Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Prof. Dr.-Ing. Stefan DeRloch
AG Heterogene Informationssysteme I

-
m TecHniscHE UNIVERSITAT
m KAISERSLAUTERN

Geb. 36, Raum 329
Tel. 0631/205 3275
dessloch@informatik.uni-kl.de

Chapter 3
DB-Gateways

<H§s>

Outline

Coupling DBMS and programming languages
= approaches
= requirements
= Programming Model (JDBC)
= overview
= DB connection model
= transactions
= Data Access in Distributed Information System Middleware
= DB-Gateways
= architectures

= ODBC
= JDBC

= SQL/OLB — embedded SQL in Java
= Summary

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Coupling Approaches — Overview

= Embedded SQL
= (static) SQL queries are embedded in the programming language
= cursors to bridge so-called impedance mismatch
= preprocessor converts SQL into function calls of the programming language
= potential performance advantages (early query compilation)
= vendor-specific
= Dynamic (embedded) SQL
= SQL queries can be created dynamically by the program
= character strings interpreted as SQL statements by an SQL system
= Call-Level Interface (CLI)
= standard library of functions that can be linked to the program
= same capabilities as (static and dynamic) embedded
= SQL queries are string parameters of function invocation
= avoids vendor-specific precompiler

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Coupling Approaches (Examples)

= Embedded SQL

= static

= Example:

exec sql declare c cursor for
SELECT empno FROM Employees WHERE dept = :deptno_var;
exec sql open c;
exec sql fetch c into :empno_var;
= dynamic

= Example:
strepy(stmt, "SELECT empno FROM Employees WHERE dept = ?");
exec sql prepare sl from :stmt;
exec sql declare c cursor for sl;
exec sql open c using :deptno_var;
exec sql fetch c into :empno_var;

= Call-Level Interface (CLI)

= Example:
strepy(stmt, "SELECT empno FROM Employees WHERE dept = ?");
SQLPrepare(st_handle, stmt, ...);
SQLBindParam(st_handle, 1, ..., &deptno_var, ...);
SQLBindCol(st_handle, 1, ..., &empno_var, ...);
SQLExecute(st_handle);
SQLFetch(st_handle);

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Standard Call Level Interfaces - Requirements

= Uniform database access
= query language (SQL)
= meta data (both query results and DB-schema)
= Alternative: SQL Information Schema
= programming interface
= Portability
= call level interface (CLI)
= no vendor-specific pre-compiler
= application binaries are portable
= but: increased application complexity
= dynamic binding of vendor-specific run-time libraries
= Dynamic, late binding to specific DB/DBS
= late query compilation
= flexibility vs. performance

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch

Middleware for Information Systems

Additional Requirements for DB-Gateways

= Remote data access
= Multiple simultaneously active

DB-connections within the
same application thread

= to the same DB

= to different DBs

presentation

= within the same (distributed)

distyibuted..TA~

transaction ot

= Simultaneous access to
multiple DB/DBMS

logic

= architecture supports use of

(multiple) DBMS-specific drivers
= coordinated by a driver manager

source
pement

= Support for vendor-specific

extensions

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch

Middleware for Information Systems

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Historical Development

= ODBC: Open Database Connectivity
= introduced in 1992 by Microsoft
= quickly became a de-facto standard
= ODBC drivers available for almost any DBMS
= "blueprint" for ISO SQL/CLI standard

= JDBC

= introduced in 1997, initially defined by SUN, based
on ODBC approach

Java application

= leverages advantages of Java (compared to C) for the
API

JDBC 4.0

= abstraction layer between Java programs and SQL
= current version: JDBC 4.0 (Dec. 2006)

SQL-92, SQL:1999,
SQL:2003

(object-) relational DBS

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch

Middleware for Information Systems

JDBC — Core Interfaces

default:
<source>.<method> -> <target>

Connection
createStatement prepareCall
prepareStatement
Statement subclass | preparedstatement | 291355 | cajlaplestatement
IN/OUT/INOUT:/
IN: CallableStatement.
PreparedStatement. getXXX/setxxx
setXXX
L
executeQuery| Data Types
executeQuer XXX
Query get getResultSet
getMoreResults
ResultSet

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch

Middleware for Information Systems

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Example: JDBC

DriverManager
J String url = "jdbc:db2:mydatabase";
l Connection con = DriverManager.getConnection(url, "dessloch”, "pass");
Connection String sqlstr = "SELECT * FROM Employees WHERE dept = 1234";
l Statement stmt = con.createStatement();
Statement ResultSet rs = stmt.executeQuery(sqlstr);
while (rs.next()) {
String a = rs.getString(1);
String str = rs.getString(2);
ResultSet System.out.print(" empno=" + a);
System.out.print(" firstname= " + str);
System.out.print(“\n");
}
© Prof.Dr.-Ing. Stefan DeBloch 9 Middleware for Information Systems

JDBC — Processing Query Results

= ResultSet
= getXXX-methods
= scrollable ResultSets
= updatable ResultSets

= Data types

= conversion functions

= streams to support large data values

= with JDBC 2.0 support of SQL:1999 data types
= LOBS (BLOBS, CLOBS)
= arrays
= user-defined data types
= references

s w

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Middleware for Heterogeneous and
Distributed Information Systems

JDBC — Additional Functionality

= Metadata
= methods for metadata lookup
= important for generic applications

= Exception Handling
= Batch Updates

= Savepoints

= RowSets

@.Sg 11

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Transactions in JDBC

= Connection interface — transaction-oriented methods for local TAs
= begin is implicit
= commit()
= rollback()
= get/setTransactionlsolation()
« NONE, READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE
= get/setAutoCommit()
= Here, the scope of the transaction is a single connection!

= support for distributed transactions requires additional extensions, interactions with a
transaction manager (see subsequent chapters)

@.Sg 12

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

WS 2008/09

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

JDBC DataSource

= DataSource Interface
= motivation: increase portability by abstracting from driver-specific connection details
= application uses logical name to obtain connection, interacting with Java Naming and
Directory Service (JNDI)
= connections can be created, registered, reconfigured, directed to another physical DB
without impacting the application
= example: connections are set up and managed by an application server administrator

= Steps

= DataSource object is created, configured, registered with JNDI
= using administration capability of application server
= outside the application component

= application component obtains a DataSource object
= JNDI lookup
= no driver-specific details required

= application obtains a Connection object using DataSource
= DataSource.getConnection()

<H§S> .

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Architecture

= Applications
= programs using DB-CLI functionality

= usage
= connect to data sources
« execute SQL statements (e.g., queries) over data sources application
= receive (and process) results Y

= Driver

= processes CLI calls v O/IDBC API

= communicates SQL requests to DBMS driver manager
= Alternative: does the entire processing of the SQL requests

= hides heterogeneity of data sources Oracle | | DB2

. driver driver
= Driver Manager

= manages interactions between applications and drivers

= realizes (n:m)-relationship between applications and drivers

= tasks
= load/unload driver
= mapping data sources to drivers
= communication/logging of function/method calls
= simple error handling

T
© Prof.Dr.-Ing. Stefan DeBloch 14 Middleware for Information Systems

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Driver Manager Tasks

application | /| application |\ | application

connect request XYZ disconnect

driver manager driver manager driver manager

mapping
data source-> driver

n.o_t 9 error _O_K_ A EO_ driver still y_es_
detection : : needed? |
I |

load driver request XYZ unload driver

| driver | | driver | | driver |

¥ ODBC only! —/

© Prof.Dr.-Ing. Stefan DeBloch 15 Middleware for Information Systems

Driver — Tasks and Responsibilities

= Connection Management
= Error handling

= standard error functions/codes/messages, ...
= Translation of SQL requests

= if syntax of DBMS deviates from standard SQL
= Data type mapping
= Meta data functions

= access (proprietary) system catalogs
= Information functions

= provide information about driver (self), data sources, supported data types and DBMS
capabilities

= Option functions

= Parameter for connections and statements
(e.g., statement execution timeout)

© Prof.Dr.-Ing. Stefan DeBloch 16 Middleware for Information Systems

Middleware for Heterogeneous and
Distributed Information Systems

Realization Alternatives

= ODBC driver types
= One-tier
= two-tier
= three-tier
= JDBC driver types
= Type 1: JDBC-ODBC bridge
= Type 2: Part Java, Part Native
= Type 3: Intermediate DB Access Server
= Type 4: Pure Java

= Application does not "see" realization alternatives!

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch

17

Middleware for Information Systems

Single-Tier Driver

= Used to access flat files,
ISAM files, desktop
databases

accessing flat files

accessing ISAM files
or desktop DBs

= Data resides on the same application I

| application

machine as the driver driver manager

driver manager

= Functionality: driver driver
= complete SQL processing
(parse, optimize, execute) engine calls
= often lacks multi-user and file 1/0 calls =
transaction support | ISAM/DTDB engine |
file 1/0 calls
file system | | file system |

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch 18

Middleware for Information Systems

WS 2008/09

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Two-Tier Driver

= Classical client/server support

= driver acts as a client interacting with
DBMS (server) through data protocol

= Implementation alternatives
1. direct data protocol support
. mapping ODBC to DBMS-client API
s middleware solution

= Direct data protocol support
= message-based or RPC-based

= utilizes DBMS-specific network libraries or

RPC runtime

<Hgs>

@ Prof.Dr.-Ing. Stefan DeBBloch 19

Direct data protocol support

client

application |

driver manager
two-tier driver

data protocol

| network libraries or RPC runtime |

network data protocol

| DBMS |

server

Middleware for Information Systems

Two-Tier Driver (continued)

= Mapping to DBMS-client APl ofjent

Middleware solution client

application |

driver manager
two-tier driver

DBS-client API

| DBS runtime library |

data protocol

| network libraries or RPC runtime |

network data protocol

| DBMS |

application |

driver manager

two-tier driver (MW-vendor)

network library or RPC runtime
(middleware vendor)

data protocol (MW vendor)

server application
(middleware vendor)

DBS runtime library

DBMS

server
Higs>

@ Prof.Dr.-Ing. Stefan DeBBloch 20

server

Middleware for Information Systems

10

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Three-Tier Driver

= Middleware Server
= connects and relays requests
to one or more DBMS servers
= Moves the complexity from
the client to the middleware
server

= client requires only a single
driver (for the middleware

client application

driver manager

three-tier driver

network lib./RPC runtime

data protocol 1

server) middleware DB request server
= Arbitrary number of tiers server driver manager
pOSSIble two-tier driver
addtl. components
data protocol 2
server DBMS
<S>
© Prof.Dr.-Ing. Stefan DeBloch 2 Middleware for Information Systems
JDBC Driver Types
Partial Java All-Java
= Type 1: JDBC-ODBC bridge = Type 3: Net-Protocol All-Java driver
= 2-tier = 3-tier

= mapping to ODBC API
= uses Java Native Interface (INI)
= requires native binaries at the client

= Type 2: Native-API Partial-Java driver
= 2-tier
= uses a native DBMS client library
= requires binaries at the client

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch 2

= driver on client is pure Java

= communicates with JDBC
server/gateway

= no native binaries on client required
= applet-based DB access is possible

= Type 4: Native-Protocol All-Java
driver
= 2-tier
= pure Java

= implements the network data protocol
of the DBMS

= directly connects to the data source
= no native binaries on client required
= applet-based DB access is possible

Middleware for Information Systems

11

Middleware for Heterogeneous and
Distributed Information Systems

= aka SQLJ Part 0

= Static, embedded SQL in Java

= Development advantages over JDBC
= more concise, easier to code

= Permits static authorization

= SQLJ translator implemented using JDBC
= produces statement profiles
= vendor-specific customizers

= potential performance benefits

= Interoperability with JDBC

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch

23

= combined use of SQLJ with JDBC for flexibility

SQL Object Language Bindings (OLB)

= static type checking, error checking at precompilation time

= Can be used in client code and stored procedures
= SQLJ translator/customizer framework supports binary compatibility

= can add different implementation, to be used instead of default produced by translator

= resulting binary contains default and possibly multiple customized implementations

Middleware for Information Systems

SQL/OLB

= Static SQL authorization option
= Static SQL is associated with "program"
= Plans/packages identify “programs” to DB
= Program author's table privileges are used
= Users are granted EXECUTE on program
= Dynamic SQL is associated with "user"
= No notion of "program"
= End users must have table privileges
= BIG PROBLEM FOR A LARGE ENTERPRISE !!!
= Static SQL syntax for Java
= INSERT, UPDATE, DELETE, CREATE, GRANT,
etc.
= Singleton SELECT and cursor-based SELECT
= Calls to stored procedures (including result
sets)
= COMMIT, ROLLBACK
= Methods for CONNECT, DISCONNECT

<H§S>

@ Prof.Dr.-Ing. Stefan DeBBloch

24

dynamic SQL static SQL

check authorization
for package

parse SQL
statement
check table/view
authorization
calculate access path

execute statement

execute statement |

Middleware for Information Systems

WS 2008/09

12

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

SQL/OLB vs. JDBC: Retrieve Single Row

= SQL OLB
#sql [con] { SELECT ADDRESS INTO :addr FROM EMP
WHERE NAME=:name };

= JDBC
java.sgl.PreparedStatement ps = con.prepareStatement(
"SELECT ADDRESS FROM EMP WHERE NAME=?");
ps.setString(1, name);
java.sgl.ResultSet names = ps.executeQuery();
names.next();
name = names.getString(1);
names.close();

e :

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Result Set Iterators

= Mechanism for accessing the rows returned by a query
= Comparable to an SQL cursor
= |terator declaration clause results in generated iterator class
= Iterator is a Java object
= lterators are strongly typed
= Generic methods for advancing to next row
= Assignment clause assigns query result to iterator
= Two types of iterators
= Named iterator
= Positioned iterator

e :

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

13

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

Named Iterators - Example

= Generated iterator class has accessor methods for each result column

#sql iterator Honors (String name, float grade);
Honors honor;

#sql [recs] honor =
{ SELECT SCORE AS "grade", STUDENT AS "name"
FROM GRADE_REPORTS
WHERE SCORE >= :limit AND ATTENDED >= :days
ORDER BY SCORE DESCENDING };
while (honor.next())

System.out.printin(honor.name() + " has grade "
+ honor.grade());

<Hgs>

27 . N
© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Positioned Iterator

= Use FETCH statement to retrieve result columns into host variables based on
position

#sq| iterator Honors (String, float);
Honors honor;
String name;
float grade;
#sql [recs] honor =
{ SELECT STUDENT, SCORE FROM GRADE_REPORTS
WHERE SCORE >= :limit AND ATTENDED >= :days
ORDER BY SCORE DESCENDING };
while (true) {
#sql {FETCH :honor INTO :name, :grade };
if (honor.endFetch()) break;
System.out.printin(name + " has grade " + grade);

}

<Hgs>

2i . N
© Prof.Dr.-Ing. Stefan DeBloch 8 Middleware for Information Systems

14

Middleware for Heterogeneous and
Distributed Information Systems

WS 2008/09

SQLJ - Binary Portability

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Java as a platform-independent language

Use of generic SQLJ-precompiler/translator (avoids DBMS-specific precompiler
technology)

Generated code uses “standard” JDBC by default
Compiled SQLJ application (Java byte code) is portable
Customizer technology allows DBMS-specific optimizations after the compilation

SQLJ source
SQLJ source P Java
class ABC
¢ class ABC { byte byte
" " codes codes
#sql Generic call "stub Jave Optional step
SELECT o SQLJ Com piler DBM S-specific
} custom izer
translator
}
Extracted SQL Extracted SQL
SELECT ... SELECT ...
host var data host var data
Extracted SQL
JDBC "stub” JDBC "stub”
SELECT ... _
host var data >
DBMS-specific
JDBC default S
"stub”
Most vendors use

default JDBC "stub"

29

Summary

<H§S>

© Prof.Dr.-Ing. Stefan DeBloch Middleware for Information Systems

Gateways
= ODBC /JDBC

= support uniform, standardized access to heterogeneous data sources
= encapsulate/hide vendor-specific aspects

= multiple, simultaneously active connections to different databases and DBMSs
= driver/driver manager architecture
= enabled for distributed transaction processing
= high acceptance
= important infrastructure for realizing IS distribution at DB-operation level
= no support for data source integration
JDBC
= ‘for Java’, 'in Java’
= important basis for data access in Java-based middleware (e.g., J2EE)
SQLJ
= combines advantages of embedded SQL with portability, vendor-independence

30

15

