
TU Kaiserslautern
FB Informatik, AG HIS
Prof. Dr.-Ing. Stefan Deßloch

Worksheet 2 - DB Schema Design and Programming
”Views, Triggers, and Stored Procedures“

Introduction

Goal. In this worksheet you will learn fundamental database features such as Views, Triggers, and Stored
Procedures, as well as how to implement them in DB2. The target application is a stock trading system for
the Kaiserslautern Stock Exchange (KSE).

The market is de�ned as a set of stocks, each with a given price at which one share is traded. Each trader
has a depot, where the amount of shares he owns for each stock is recorded. Furthermore, traders have an
account balance, which is the amount of money they have to buy more shares.

Shares can be bought and sold by placing an order, in which a trader speci�es the stock he wants to buy or
sell, how many shares, and the price he is willing to pay/receive for each share. Buy orders are called call
orders, while sell orders are called put orders. If a trader is willing to call a share for, say, 100 €, he would
obviously also accept a lower price, like 98 €. The inverse holds for put orders. For this reason, the price
speci�ed in an order is called a limit—for calls it is an upper-bound limit and for puts it is a lower-bound
limit on the accepted price.

The processing of orders and adjustment of new prices happens according to a period, which can vary
from a day to a millisecond. At each period, the system looks at the list of pending orders—also called the
orders book—and the limits that occur for each stock. Based on this information, a price at which the trades
will actually be executed is �xed. This is where the pressure of the market speculation (the �ght between
bulls and bears) will decide whether the price goes up or down. The calculation of the price for the next
period follows a strict set of rules, which will be given later on. Once a new price is calculated, the orders
that can be ful�lled are processed and then removed from the orders book.

After each period, the market time of each processed stock is incremented. The global market time is
de�ned as the highest market time of all stocks. If no orders arrive during a period, no trades are executed
and the global market time is kept unchanged.

The database schema for this application is shown in Figure 1. It can be loaded in your DB with the �les
/dbprak/share/ws2/schema.sql and /dbprak/share/ws2/data.sql in Lara.

Exercises

Exercise 1: Views

The best way to control database access and ensure constraints is to hide the database tables from the
applications and allow access to the data only through views. This also allows the DB designer to o�er a
more convenient representation to the application, leading to a simpli�ed application development. This
representation often introduces redundant information which is not allowed by the normalized relational
schema, but simpli�es the interaction with the data. Your job for the KSE is to create views to represent a
summary of the trader’s accounts and the order book.

1

M.Sc. Michael Hohenstein

traders

t_id : integer
t_name : varchar
t_balance : integer

depots

d_trader : foreign key
d_stock : foreign key
d_amount : integer

orders

o_id : integer
o_type : char(PUT, CALL)
o_trader : foreign key
o_amount : integer
o_stock : foreign key
o_limit : integer

market

m_time : integer
m_stock : varchar
m_stocktype : char
m_price : integer

Figure 1: Trading schema

1.1. Account View
De�ne a view named account_v giving an overview of depots and all puts/calls still due. The layout of
the view is shown in Figure 2.
The view shows, for each order in the system, the trader who issued the order, the target stock, the
amount of shares in his depot, the amount of shares in the order, the order’s limit, the current market
price of the stock, and �nally a market value, which is derived by multiplying price and amount. The
view represents call and put orders in a uni�ed manner, by storing order information either in call_*
or in put_* columns. This means that call orders have all put_* columns set to null and vice-versa.
Furthermore, remember that traders may call stocks that are not yet in their depot. Ensure that they
are included in the view as well.

account_v

trader : integer
stock : varchar(20)
amount : integer (# stocks in the depot)
call_amount : integer (# called stocks)
call_limit : integer (max. call price)
put_amount : integer (# put stocks)
put_limit : integer (min. put price)
market_price : integer
market_value : integer (market_price ⋅ amount)

Figure 2: View account_v

1.2. Order view
De�ne a view order_v that summarizes the call/put situation for stocks. The view layout is shown in
Figure 3.
This view summarizes the volume of shares that can be traded for each limit occurring in the orders of
a stock. Therefore, the number of entries for each stock is determined by the number of distinct call and
put limits. The call_volume (put_volume) column shows the number of shares that can be bought (sold)
at the given limit. For example, if there is a total of 100 shares in all call orders with a limit of 150 € and
another 200 in those with a limit of 151 €, the price 150 € will allow 300 shares to be bought, because
those who were willing to buy for 151 € will also buy for 150 €. The limit 151 €, on the other hand, will
allow at most 200 shares to be bought. The analogous situation holds inversely for put orders.

2

order_v

stock : varchar(20)
call_volume : integer
call_backlog : integer
price : integer
put_backlog : integer
put_volume : integer

Figure 3: View order_v

The view also shows the put and call backlogs, which result from an imbalance between the number
of called and put stocks for a given limit, or, in other words, from an imbalance between supply and
demand. It represents the amount of shares in orders which cannot be ful�lled at a particular limit. If a
limit has a call volume of 100 and a put volume of 300, for example, the put backlog is 200 and the call
backlog is 0. This means that 200 shares which were meant to be sold will not be processed, because
there were not enough buy orders with a compatible limit. As we shall see later on price calculation,
this situation shows that supply is higher than demand, and thus the price will tend to fall.
The following example shows how this view should look like for a sample stock in the orders table:

orders
o_type o_trader o_amount o_stock o_limit
PUT 4711 100 IBM 198
PUT 4712 500 IBM 200

CALL 4713 300 IBM 199
CALL 4714 200 IBM 201

order_v
stock call_volume call_backlog limit put_backlog put_volume
IBM 200 0 201 400 600
IBM 200 0 200 400 600
IBM 500 400 199 0 100
IBM 500 400 198 0 100

Exercise 2: Place orders

The views produced so far allow traders to visualize the status of the market without the need to access
the underlying tables. In this task, you will enable the complete abstraction of the tables from the traders
by enabling modi�cations to be carried out exclusively through the views as well. This can be achieved by
de�ning proper triggers in the view account_v.

Your task is to de�ne one trigger for insertions and another one for deletions. Their names should be
account_v_insert and account_v_delete, respectively. Updates are not supported – they require a trader to
delete the original order and insert a new one instead. Inserting into the account view allows a trader to place
a new order, and similarly, deletions allow the cancellation of existing orders. Because all modi�cations will
be controlled by the triggers, they must ensure the following business rules:

B1: When selling stocks, the amount given in the put order must be covered by the traders depot, i.e., to
sell n shares, the trader must have at least n in his depot.

B2: When buying stocks, the account balance of the trader must cover the total price (amount ⋅ limit) of
all outstanding orders. This means that, in order to buy 100 shares at a limit of 130 €, the trader must
have at least 13 000 € in his account. Once this particular order is issued, further orders must take it
into consideration as well. For example, if the starting balance was 15 000 €, a second call order must
not surpass 2000 €.

3

B3: A trader may place at most one order per stock.

B4: Order amounts and limits must be non-negative integers (≥ 0), but they must not be all zero (an empty
order).

B5: Orders must be either of the call or the put kind, i.e., if put_amount and put_limit are given, then
call_amount and call_limit must both be zero, and vice-versa. For the chosen order kind, both the limit
and the amount must be non-negative integers.

B6: The �elds amount, market_price, and market_value must not be manipulated directly by traders, i.e.,
inserts must have them set to NULL or omit it.

An insertion that results in a violation of any of the above rules (i.e., an inconsistent state) must produce
an error and, as a consequence, cause the transaction to abort. This can be done by raising error conditions
with the DB2 statement SIGNAL SQLSTATE. The SQLSTATE error code must indicate which business
rule was violated. As a convention, the state number must be 70000 + i, where i is the number of the business
rule which was violated. A violation of rule B4, for instance, must signal the state 70004. Our evaluation will
check for these codes, so make sure to return the correct value, even if your trigger works as expected.

Violations of the business rules must be raised in the order they are listed here. If an order violates B1 and
B3, for example, the error code must indicate a violation of B1. You are only required to check the business
rules on insertions in the account_v view. Operations that modify any of the base tables directly can be
ignored.

Exercise 3: Calculate prices

After having speci�ed the call and put behavior, the next step for our system is to re-calculate the stock
market prices based on the current orders and the market prices. The summary of orders and limits provided
by the view orders_v is the starting point for price calculation. The new price of a stock depends on its limits
and volumes occurring in the orders book. The goal is to pick a price which allows the highest amount of
shares to be traded, i.e., maximizes the trading volume. There are seven possible situations that can occur for
any given stock. The rules below (P1-P7) and the examples specify how the new price is derived in each of
them. The amount column shows the amount of shares of the limit, in order to emphasize the behavior of the
volume as the price grows and shrinks. However, it is not present in order_v, because only the volumes are
needed to compute the new price.

P1: There is exactly one limit that yields the highest trading volume.

Call Put
Amount Volume Backlog Limit Backlog Volume Amount

Calls 200 200 202 500 700
Calls 200 400 201 300 700
Calls 300 700 200 700 100 Puts

700 100 198 600 200 Puts
700 300 197 400 400 Puts

The price is �xed to this limit, here 200 €.

P2: Several limits yield the highest trading volume and there is a call backlog.

Call Put
Amount Volume Backlog Limit Backlog Volume Amount

Calls 400 400 202 100 500
Calls 200 600 100 201 500

600 100 199 500 300 Puts
600 400 198 200 200 Puts

4

The price is �xed to the highest limit among those that maximize the trading volume, here 201 €.
Because the backlog indicates that there are more calls than puts, it means that the market is pushing
the price up, and so the highest of the considered limits is picked.

P3: Several limits yield the highest trading volume and there is a put backlog.

Call Put
Amount Volume Backlog Limit Backlog Volume Amount

Calls 300 300 202 300 600
Calls 200 500 201 100 600

500 199 100 600 400 Puts
500 300 198 200 200 Puts

The price is �xed to the lowest limit among those that maximize the trading volume, here 199 €. This
situation is the inverse of P2, and it indicates that the market is pulling the price slightly down.

P4: Several limits yield the highest trading volume and there is both a put backlog and a call backlog.

Call Put
Amount Volume Backlog Limit Backlog Volume Amount

Calls 100 100 201 100 200
100 200 100 200 100 Puts

Calls 100 200 100 199 100
200 100 198 100 100 Puts

In this situation, there is no winning force pushing the price up or down, and so the decision favors the
limit which is closest to the current market price, or, in other words, the most stable limit. This rule is
implemented by the function closestToMarket(m, ℎ, l), where m is the current market price, ℎ is the
highest limit (among those that yield the highest trading volume), and l the lowest limit.

closestToMarket(m, ℎ, l) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

ℎ if m ≥ ℎ

m if l < m < ℎ

l if m ≤ l

Note that you do not have to implement this function in SQL. It is used here solely for explanation of
the price calculation.
For the example above, we would have:

– If the current market price is ≥ 201 €, the price is �xed to 201 €.
– If the current market price is > 198 € and < 201 €, the market price remains unchanged.
– If the current market price is ≤ 198 €, the price is �xed to 198 €.

P5: Several limits yield the highest trading volume without a backlog.

Call Put
Amount Volume Backlog Limit Backlog Volume Amount

Calls 300 300 202 200 500
Calls 200 500 201 500

500 199 500 300 Puts
500 300 198 200 200 Puts

This situation is similar to P4, and so we apply closestToMarket:
– If the current market price is ≥ 201 €, the price is �xed to 201 €.
– If the current market price is 200 €, the price stays at 200 €.

5

