


+ email*

+ to1..*

*

+ from

* + in_reply_to0..1

+ address*

+ user1..*

+ contained_in
0..1

*
Attachment

- �lename : String
- subject : String

Picture

- width : int
- height : int
- colors : int

Text

- content : String

Video

- fps : double
- seconds : int

Email

- date : Date

Addressees

Address

- username : String
- domain : String

Use

User

- nickname : String

Organization

- �rm : String

Person

- surname : String
- �rst_name : String
- date_of_birth : Date

Figure 1: Email Database

The Schema Explained

• This schema is based on object-relational SQL, as you can see in the inheritance relationships, e.g.,
between User and Person. Please have a look for the references in the Wiki if you are not familiar with
it. Most importantly, make sure you understand the di�erences between structured types and typed
tables. Some tasks can only be solved with object-relational operations, and thus a basic understanding
is crucial. We also strongly recommend you to study the �le schema.sql, which contains the
CREATE statements for the given schema.

• Relationships are expressed in terms of reference types, which are the object-relational equivalent of
foreign keys.

• Users of the system can be either persons or organizations, but they all share the nickname attribute of
the parent User type. Note that SQL allows a user to also exist simply as an instance of the User type,
i.e., neither a person nor an organization.

• Users have a n:m relationship to email addresses, i.e., a user may have multiple addresses and an
address can be shared by multiple users. This is re�ected in the Use table.

• An email is sent from a speci�c address, (optionally) in reply to a speci�c email (1:1 relationships) and
to multiple addresses (n:m relationship). The multiple destination addresses of an email are stored in
the Addressee table.

2

https://github.com/dbprak/dbprak/wiki/WS1#orsql


• An email may contain multiple attachments. This 1:n relationship is re�ected in the contained_in
attribute of attachments.

• Attachments can be either a Picture or a Text, and from there further specialize into Video and Email,
respectively. Note that making Email a subtype of Attachment allows us to include whole Email
messages as attachments of another email. As you will see, this will also give rise to interesting
recursive queries in the exercises.

Tips for Solving the Exercises

• Load the data on your own database and develop solutions locally before submitting it to PRISE. We
provide several alternatives to work with the database in the Wiki.

• A good SQL programmer naturally thinks in terms of joins. Whenever you need to produce results
that potentially come from multiple tables (or even cross-references within the same table), it is most
likely that you will need a join. Keep that in mind when you get stuck.

• Some exercises require recursive SQL queries. Check the references in the Wiki if you are not familiar
with this concept.

• Break complex queries into meaningful and self-contained sub-queries. For exercise ??, for example,
�rst think about how to generate a ranking table from a generic table of names and values, and then
build on that to solve further requirements. In exercises that require recursion, �rst think about how to
build the basic recursive set, and only then introduce further operations like �lters or aggregations.
The WITH construct of SQL is very useful for this purpose.

Exercises

Exercise 1: SQL

Use SQL queries to solve the following seven problems based on our email database. Only a single query per
problem is allowed. Of course, you are allowed to use subqueries. You are free to resolve relationships either
with the dereference operator (->) or in the classical way, using joins.

1.1. Multiple addresses
Which users have more than 4 addresses? The result should contain the nickname in the �rst column,
and the amount of addresses in the second (which should be greater than 4). It must be ordered by the
amount column as �rst criteria and the nickname as second, both in ascending order. (Tip: to practice
your object-relational skills, try to answer this query without using joins)

1.2. Total numbers
How many users of each class are registered in the system? The result should contain four rows and
two columns. The �rst column contains the keywords ‘users’, ‘persons’, ‘organizations’, and ‘total’. The
second column contains the corresponding amount, and the result should be ordered by it in ascending
order. For the ‘users’ row, you should count only the pure instances of the User type (i.e., that are
neither person nor organization), and for the ‘total’ row the total count of User instances. Your solution
must be general in the sense that adding a new type and table to the hierarchy does not falsify the
query results. For example, if we were to add a new type admin as a subtype of user, the column ‘users’
must remain unchanged, while ‘total’ may include the new table. Note that the total should be equal to
the sum of the �rst three rows, but you are NOT allowed to compute the amounts using arithmetic
operations.

3

https://github.com/dbprak/dbprak/wiki/WS1#othersql


1.3. Most commonly used letter
Which letter occurs most frequently as the �rst character of attached �les (�lename)? How often?
You do not have to distinguish between lower and upper case letters. If two or more letters have
the same frequency and come �rst, provide all of them in your result. The use of the directive
FETCH FIRST ROWS ONLY is NOT allowed! The result should contain one column for the letter
and another column with the number of times it occurs, and it should be in ascending order on the
letter.

1.4. Address sharing
Which users share an email address with the youngest (i.e., most recent date of birth) person? If there
is a tie (two or more youngest persons with the same birthday), you must consider the addresses of all
youngest persons. Results should contain the nickname of the persons in ascending order.

1.5. Birthday greetings
Who received emails on their birthday? Produce a result with the user’s nickname, the date of
birth, and the amount of emails they received. Exclude from your result the emails received from
organizations, which are probably SPAM. You do not have to check the contents of the emails for words
of congratulations. Furthermore, if a person received the same birthday email on multiple addresses,
it must only be counted once. Note that a birthday is an annual event unlike the real date of birth
recorded in the database. Results should be ordered by nickname in ascending order.

1.6. Top-10
Create a “Top-10” list of the users with the shortest average response time for their emails. To measure
the response times, use the average amount of weeks between incoming email and outgoing response
(use the TIMESTAMPDIFF() function). Consider all response emails sent by any address of the
respective user (we do not care who is the receiver of these emails). To qualify for the Top-10, users
must have responded to at least 3 messages (less than 3 values are not signi�cant enough).
To handle ties, calculate the dense rank of each user. This means that two users with the same value
will share the same rank, and the following rank is incremented by one. For example, four users with
response times of 2, 4, 4, and 5 weeks would produce the ranks 1, 2, 2, and 3, respectively. The Top-k
list is then de�ned as all rows with rank ≤ k. Note, this means that the Top-10 may have more than 10
rows.
The result should contain the nickname and the ranks of the users, with rows ordered by the ranks in the
ascending direction. You are NOT allowed to use OLAP functions like RANK(), DENSE_RANK(),
or ROW_NUMBER()!

1.7. Top-10 variation
Produce the same Top-10 list as above, but this time with a regular rank. This means that ranks
following repeated values are incremented by the amount of such repeated values. For the example
given above with the four users, the ranks would be 1, 2, 2, and 4. Again, it is possible that more than
10 rows are produced, and OLAP functions are NOT allowed.

1.8. Thread decomposition
Build a thread representation of all emails in the system. A thread is de�ned as the largest set of emails
that are connected by their in_reply_to relationships. Since di�erent emails may respond to the same
message, a thread actually produces a tree structure. To represent this in a table, you must assign the
same thread ID value to all emails that belong to the same thread and attach a column containing the
depth of each email in the tree. The thread ID is de�ned as the ID of the root email in the thread. Rows
with the same thread ID must appear contiguously in the result set (i.e., sort the rows by thread ID in
ascending order). Within the same thread, the emails should be displayed in ascending chronological
order.
Instead of displaying all threads, you should �lter them by searching for only those that contain an

4



email with a squared image (width = height) in the attachments. Note, even if multiple emails in a
thread contain such an attachment, the thread should occur only once in the output.
The result should contain the following columns, in order: thread ID, email ID, sender username,
in_reply_to, depth, and date.

Exercise 2: User-defined Functions

Now you have to extend the database with new functions written in SQL.

2.1. Scalar Functions
De�ne two scalar functions, which take an ID as input parameter and return a formatted string
according to the following rules:

a) FORMAT_ADDRESS function
Given an address ID, return its string representation in the format “username@domain”. Example:
“john@foobar.com”

b) FORMAT_USER function
Given a user ID, return the name of the user depending on which class they belong to. Persons
must be formatted as “�rst_name surname”, and organizations simply as the �rm name. Both
must then be followed by the nickname in parentheses. For users that are neither persons nor
organizations, only the nickname without parentheses should be displayed. Examples: “John Doe
(johnny81)”, “ACME INC. (acme)”, “peggy79”

2.2. ADDRESS_BOOK function
De�ne a table function which computes an address book for a speci�c user. The function should take a
user ID as input parameter and return the computed address book as a table with usernames and email
addresses as columns. Use the scalar functions from the previous exercise to format the usernames and
email addresses in a human-readable format.
The address book must consist of all addresses which can be found in all emails and their attachments
written or received by the given user. You have to consider both the sender and the recipients of the
emails. The addresses of the user given as parameter to the function will obviously be within these
results as well. We do not require that you remove the user’s own addresses.
If an email has further emails attached, you have to search for further addresses in these emails too
and so forth. Note that you do not have to search in the content of emails for email addresses.

All functions MUST take object references as the argument type. Solutions using integer arguments will
be rejected.

Exercise 3: SQL Programming in Java (JDBC)

Develop a small JDBC program that searches for speci�c attachments in the database and displays the results
to the user in an interactive manner. The given �le dbprak.search.jar contains the basic application
logic that invokes the search and displays the results. All you have to do is implement the interface method
that performs the search in the DB. We strongly recommend you to look at the source code embedded in the
JAR �le (you can open it as a ZIP �le) before proceeding.

The program works as following: Using the console input, the user provides a nickname of an email user
in the database together with a time span (from, to; in the format YYYY-MM-DD) and a search string. The
program searches for this string in the attachments of all emails written or received by the selected user in
this time span. The result of the search is then presented to the user as a list where each entry consists of the
�lename and the subject of a found attachment.

However, the basic program does not return any results, because the database logic has not been im-
plemented. Your job is to provide an implementation of the AttachmentSearch interface, where the

5






