
TU Kaiserslautern
FB Informatik, AG HIS
Prof. Dr.-Ing. Stefan Deßloch

Worksheet 3 - DB Schema Design and Programming
”JDBC, Schema metadata, XML Schema“

Introduction

Goal. In this workheet, you will learn how to retrieve metadata about a database schema, as well as the
basics of XML Schema concepts like data type de�nition, complex types and integrity constraints.

During the last decade, XML has become a central standard in data-centric (web) applications. Therefore, it
becomes more and more important to make existing operational data from relational databases also available
to new applications, such as Web services, that rely on semi-structured data. Such an XML view on relational
data requires the de�nition of an appropriate mapping between these two data models. A data mapping
de�nes how data that is available in a so-called source schema is represented in the target schema.

In this worksheet you will develop a tool that generates the target schema by mapping the relational source
schema to a semi-structured (XML) target schema de�ned in XML Schema. The mapping itself is de�ned by a
set of given mapping rules.

Converting relational data into XML

In exercise 2, you must generate an XML Schema de�nition from the relational schema fetched in exercise 1.
Before that, we must understand how to map the relational data itself into XML data. The rules for converting
a relational database into an XML document are given below.

Note: You must not implement a tool to export relational data into XML. The goal of these rules is just to
explain how the exported data would look like.

• The root element of the resulting document is named after the schema. It contains the exported rows
of all tables as children. This means that there is no explicit XML node that directly represents a table.

• Each row is exported as an element named after the table it belongs to. We refer to it as row element.

• A column can be represented in three ways, depending on its characteristics:
– Columns that serve as primary keys of the source table are exported as an attribute of the row

element they identify. For this exercise, we ignore primary key de�nitions on multiple columns,
so there is at most one such attribute for every row element.

– If a column has a foreign key constraint (again, we ignore compound keys), then its column
element has an attribute with the name ref that holds the value of the foreign key.

– Columns that do not participate in any primary or foreign key de�nition are exported as child
elements of the row they belong to. We call these elements column elements. The actual data is
then stored as a text node under the column element.

• Columns that contain NULL are simply omitted from the XML representation, i.e., there is no explicit
representation of NULL values.

1

M.Sc. Michael Hohenstein

• If exactly one of the columns of a table B has the NOT NULL constraint and it is a foreign key that
references a table A, then we say that B is existence-dependent on A. Row elements of an existence-
dependent table are not placed directly under the root element, but instead as a sub-tree of the row
element which they refer to through the foreign key relationship.

• Because the relationship between an existence-dependent table and its parent is already encoded as
a parent-child relationship in the XML tree, there is no need to explicitly represent the foreign key
column and its value. Therefore, it is omitted from the row element.

To clarify how the rules work and what kind of documents they produce, we refer to the examples in the
Wiki.

Exercises

Exercise 1: Retrieving metadata from a database

Develop a Java program that uses JDBC to collect information about all tables, their columns (name, data
type, and precision or length), and de�ned integrity constraints in a given database schema.

Similar to exercise 3 of worksheet 1, we provide a basic JAR package with bean classes and a Main class
which runs the program. Your task is to implement the method getSchemaInfo() in the interface
SchemaRetriever. The retrieved schema information must be delivered as an instance of the Schema
bean class, which contains information about each table in the schema. The Main program provided will
display the information contained in this object on the screen using the provided toString() method.
Therefore, you again do not have to implement serialization to strings.

For simplicity, you only have to consider primary key, unique, not null, and referential constraints. You
must not consider any insert, update, or delete rules of referential constraints or any other constraint types
such as table check constraints. Table 1 shows how the output would look like for the student table of
the sample schema (see Wiki). Note that your implementation must generate this output for all tables of a
schema, and not for a single table.

TABLE student (
studentnumber INTEGER(10) UNIQUE NOT NULL PRIMARY KEY
firstname VARCHAR(255) NOT NULL
lastname VARCHAR(255) NOT NULL
supervisor BIGINT(19) REFERENCES academic(id)
assistant CHAR(7) REFERENCES course(code)

)

Table 1: Sample Output

Relational systems provide information about de�ned schemas, tables, and columns in the views/tables
of the so-called system catalog. In addition to the system catalog, JDBC also provides metadata about the
database through the DatabaseMetaData object.

Exercise 2: Generating an XML Schema definition

Extend your program so that it generates an XML Schema de�nition to validate the XML data exported
from a relational database. A nice property of XML Schema is that it can be de�ned itself using XML, in
what we call an XSD document. The solution must be implemented in the getXMLSchema() method of
the SchemaConverter interface. The method takes the Schema object of exercise 1 and returns an
org.w3c.dom.Document instance for the XSD document.

2

https://github.com/dbprak/dbprak/wiki/WS3#evaluation
https://github.com/dbprak/dbprak/wiki/WS3#evaluation

Below, we provide a brief speci�cation of how the mapping rules given previously can be represented in
XML Schema. Please refer to the documentation on XML Schema for understanding each of its constructs.

Again, we emphasize that you must not implement a tool to export relational data into XML. Your program
just has to validate XML data that was already exported.

• A complex type is used to specify row elements as well as the root element of the document. These
complex types must be global, i.e., occur directly below the root element in the XSD document and are
referenced by a name. The name is formed by taking the table name and appending the word “Type",
e.g., studentType.

• The column elements of a row are speci�ed as local type de�nitions inside the complex type of the row.
A local type de�nition is simply an unnamed complex type whose instances can only occur under an
instance of the parent type.

• Column elements must occur in the same order as de�ned by the Schema object. To ensure the
ordering, you must de�ne the column complex types inside a xs:sequence construct.

• The data type of a column element is speci�ed by a global simple type, whose name is composed of the
table name, the column name, and the word “Type", e.g., studentFirstnameType. All composed
type names must follow the camel case convention (i.e. longComposedWord).

• Simple types de�ned for columns are restrictions of their equivalent base types in XSD. Use the
following mapping between SQL and XSD types:

BIGINT → xs:long
INT → xs:int
SMALLINT → xs:short
REAL → xs:float
DOUBLE → xs:double

DATE→ xs:date
TIMESTAMP→ xs:dateTime
CHAR→ xs:string
VARCHAR → xs:string

Note that for CHAR and VARCHAR, the speci�ed length (e.g., VARCHAR(28) must also be re�ected
in the XSD simple type.

• Primary key and NOT NULL constraints must be speci�ed as occurrence indicators in the element
speci�cation of a column. Referential constraints must be speci�ed as xs:key and xs:keyref
speci�ers within the complex type of the root element.

More important than accepting valid document instances, such as those produced by a correct implemen-
tation of exercise 2, your schema de�nition must be able to reject invalid data, i.e., data that violates the
constraints de�ned in the original relational schema. The provided Main class can also be used to validate
documents and test your solution locally before submission.

Once again, we refer to examples in the Wiki to clarify the mapping process.

Submission

Submission deadline is Sunday, June 30, 2019 at 23:59:59.
Lots of fun and success!

3

https://github.com/dbprak/dbprak/wiki/WS3#evaluation

