
replacement algorithm or
a dirty page is updated
the slot where it will be
written in gets marked as
invalid
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Update-Write-Update
System setup

Step 4.2: Write Page

• This step is not new

• The “Write”-part

• The new page is written
to the SSD

Enhancing recovery using an SSD buffer pool extension 35 / 48



Introduction SSD-Caching SSD-Caching and Recovery Conclusion

Motivation Update-Write-Update Write-Update Lazy-Update Following an Update-Write

Update-Write-Update
System setup

Step 4.3: Update Metadata

• New step!

• The second “Update”

• After the write-process is
finished, the written page
gets marked as valid

• The whole process ensures
that the pages on the
SSD are always identical
to those on the HDD

Enhancing recovery using an SSD buffer pool extension 35 / 48
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Update-Write-Update
Metadata

• The information about the SSD-slots and which pages they
contain is saved to the SSD

• Its size is less than 1% of the whole SSD-Cache, so it may
even be saved on faster but also higher priced PCM-Memory

• The temperature statistics are also saved on the SSD so the
cache can be used after a crash like it was used before the
crash
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Update-Write-Update
Results (1/4): Throughput after a crash

Background:
• Main memory bufferpool size: 1.2 GB

• SSD bufferpool size: 3.6 GB

• Database size: 48 GB

• TPC-C Benchmark

Results:

Without persistence:

• Recovery finishes after 5 minutes

• Performance stabilizes after 10
minutes

With persistence:

• Recovery finishes after 4 minutes

• Performance stabilizes after 8
minutes

⇒ Recovery needs 20% less time
with persistence
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Update-Write-Update
Results (2/4): Reads after a crash

Background:
• Main memory bufferpool size: 1.2 GB

• SSD bufferpool size: 3.6 GB

• Database size: 48 GB

• TPC-C Benchmark

Results:

Without persistence:

• SSD-Cache gets used after 390
seconds

With persistence:

• SSD-Cache gets used right from
the beginning

• Most of the data needed gets read
from the SSD

• The recovery-process finishes
faster (compare the stable state)

⇒ The SSD-Cache is able to support
the recovery-process
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Update-Write-Update
Results (3/4): CPU-load

Background:
• Dual core AMD CPU (3GHz)

• Main memory bufferpool size: 1.2 GB

• SSD bufferpool size: 3.6 GB

• Database size: 48 GB

• TPC-C Benchmark

Results:

Without persistence:

• The CPU-load sways around 15%

With persistence:

• The CPU-load sways around 30%

⇒ The higher complexity also
inceases the CPU-load
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Update-Write-Update
Results (4/4): Impact on the I/O performance

Background:
• Main memory bufferpool size: 1.2 GB

• SSD bufferpool size: 3.6 GB

• Database size: 48 GB

• TPC-C Benchmark

Result:

Without persistence:

• “ramdisk”

With persistence:

• “fusionio 80GB SLC”

• “fusionio 320GB MLC”

⇒ In this scenario the I/O performance is
the same with and without persistence
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Write-Update
The idea

• Write-Update is used by Facebook with their
FlashCache-software

• Write-Update tries to drop the first “Update” (the
invalidation) from the “Update-Write-Update”-approach

• The purpose is to cut down the load on the system (IO- and
CPU-load)

• Besides, the cache will also be used to buffer writes to the
HDD

• In contrast to the previous approach, Write-Update does not
use a temperature based algorithm (FIFO or LRU is used)
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Write-Update
The approach

Like in the first approach, only the differences to the SSD-Cache
described earlier will be shown

A write to the SSD (dirty or updated page) is handled the
following way:

1 Write the data to the SSD and mark it as dirty (the dirty -flag
is not set before the write like with Update-Write-Update)

2 Write the dirty pages to the HDD with background-threads
based on FIFO (or LRU) and in sequential order ...

1 ... at an appropriate time
2 ... or if a certain threshold is exceeded
3 ... or if the data is buffered for too long (default: 15 minutes)

3 After the write of the dirty pages, mark them as valid
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1 Write the data to the SSD and mark it as dirty (the dirty -flag
is not set before the write like with Update-Write-Update)

2 Write the dirty pages to the HDD with background-threads
based on FIFO (or LRU) and in sequential order ...

1 ... at an appropriate time
2 ... or if a certain threshold is exceeded
3 ... or if the data is buffered for too long (default: 15 minutes)

3 After the write of the dirty pages, mark them as valid
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Write-Update
Recovery

• Write-Update distinguishes between a forced reboot and a
crash

• In case of a forced reboot, the metadata (and the dirty/valid
flags alongside) gets flushed to the SSD and a flag indicating
this is written

• After the reboot both the dirty and the valid pages are used

• In case of a crash, no flag is written and only the dirty pages
will be used

• The valid pages can not be used because they may just got
overwritten but the metadata (dirty -flag and page address on
the HDD) was not saved yet

• Partial writes will be detected by using checksums (address on
the HDD needed)

• Only around 14% of the cache can be used after a crash ([6])
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Lazy-Update Following an Update-Write (“LUFUW”)
The idea

The idea of LUFUW is to combine the advantages of
Update-Write-Update and Write-Update

• With Update-Write-Update the whole cache can be used even
after a crash

• Write-Update uses less operations and by this brings less load
to the system
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Lazy-Update Following an Update-Write (“LUFUW”)
The approach

1st step: “Update”

• Write a dirty -flag indicating that the
data is going to be written

• The flag is written to the copy of the
metadata in the RAM and the SSD
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Lazy-Update Following an Update-Write (“LUFUW”)
The approach

2nd step: “Write”

• After the page is written to the SSD,
the dirty -flag is disabled but only
inside the RAM

• After that, the write is reported as
being finished to the system
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Lazy-Update Following an Update-Write (“LUFUW”)
The approach

3rd step: “Lazy-Update”

• The next time step 1 is executed or
other metadata is written to the same
block on the SSD, the dirty -flag gets
also reseted on the SSD

• This approach exploits the fact that one
4KB block of a SSD never only contains
the metadata of one page (in this
approach for example 240
metadata-entries fit in one block), but
still with every metadata-update the
whole block is overwritten
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Lazy-Update Following an Update-Write (“LUFUW”)
Results

⇒With LUFUW the recovery-process needs only
around half of the time of Write-Update after a
crash

Background:
• BL: Restart with empty cache

(LUFUW)

• GR: Restart with flushed
metadata (LUFUW)

• FC-CR: Write-Update after a
crash

• LUFUW-CR: LUFUW after a
crash

• Database size: 100,000,000
rowsecsdr

• No information about
RAM/Cache-size
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