WS2008/09

Prof. Dr.-Ing. Stefan DeBloch

AG Heterogene Informationssysteme
Geb. 36, Raum 329

Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 2
Virtual Data Integration

<H§s>

=
I m TecHNISCHE UNIVERSITAT
m KAISERSLAUTERN

Outline

= Accessing multiple, distributed data sources in an integrated manner

= architectures
= types of transparency achieved

= Wrapper architecture as an infrastructure for overcoming heterogeneity

= wrapper tasks
= Garlic
= SQL/MED
=« OLE-DB
= Multi-database languages
= SchemaSQL
= FIRA/FISQL

<H§S>

© Prof.Dr.-Ing. Stefan DelSloch

Enterprise Information Systems

WS2008/09

Distribution Controlled by DBMS

= Distributed transaction processing
= DB-operation may span across
multiple data sources
= single SELECT statement can
access tables in DB1, DB2, DB3
= Virtual integration
= distributed data storage
= integrated on demand (query)
= Degrees of transparency
= location transparency: physical
location of data is hidden
» distribution transparency:

« fact that data is stored in different
data sources is hidden

= single logical DB and DB-schema
for application programmer
= Multiple approaches and
architectures possible

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch

visited)

client

presentation

idehibuted TA -t application

n ET:I logic

resource
manadgement

Enterprise Information Systems

Distributed DBMS

= Data is distributed across multiple systems
= goal: distribution transparency for applications

= Distribution "by design"
= distribution is intended, planned

= participating systems give up autonomy

= 4-layer schema architecture
= Distribution strategies

= horizontal partitioning

= Vvertical partitioning

= (partial) replication

= to improve performance

= Tightly coupled
= Heterogeneity is not an issue

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch

external schema | | external schema

~, 7

| global conceptual schema |

AN

l local conceptual schema | | local conceptual schema |

l local internal schema | | local internal schema |

Enterprise Information Systems

WS2008/09

Federated DBMS

= Based on a global, federated conceptual schema

= describes integrated view of all participating data sources using the canonical DM
= global data model (and query language)

= realizes distribution transparency
= application can access multiple data sources within the same query

= Distribution is "given", resulting heterogeneity has to be dealt with
= alternatives for federated schema creation
= bottom-up: schema integration
= top-down: schema design, schema mapping

Preserves high degree of autonomy of participating data sources

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch 5

Enterprise Information Systems

Schema Reference Architecture

| external schema | external schema | P S
tailoring to application,
\ / user group
% federated schema schema integration
= / \ schema mapping
S | export schema | export schema |
© defining schema "subset”
| component schema | | component schema | :
data model transformation
| local schema | | local schema | :
% local schema design
©
o
o
<H§s>
© Prof.Dr.-Ing. Stefan DelSloch 6

Enterprise Information Systems

WS2008/09

More Architecture Components

= Local Schema

= corresponds to the conceptual schema of the local DB
= based on local data model (e.g., relational DM)

= Component Schema

= describes the local DB using global (canonical) data model
= overcome data model heterogeneity
= Export Schema
= describes subset of local data/schema to be made available for global applications
= may be under the control of the local system (component system)
= may result in swapping the export and component schemas in the architecture
= Federated Schema (global schema)
= includes (and possibly just renames) export schema elements
= may provide an integrated schema
= resolve structural, schematic, and semantic heterogeneity (e.g., using view mechanism)
= External Schema
= corresponds to classic external schema, now for the federated system

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch

Enterprise Information Systems

Example — Federating Relational Sources

Select *

From Cust, SIJBR, SFBR

Where Cust.Acct No = SJBR.Acct No
And SJBR.Acct No = SFBR.Acct No

DB2 Relational Connect

Cust

SJBR

SFBR

AccNo

Name

AccNo Balance

AccNo CrLimit

DB2

Sybase

Oracle

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch

Enterprise Information Systems

WS2008/09

Mediator-based Information Systems

= Generalization of previous architectures based on
= wrappers for accessing data sources
= mediators that access one or more wrappers and provide useful services
= search/query
= data transformation Ve ~

» providing meta-data
. data-level integration | external schema | | external schema |

= Data sources remain autonomous mediator | global (mediator) schema |
. A X

= Global mediator schema to achieve
distribution transparency f|

= Architecture variations

J

K b} N
wrapper schema q [| wrapper schema |

wrapper wrapper

= nesting of mediators P ~

= single wrapper for multiple sources | local schema | | local schema |
(of the same type) data source data source

= applications accessing wrappers
directly

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

Wrapper Tasks

= Encapsulate a data source and provide uniform access to data
= Provide infrastructure for overcoming heterogeneity among data sources:
= wrapper architecture
= Wwrapper interfaces
= Help overcome heterogeneity of data sources regarding
= data model
= data access API
= query language and capabilities
= query language and expressiveness (simple scan, sort, simple predicates, complex
predicates aggregation, binary joins, n-way joins, ...)
= Class/function libraries
= proprietary query APIs
= Support global query evaluation and optimization
= provide information about ability to process parts of a query
= cost information
= Useful infrastructure for Federated DBMS

<H§S>

© Prof.Dr.-Ing. Stefan DelSloch 10

Enterprise Information Systems

Example: SQL — MED

= Foreign Data Wrapperin ‘SQL — Management of External Data (MED)’

ORDBMS

Foreign Table

InitRequest
Open
Iterate

Y.

Foreign
Data
Wrapper

g |

DBMS

File System

Application
System

Foreign Server

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch

11

Enterprise Information Systems

Garlic

and accessed, while
taking an approach

to query planning in
which the wrapper
and the middleware
dynamically determine
the wrapper’s role in
answering a query”

M. T. Roth, P. Schwarz:
“Don’t Scrap It, Wrap It!

A Wrapper Architecture for
Legacy Data Sources”,
VLDB'97

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch

= "The wrapper architecture of Garlic ... addresses the challenge of diversity by
standardizing how information in data sources is described

query
processor

Garlic —

relational
DBMS

XML
file

image
archive

messaging
system

12

Enterprise Information Systems

WS2008/09

WS2008/09

Wrapper Architecture

= Garlic and wrappers cooperate for query processing
= wrapper provides information about its processing capabilities

= Garlic query engine compensates for (potential) lack of wrapper query functionality
= function compensation

= Extensibility

= add new data sources (accessed using existing wrappers)

= add new wrappers for supporting new types of data sources
= Wrapper evolution

= start with simple wrappers (equivalent of a table/collection scan)
= low cost

= expand query processing capabilities of the wrapper until it provides full support of
the data source functionality

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch 13 Enterprise Information Systems
modelling data as method query query
object collections calls planning execution
Garlic
tel hotel
object object :’""""": ’Tpper‘
E /f A plan
\ / el

\——etcate o
g S / iterator::advance()

Wrapper [J
I

name catego! rate location ci
Data Ea 0

le—F---—==—

Source

<H§S> 3

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

Modeling Data as Object Collections

= Registration

= wrapper supplies description of data source in GDL (Garlic Data Language, derived
from ODMG-ODL)

= ‘global schema’ at the garlic level
= Garlic object
= interface
= at least one implementation (multiple are possible, but only one per data source)
= identity: OID consists of
« IID (implementation identifier)
= key (identifies instance within a data source)

= root objects (collections) serve as entry into data source, can be referenced using
external names

<His> s

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

Example: Travel Agency Schema

Relational Repository Schema: Web Repository Schema:

interface Country { interface Hotel {
attribute string name; attribute readonly string name;
attribute string airlines_served; attribute readonly short category;
attribute boolean visa_required,; attribute readonly double daily_rate;
attribute Image scene} attribute readonly string location;

attribute readonly string city}

interface City { Image Server Repository Schema:
attribute string name; interface Image {
attribute long population; attribute string file_name;
attribute boolean airport; double matches (in string file_name);
attribute Country country; void display (in string device_name)}

attribute Image scene}

<His> .

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

WS2008/09

Method Calls

= Method can be called by Garlic query execution engine or by the application,
based on an object reference
= Methods
= implicitly defined get/set-methods (accessor methods)
= explicitly defined methods
= Invocation mechanisms

= stub dispatch
= natural if data source provides object class libraries

= example: display (see previous charts)
wrapper provides routine that extracts file name from OID, receives device name as
parameter, calls class library for display operation

= generic dispatch

= wrapper provides one entry point

» schema-independent

= example: relational wrapper (see previous charts)

access methods only; each call is translated into a query:

method name -> attribute
IID -> relation name
value -> assignment value (SET)

<H§S> .

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

Query Planning

= Fundamental Idea: wrappers participate in query planning process
= Query planning steps
= Garlic optimizer identifies for each data source the largest possible query fragment
that does not reference other data sources, sends it to the wrapper
= wrapper returns one or more query plans that can be used to process the full
query fragment or parts of the query fragment
= providing all objects in a collection is minimal requirement
= optimizer generates alternative plans, estimates execution costs, provides for
compensation of fragments not supported by the wrapper

<H§S> .

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

WS2008/09

WS2008/09

Query Planning (continued)

= Wrapper provides the following methods to be used by Garlic work requests:
= plan_access(): generates single-collection access plans
= plan_join(). generates multi-way join plans (joins may occur in application queries
or in the context of resolving path expressions)
=« tables to be joined all reside in the same data source
= plan_bind(). generates special plan, which can be used to process the inner stream
of a bind join
= Result of a work request:
= sets of plans

= each plan contains a list of properties that describe which parts of the work request
are implemented by the plan and what the costs are

oS> .

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

Single Collection Access Plan

select h.name, h.city, h.rate
from Hotels h
where h.category=5 and h.location="beach’

r

work request @ ‘ Garlic Optlmlzer ‘Q web wrapper access plan
project: h.OID, properties:
h.name, project: h.OID,
h.city, h.name,
h.rate, h.city,
h.category, h.rate,
h.location h.category,
h.location
preds: h.category=5,
h.location="'beach’ preds: h.category=5,
cost: <access cost>
@ plan details (private)
‘ Web Wrapper !

‘ Hotel Guide Data Source ‘

oS> \

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

10

WS2008/09

Join Plan

select i.name
from Countries c, Cities i
where c.name="'Greece' and i.population<500 and i.country = c.OID

work request l
input plans t \ ‘ Garlic Optimizer ‘ 7 | rel. wrapper join plan
rel. wrapper ‘countries’ access plan
properties:
properties: project: ¢.OID, c.name, i.OID,
project: ¢.0ID, c.name i.name, i.population
preds: c.name="'Greece' . . !
cost: <countries access cost> i.country
plan details (private) preds: c.name='Greece'
rel. wrapper ‘cities' access plan !.populati0n<500,
i.country=c.OID
properties:
project: i.0ID, i.name, i.population, cost: <join cost>
i.country
preds: i.population<500
cost: <cities access cost>
)) lan details (private
plan details (private) g ‘ Relational Wrapper] @ b ®)
join preds: i.country=c.OID

‘ Relational Data Source ‘

@.Sg 21

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

Bind Plan

select h.name, h.rate

from Hotels h, Countries, C, Cities |

where h.category=>5 and h.location="beach' and c.name="Greece’
and i.population<500 and h.city=i.name and i.country=c.0OID

work request
input plan t \ ‘ Garlic Optimizer ‘ 7 rel. wrapper bind plan
rel. wrapper join plan
properties:
properties: H . B
project: ¢.0ID, c.name, i.0ID, project: F'OID' C:name' I'(.DID'
i.name, i.population, i.name, i.population,
i.country i.country
preds: c.name='Greece', . .
. population<500, preds: c.name="'Greece',
i.country=c.0ID i.population<500,
cost: <join cost> !.country:c.OlD
i.name=$BIND_1
plan details (private) .
cost: <bind cost>
bind pred: i.name=$BIND_1 Q ; :\ plan details (private)
‘ Relational Wrapperl
‘ Relational Data Source ‘
22 X)
© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

11

WS2008/09

Wrapper Plan Synthesis

Plan generation
needs to be
supported by
wrapper methods

Plan execution has
to be supported by
wrapper as well

(Iterator methods)

<H§S>

@© Prof.Dr.-Ing. Stefan DelSloch

PROJECT
h.name, h.rate

BIND JOIN
h.city & $BIND_1

FILTER

h.location = ‘beach’

web wrapper access plan

rel. wrapper bind plan

properties:

project: h.OID,
h.name,
h.city,
h.rate,
h.category,
h.location

preds: h.category=5,

cost: <access cost>

properties:
project:

preds:

cost:

c.0ID, c.name, i.OID,
i.name, i.population,
i.country

c.name="'Greece',
i.population<500,
i.country=c.OID

i.name=$BIND_1

<bind cost>

plan details (private)

plan details (private)

23

Enterprise Information Systems

Wrapper Packaging

Wrapper program provides the following wrapper components in a package:

= interface files

= GDL definitions
= environment files

= support for data-source-specific information

= libraries

= schema registration

= method calls

= query processing interfaces

<H§S>

© Prof.Dr.-Ing. Stefan DelSloch

24

Enterprise Information Systems

12

WS2008/09

SQL/MED

= Part 9 of SQL:1999: Management of External Data
= extended in SQL:2003

= Two major parts
= Datalinks
= Foreign Data Wrapper / Foreign Data Server

<Hlgs>

@© Prof.Dr.-Ing. Stefan DelSloch

25

Enterprise Information Systems

Foreign Data Wrapper/Server

= Concept based on Garlic idea
= data provided as tables instead of object collections
= Model:

M > . s
SQL - E Foreign | _Ir1a1
Client SSQL | D] FDWa Server a
erver ——
= Example: + Forei h
o "l Fowb [et [{FTBL
CREATE FOREIGN SERVER ... ; |

CREATE FOREIGN TABLE Personnel
(id INTEGER, last_name VARCHAR(30),
first_name VARCHAR(25), ...)
SERVER myForeignServer
OPTIONS (
Filename '/usr/joe/personnel.txt', Delimiter :") ;
SELECT * FROM Personnel WHERE ... ;

<Hlgs>

© Prof.Dr.-Ing. Stefan DelSloch

26

Foreign | | FTcl
Server ¢ .

Enterprise Information Systems

13

WS2008/09

Foreign Data Server

= Manages data stored outside the SQL server
= SQL server and SQL client use foreign server descriptors (catalog elements)
to communicate with foreign servers
= Catalog (implementation-specific):
= SQL schemas
= Foreign server descriptors
= Foreign table descriptors
= Foreign wrapper descriptors
= Foreign table
= stored in a (relational) foreign server or dynamically generated by foreign wrapper
capabilities
= Modes of interaction

= Decomposition

= SQL query is analyzed by SQL server, communicating with foreign data wrapper using
InitRequest

= Pass-Through (see discussion of TransmitRequest)

<H§S> .

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

Foreign Data Wrapper Interface

= Handle routines = Access routines
= Initialization routines = Open
= AllocDescriptor = Iterate: for delivering foreign data
= AllocWrapperEnv to SQL server
= ConnectServer = ReOpen
= GetOps: request meta data about = Close
= foreign data wrapper/server = GetStatistics
capabilities = TransmitRequest: ,pass-through"
= foreign table (columns) of a query/request using the
=« InitRequest: initializes processing proprietary language of the foreign
of a request (query) server
<S>
© Prof.Dr.-Ing. Stefan DeBloch 28 Enterprise Information Systems

14

WS2008/09

Security, Updates, and Transactions

= User Mapping

= defines mapping of SQL server user-ids to corresponding concept of a foreign
server

= example:
= CREATE USER MAPPING FOR dessloch
SERVER myforeignserver
OPTIONS
(user_id 'SD",
user_pw 'secret")
= Updates, transactions on external data

= not supported in SQL/MED
= goal for future version of the standard
= provided as product extensions
= usually, updates on non-relational data sources are not supported
distributed TAs are useful, read-only optimization can be used for foreign data source
= updates on relational data sources
pass-through
transparent
distributed TAs supported

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch 2 Enterprise Information Systems
Microsoft OLE-DB
= Overview
v
OLE ?DB
Service-)
. uery
Provider Processor
[|
v Y
OLE (r DB OLE ?DB OLE DB

Data- ;
Spreadsheet ISAM File System
Provider 3 4

J.A. Blakeley: “Universal Data Access with OLE DB",
Proc. IEEE Compcon'97, San Jose, IEEE Computer Society Press, Feb. 1997

@.Sg 30

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

15

WS2008/09

Concepts

= Data provider
= simple wrapper
= encapsulates data source access
= provides a rowset abstraction to allow iteration over a stream of data values
= Service provider
= can provide view over heterogeneous sources by combining rowsets from different
providers
= union, join, aggregation, ...
= special OLE-DB protocols for service provider implementation
= Recent enhancements for going beyond "flat" rowsets
= Garlic vs. OLE-DB service provider
= Garlic queries use Object-SQL
= Garlic wrapper and query processor interact dynamically for determining query plan

<H§S>

@© Prof.Dr.-Ing. Stefan DelSloch 31

Enterprise Information Systems

Multi-database Systems

= Loose coupling of systems
= Systems are autonomous |
= schema design autonomy
= permit external/global applications to
access data
= No global schema

= local export schemas describe available
data | local conceptual schema | | local conceptual schema |

external schema | | external schema |

| multi—databasév language >

= actual integration needs to be performed
by the application
= only location transparency

= Multi-database |anguage | local conceptual schema | | local conceptual schema |
= allows access of multiple data bases in a
single query
| local internal schema | | local internal schema |

= directly references export schemas
= Data model heterogeneity needs to be
handled either by the local data source
or the multi-database language

<H§S>

© Prof.Dr.-Ing. Stefan DelSloch 32

Enterprise Information Systems

WS2008/09

Limitations of SQL

= Standard SQL is unable to generically solve most forms of schematic

heterogeneity
= Comp. Person — Men/Women example
Schema A Person
D Name |Gender
1234 [Bob male
4567 |Jane female

Men Women
| Name

ID | Name ID

Schema B

1234 |Bob

= Can be solved with relational view(s)...

AtoB CREATE VIEW Men AS

SELECT 1D, Name

FROM Person

WHERE Gender="male-” <::>
CREATE VIEW Women AS

SELECT 1D, Name

FROM Person

WHERE Gender="female*

B
CREATE VIEW (ID, Name, Gender)

AS

SELECT 1D, Name,
FROM Men

UNION

SELECT 1D, Name,
FROM Women

4567 |Jane

toA

"male”

“female”

= ... but only because the nhumber of different “categories” (here: genders) is
known a priori (and fixed)

<H§S>

33

© Prof.Dr.-Ing. Stefan DeBloch

Enterprise Information Systems

Limitations of SQL (cont.)

= e.g., replace gender with department:

Schema A person

AtoB

<H§S>

Schema B
D Name |Department Accounting Sales Service
1234 [Bob [Accounting <::> D |Name ID |Name 1D |Name
4567 |Jane |Sales 1234 [Bob 4567 [Jane 9876 |Joe
9876 |Joe Service

Departments might change over time

When using static views as before

= Each new department in A requires its own view definition to transform to schema B
= Each new department in B requires a modification of the view to transform to schema A

= Expensive maintenance

CREATE VIEW Accounting AS
CREATE VIEW Sales AS

CREATE VIEW Service AS

SELECT 1D, Name

FROM Person

WHERE Department ="Service”

34

© Prof.Dr.-Ing. Stefan DeBloch

CREATE VIEW (ID,
AS

SELECT 1D, Name,
FROM Accounting
UNION

SELECT 1D, Name,
FROM Sales
UNION

SELECT 1D, Name,
FROM Service

Name, Department)
"Accounting”

Bto A
"Sales”

"Service"

Enterprise Information Systems

Schematic Query Languages

= Solution: Extend SQL to be able to transform data to metadata (and v.v.)
= Schematic Query Languages (a.k.a. Multi-database QLs)
= Examples
= SchemaSQL
= FIRA/FISQL
= Challenge:

= The schema of the result of a query is now dependent on the data actually present
in the input relations

= To allow such dynamic schemas, schematic query languages have to extend the
relational model

= In addition, schematic query languages provide mechanism to access
different databases in a single query

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch 35 Enterprise Information Systems
Mannheim (MA
AvgSales
Kaiserslautern (KL Store v Computer | Hifi
Sales Quadrate 205000 234000 108000
Store Department | AvgSales Kaefertal 90000 76000 87000
Innenstadt Y 139000 Sandhofen 73000 81000 98000
Innenstadt Computer 156000
Innenstadt Hifi 118000 Trier (TR)
Gewerbegbt v 112000 Eisenbahnstr Hauptstr
Gewerbegbt Computer 180000 Dept AvgSales Dept AvgSales
Gewerbegbt Hifi 57000 v 67000 v 74000
—_— @ @ @O Computer | 51000 Computer 103000
Hifi 78000 Hifi 89000
<H§s»
© Prof.Dr.-Ing. Stefan DeBloch 36 Enterprise Information Systems

WS2008/09

18

WS2008/09

SchemaSQL

= Lakshmanan, Sadri & Subramanian [LSS96, LSS01]
= First approach addresses the issue of schematic heterogeneity with SQL
= Built on top of SQL by providing an extended FROM clause:
= Specify range variables (“aliases”) not only over tuples of relations, but also over

= the databases of the (M)DBMS ->

= the relation names of a database db->

= attribute names of a relation db::rel->

= tuples of a relation (-> SQL) db::rel

= distinct values of an attribute db::rel.attr

= Elements of the FROM clause can be nested, e.g.
FROM xdb-> xdbtables, xdbtables-> atts

to iterate over the relations of database xdb and then over the relations’ attributes

= Variables in the FROM clause can be used in view definitions for dynamic result
schemas

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

SchemaSQL — Example

= Transform KL database to MA format:
CREATE VIEW KL2MA: :AvgSales(Store, AS
SELECT KS.Store, g

FROM KL::Sales(KS, KS.)Department KD

1. Dynamic result schema: number of attributes depends on number of attribute
values in the source relation's department attribute

2. Nesting of sets in FROM clause

3. A source tuple's value for AvgSales is placed in the result column depending on the
value of the tuple's Department attribute (merge into one result tuple is implicit)

= Problem: Operation (the merge) is not well-defined for all source relations

= What happens if there was an additional tuple (“Innenstadt”,"Hifi", 97500) in the
KL database? Which value (11800 or 97500) to place into the “Hifi” column?

= SchemaSQL does not answer this question

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

19

WS2008/09

SchemaSQL — Example (cont.)

= Aggregation over a variable number of columns

= e.g. "What are the average sales of the Mannheim stores, across all
departments?”

= Number of departments cannot assumed to be fixed!

SELECT MS.Store, CAVG(MSAtts))

FROM MA::AvgSales MS, MA::AvgSales-> MSAtts
WHERE MSAtts<>"Store*
GROUP BY MS.Store

= Use of attribute set in aggregate function

Mannheim (MA)

AvgSales
Store v Computer | Hifi
Quadrate 205000 234000 108000
Kaefertal 90000 76000 87000
Sandhofen 73000 81000 98000
His
S Prof.0r. -In? Stefan DeBloch 39 Enterprise Information Systems

SchemaSQL — Criticism

= Semantics of a SchemaSQL SELECT statement differs depending on context:
= e.g., query from Example 2, placed in a view definition:
CREATE VIEW MA::PerDeptAvgs(Store, MSAtts) AS
SELECT MS.Store, AVG(MSAtts)
FROM MA::AvgSales MS, MA::AvgSales-> MSAtts
WHERE MSAtts<>"Store®
GROUP BY MS.Store

= Query now computes the averages for each department individually!

oS> .

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

20

WS2008/09

FIRA/FISQL

= Presented by Wyss and Robertson [WyRo05]
= Extends the relational model to the federated relational model
= Number of output relations and their attributes is fully dynamic
= Provides an extended SQL syntax (Federated Interoperable SQL, FISQL)

= Provides a sound theoretical foundation by specifying the underlying algebra
operators (Federated Interoperable Relational Algebra, FIRA)

= FIRA/FISQL is transformationally complete:
= Transform any form of relational metadata to data and v.v.

0

attribute names

relation names

data

= FISQL allows nesting of queries

<H§S> .

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

FIRA/FISQL Data Model

= Federated relational data model:
= Extends the relational model to incorporate metadata
= A federated tuple is a mapping from a finite set of names S (=attribute names) to values;
S is known as the schema of the tuple.
= A federated relation has a name and contains a finite set of federated tuples
« A federated database has a name and consists of a finite set of federated relations
= A federation consists of a finite set of federated databases
= The schema of a federated relation is the union of the schemas of the tuples
Operations that add/change/delete tuples may modify the relation schema
= Defines federated counterparts of the six standard relational operators, e.g.
= Renaming of relations (in addition to attributes)
= Cartesian product/union/difference of databases

= Introduces six new operators

= Most operators defined on federated relations and on federated databases,
i.e. operators take a relation/database as input and produce a
relation/database as output

<H§S> Y

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

21

WS2008/09

FIRA/FISQL — Operators

= Drop-projection L,(R), L,(D)
= Two variants: one for relations, one for federated databases
= Parameter A is the set of attributes to be removed from the relation/fed. DB
= Required to generically handle relations/fed. DBs with variable schema
= Down {;(R), ¥; (D)
= Two variants: one for relations, one for federated databases

= "Demotes” a table R's metadata to data by creating a relation metadata; and e

forming its crossproduct with R.

= For a relation R with name N and attributes A,... A, _
the relation metadata;is defined as: metadata(R)= |N | A,

= Ignores metadata columns: {,(R) = metadata,(R) x x r,&R)

N | A

N | A,

= Attribute Dereference AZ (R)

= The value of attribute B of the target tuple t is determined by using the value found in
the attribute named equal to t's value in column A, values of all other attributes of t are
equal to the respective value of those in source tuple s
= Let t[X] denote the value of attribute X of tuple t. The attribute values of a result tuple t
are obtained from the values of its respective source tuple s like this:
a X] :{s[s[A]] if X': B
@-S 9 s[X]otherwise

© Prof.Dr.-Ing. Stefan DeBloch 43 Enterprise Information Systems

FIRA/FISQL — Operators (cont.)

= Generalized Union 2(D)
= Creates a relation holding the outer union of all relations in the database D
= Transpose 7, (R)
= For each distinct value of the parameter column B in the input relation R, create a
column in the result relation (whose name is the respective value of B)

= For each tuple t of the result relation, obtain the value of column X (denoted t[X])
from the respective source tuple s like this:

s[A]if X =s[B]
t[X]=4s[X]if X eschema(s)
NULL otherwise

= i.e.: for each new attribute N, its value is that of the source tuple’s A attribute if
the source tuple’s B attribute value is equal to the name of attribute N;, NULL
otherwise

= other attributes remain unchanged
= Partition operator @ ,(R)
= Roughly the opposite of Generalized Union

= Creates a federated database with one relation for each distinct value in column A
= of input relation R
CHiS®

© Prof.Dr.-Ing. Stefan DeBloch “ Enterprise Information Systems

22

WS2008/09

Kaiserslautern (KL

Sales

Store Department | AvgSales
Innenstadt | TV 139000
Innenstadt |Computer |156000
Innenstadt | Hifi 118000
Gewerbegbt | TV 112000
Gewerbegbt | Computer [180000
Gewerbegbt | Hifi 57000

KL2TR=1gy,,o(KL2TR

KL2TR'= pgrore(KL)

Innenstadt

OR
‘<L2TR= nDepartment, AngaIes(KLZTR’)

= FISQL statement:

FROM KL.Sales KS

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch

G begbt
Department |AvgSales ewerbeg
139000 Department | AvgSales
“Computer | 156000 112000
—W Computer 180000
Hifi 57000

45

FIRA/FISQL example — KL2TR

= Transform the Kaiserslautern database to the format of the Trier database
= Requires the Partition operator @,(R) and (drop) projection

ST —
Innenstadt
Store Department | AvgSales
Innenstadt |TV 139000
Innenstadt |Computer [156000
Innenstadt | Hifi 118000

Gewerbegbt

Store Department | AvgSales
Gewerbegbt | TV 112000
Gewerbegbt | Computer | 180000
Gewerbegbt | Hifi 57000

A

SELECT KS.Department AS Dept, KS.AvgSales INTO

Enterprise Information Systems

FIRA/FISQL example — MA2KL

= Transform the Mannheim database to the format of the Kaiserslautern

database

= Requires a combination of the down and attribute deference operator

S
ry a; Store TV Computer | Hifi
AvgSales Store Quadrate 205000 | 234000 108000
AvgsSales AvgSales TV Quadrate 205000 | 234000 108000
Store TV Computer | Hifi _ \gSales Computer | Quadrate | 205000 | 234000 108000
Quadrate 205000 234000 108000 S_\Ll (MAAngales) _AVgSales Hifi Quadrate 205000 | 234000 108000
Kaefertal 90000 76000 87000 AvgSales Store Kaefertal 90000 | 76000 87000
Sandhofen | 73000 81000 98000 AvgSales v Kaefertal 90000 | 76000 87000
AvgSales Hifi Sandhofen | 73000 | 81000 98000
s
ry a; Store v Computer | Hifi
AvgSales vV Quadrate 205000 | 234000 108000
S'=g . (S) AvgSales | Computer | Quadrate | 205000 | 234000 | 108000
a;<> 'Store AvgSales | Hifi Quadrate | 205000 | 234000 | 108000
AvgSales TV Kaefertal 90000 76000 87000
AvgSales Hifi Sandhofen | 73000 |81000 98000
. 46

© Prof.Dr.-Ing. Stefan DeBloch

Enterprise Information Systems

23

WS2008/09

FIRA/FISQL — MA2KL (cont.)

=
ry a; Store v Computer | Hifi AvgSale
S
AvgSales , AvgSales TV Quadrate | 205000 | 234000 108000 | 205000
":Aa (S) AvgSales Computer | Quadrate |205000 [234000 |108000 |234000
L AvgSales Hifi Quadrate | 205000 234000 108000 | 108000
AvgSales TV Kaefertal [90000 76000 87000 90000
AvgSales Hifi Sandhofen | 73000 81000 98000 | 98000
= Cleanup:
MA2KL= 7 (8"
Store, Department, AvgSales Pa1->Department!
MA2KL
Store Department | AvgSales
Quadrate v 205000
Quadrate Computer 234000
Quadrate Hifi 108000
Kaefertal v 90000
Sandhofen | Hifi 98000
. 47

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

FIRA/FISQL example — TR2KL

= Use Down (on DB) with Generalized union, renaming and projection:
TR2KL= pg_>salesn5tore, Dept, AvgSales Pr1->Store Z(l’l (TR))

<H§S>

© Prof.Dr.-Ing. Stefan DelSloch

48

TR
Eisenbahnstr Hauptstr Eisenbahnstr Dent Avasal I-;auptstr
51 a ep! wvgSales
Dept AvgSales Dept AvgSales Eisenbahnstr | Dept | TV 67000 Hauptstr
v 67000 v 74000 Eisenbahnstr | AvgSales | TV 67000 Hauptstr |
Computer | 51000 Computer | 103000 Eisenbahnstr | Dept Computer | 51000
Hifi 78000 Hifi 89000
Eisenbahnstr | AvgSales | Hifi 78000
— TROKI
TR TR2KL
— m®r —_ TRXKL 3
€ Sales
r a; Dept AvgSales Store Dept AvgSales
4,\ Eisenbahnstr | Dept v 67000 TR2KL= p£.>Sa|es Eisenbahnstr | TV 67000
n r y g
= Eisenbahnstr [AvgSales |TV 67000 enbahnstr | TV 67000
TR % (TR 9 Tstore, Dept, AvgSales §
Eisenbahnstr | Dept Computer | 51000 Pri->Store " /Ellsenbahnstr Computer | 51000
rl- r
Hauptstr AvgSales | Hifi 89000 Hauptstr Hifi 89000
-—

Enterprise Information Systems

24

WS2008/09

FIRA/FISQL example — KL2MA

= Transform the Kaiserslautern database to the format of the Mannheim

database

= Requires the transpose and drop-projection operators:

s
Store v

Computer

fi

=

Kaiserslautern (KL KL
Sales S
Store Department | AvgSales Store Department | AvgSales | TV Computer |Hifi
Innenstadt | TV 139000 Department Innenstadt | TV 139000 139000 -
Innenstadt |Computer | 156000 =T AngaIes (Sa I es Innenstadt |Computer |156000 |- 156000
Innenstadt | Hifi 118000 Innenstadt | Hifi 118000 |- 118000
Gewerbegbt | TV 112000 Gewerbegbt | TV 112000 112000 -
Gewerbegbt | Computer | 180000 Gewerbegbt [Computer [180000 |- 180000
Gewerbegbt | Hifi 57000 Gewerbegbt | Hifi 57000 - 57000

Innenstadt |139000 - st
b’:u (S Innenstadt 156000 |- Store TV Computer | Hifi ?
Department, AvgSales Tnnenstadt 118000 nnenstadt_|139000 | 156000 _|118000)
Gewerbegbt | 112000 - A\ [Merge Gewerbegbt | 112000 | 180000 | 57000
Gewerbegbt |-

<H§S>

@© Prof.Dr.-Ing. Stefan DelSloch

180000

Gewerbegbt |-

57000

Innenstadt

49

¥

97500

Enterprise Information Systems

FIRA/FISQL — Merging

= Merging of tuples required
= Merging is simple if no “conflicts” arise
= Merge not uniquely defined if tuples conflict
= Two tuples t;, t, of a relation with n attributes are mergeable if either

= 4[A] = t[A]or
= one of t,[A] or t,[A] is a null value
holds for 1<i<n
= The merge t of two mergeable tuples t;, t, (denoted t = t; © t,) is defined as
t[ATif L[A]not B Pesty by (1Ob)
t{Al= . forl<i<n
t,[A]otherwise

= Optimal tuple merge

= For a relation schema R and two relations r, and r, that are instances of R, r, is a
tuple merge of ry, if it can be obtained from r, by a finite sequence of merge
operations of mergeable tuples

= A tuple merge r, of ry is an optimal tuple merge, if for every r; that is also a tuple
merge of rl
[r,] < |rs| holds

<H§S>

© Prof.Dr.-Ing. Stefan DelSloch 50

Enterprise Information Systems

25

WS2008/09

FIRA/FISQL — Merge Operator

= (Unique optimal tuple) Merge Operator u(R) [WyRo05b]
= Let R be a relational schema, and r an instance of R
= Let @Rdenote the empty relation of schema R
= Then the unique optimal tuple merge of r is
| @Rif there is more than one optimal tuple merge of r
u(r)=) . i
the unique optimal tuple merge otherwise

= Merge was not part of the original FIRA/FISQL
= No FISQL syntax specified

= FISQL statement (without merge):
SELECT DROP (KS1.Department, KS1.Avgsales)
FROM ((SELECT KS.*, (KS.Avgsales] ON (KS.Department]

s FROM KL.Sales AS KS) A B
s’ AS KS1
s> 1
© Prof.Dr.-Ing. Stefan DeBloch 5 Enterprise Information Systems

FIRA/FISQL example — KL2MA continued

KL
s
Store TV Computer [Hifi
Innenstadt |139000 |- - s
Innenstadt |- 156000 - S \\ Store TV Computer | Hifi
Innenstadt |- 118000 O Innenstadt | 139000 |156000 [118000
Gewerbegbt | 112000 |- - Gewerbegbt | 112000 |180000 |57000
Gewerbegbt |- 180000
Gewerbegbt |- - 57000

-

S C—
s

Store TV Computer |Hi
Innenstadt |139000 |- -
Innenstadt |- 156000
Innenstadt |- 118000 B P
Gewerbegbt 112000 |- -

Gewerbegbt |- 180000
Gewerbegbt |- - 57000
Innenstadt |- - 97500

fi

Store TV Computer [Hifi

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

26

WS2008/09

FIRA/FISQL — Summary

= Theoretically sound approach to resolve schematic heterogeneity
= Open questions:
= How does grouping/aggregation fit into the model?

« Group by/aggregate over an unknown set of attributes ?

« Could allow the user to solve the merge problem for relations with conflicting tuples by
explicitly specifying the desired merge semantics (using an aggregate function)

= What does transformational completeness mean in the XML data model?

Mannheim (MA)

AvgSales
Store v Computer | Hifi

‘—/ Quadrate 205000 234000 108000
90000

THu+p

Kaiserslautern (KL)

Sales

Store Department | AvgBales I+A Z::::;‘en 73000 ;ngg Zggg
Innenstadt | TV 139000
Innenstadt | Computer 156000
Innenstadt | Hifi 118000
Gewerbegbt | TV 112000 ~L+E
Gewerbegbt | Computer 180000 Eisenbahnstr Hauptstr
Gewerbegbt | Hif 57000 <—\ Dept AvgSales Dept AvgSales
v 67000 v 74000
o+ /u Computer | 51000 Computer | 103000
Hifi 78000 Hifi 89000
CH§S?
. 53 X)
© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

Summary

= Architectures for virtual data integration
= distributed DBMS, federated DBMS, mediator-based systems
= based on a global schema, can support location and distribution transparency
= multi-database systems
= o global schema, only support location transparency
= Wrappers as important infrastructure
= Advantages

= provide a common interface for integration middleware to interact with arbitrary data
sources

= overcomes heterogeneity regarding data model, API
= Garlic (IBM)

= almost any data source can be integrated

= global query optimization
middleware (Garlic) and wrapper decide dynamically which query fragments are processed by the
wrapper
specific capabilities of data sources can be utilized
function compensation by Garlic for query capabilities not supported by a wrapper

s)

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

27

WS2008/09

Summary (cont.)

= SQL/MED - Management of External Data

= Foreign-Data-Wrapper/Server/Table
= provides standardized support for extending SQL engine to access external data sources
« follows the Garlic idea
= Limitations: no standardized update operations, no transactional support
= Multi-database systems
= loose coupling of systems, no global schema
= multi-database languages
= allows access of multiple data bases in a single query
» directly references export schemas
= may also support bridging schematic heterogeneity
= SchemaSQL

= variables in SQL FROM-clause can now also range over databases, tables, attributes,
distinct values

= FIRA/FISQL
= solid theoretical foundation, providing new algebraic operators

@.Sg 55

© Prof.Dr.-Ing. Stefan DeBloch Enterprise Information Systems

28

